
ProMetheuS: A Suite for Process Mining Applications

Lucantonio Ghionna
1
, Luigi Granata

2
, Gianluigi Greco

1
, and Massimo Guarascio

3

1Dipartimento di Matematica, Università della Calabria, I-87036 Rende, ITALY

{l.ghionna,ggreco}@mat.unical.it
2Exeura SRL, Via Pedro Alvares Cabral - C.da Lecco, I-87036, Rende, ITALY

{luigi.granata@exeura.com}
3ICAR-CNR, Via P.Bucci 41C, I-87036, Rende, ITALY

{guarascio@icar.cnr.it}

Abstract. Process mining is an established approach for analyzing and model-

ing complex business processes. In this paper we showcase ProMetheuS, a flex-

ible and scalable suite for process mining natively designed for industrial appli-

cations. Moving from the experience of the ProM framework, the state-of-art

process mining tool, ProMetheuS introduces three innovative designing ele-

ments. Firstly, ProMetheuS defines the concept of flow of mining, which is

aimed at supporting the design of complex mining applications, where various

mining tasks can be combined and automatically orchestrated at run-time. Sec-

ondly, ProMetheuS exports a rich set of facilities to help developers in building

interactive applications providing on-the-fly feedback during analysis. Finally,

behind the scenes, a powerful stream-based log-handling subsystem ensures

scalability in data-intensive applications.

1 Introduction

In the context of enterprise automation, process mining is an established approach

to support the analysis and the design of complex business processes [1]. In a typical

process mining scenario, the goal is to derive a model for a transactional process ca-

pable of explaining all activities registered in some log given at hand. Eventually, the

“mined” model can be used to design a detailed process schema possibly supporting

forthcoming enactments, or to describe its actual behavior.

The ProM framework [2] is an open and extendable tool for process mining, which

enables users to write and import their own mining algorithms as plug-ins. ProM

currently supports a wide range of process mining applications (e.g., control-flow

mining, decision tree induction, or clustering, to cite a few) and analysis tasks (e.g.,

validation of process models, performance analysis, or statistical evaluations). Thanks

to this valuable packaging, ProM represents the state-of-art tool for process mining,

and many real-world scenarios exploiting its mining capabilities have been discussed

in literature (see e.g., [3]). Despite its success, however, certain issues of flexibility

and scalability might arise with the use of the framework, which limit its effectiveness

in handling complex industrial applications [2].

mailto:%7bguarascio@icar.cnr.it%7d

In this paper, we describe ProMetheuS
1
, a novel suite for process mining introduc-

ing innovative designing elements, which are aimed at facing some limitations of

ProM and at providing new insights on the development of process analysis software.

First, ProMetheuS has been specifically conceived to support the definition of

complex mining applications, where various mining tasks can be combined and auto-

matically orchestrated at run-time: Process mining applications may involve dozens

of different tasks, ranging from data acquisition, to data manipulation, information

extraction based on different mining algorithms, recombination of mining results, and

visualization. These different kinds of task can be managed in ProM, but at the price

of requiring human intervention in their coordination. Indeed, constructing complex

mining applications requires manually invoking the various tasks by collecting and

storing each intermediate result and by reusing them as the input for some further

tasks. ProM 6.0 has simplified the chaining of intermediate results by letting tasks be

aware of the kinds of inputs/outputs they are supporting [2]. In order to automatize

and easily deploy mining applications involving different tasks, ProMetheuS intro-

duces instead the concept of “flow of mining”, a very natural and manageable way of

designing complex mining processes. Indeed, ProMetheuS supports the deployment

of mining applications in their entity, by allowing to design mining processes as com-

plex flows of elementary bricks. Each brick produces an output that may be used as

input for other bricks in the flow. Consequently, users may incrementally build the

desired flow, by connecting existing blocks or adding new ones to manipulate pro-

duced outputs. In fact, ProMetheuS comes equipped with a run-time engine that sup-

ports and monitors the execution of the mining flow and that orchestrates the compo-

sitions of the various elementary bricks. Notably, ProMetheuS allows the definition

and the organization of bricks in workspaces, grouping resources according their ap-

plication domain (e.g., text mining, rules learning, etc.). Resources belonging to dif-

ferent workspaces can be transparently connected together to build mixed flows.

Second, ProMetheuS allows users to build interactive applications providing on-

the-fly feedback during analysis: A plug-in based architecture is a crucial factor to

provide flexibility for real-world applications. However, each plug-in is current

viewed in the ProM framework as a monolithic box, where interaction is limited to

the startup phase in which users configure the execution environment of each algo-

rithm by setting all parameters. ProMetheuS extends the flexibility of each plug-in by

introducing an “interactive execution” mode (in addition to the standard “batch” one),

i.e., it supports an approach to process mining where users may continually interact

with the mining algorithms and provide feedbacks trough the graphical user interface.

Finally, ProMetheuS ensures scalability over large volumes of data: In real indus-

trial environments, enormous volumes of data are available for mining analysis. Yet,

few efforts (see e.g., [4]), have been spent to provide an adequate support for data-

intensive applications. ProM imports the whole log into the main memory or, if this is

not feasible, loads only a batch of data per time and stores remaining batches in disk-

1
The system has been released by Exeura S.r.l.---under the name of “OKT Process Mining

Suite”---as an open source software for the OpenKnowTech project founded by the Italian

Ministry of University and Research (MIUR).

Fig. 1.ProMetheuS's Architecture

resident swap files, at the price of slower access time
2
. To face scalability issues,

ProMetheuS adopts instead a data management subsystem based on a stream handling

model for data acquisition. Thus, rather than building a complete in-memory repre-

sentation of data, this model stores statistical sketches only, while supporting on-

demand streaming access to the original log (no additional paging files are required).

2 ProMetheuS Architecture

As shown in Fig. 1, ProMetheuS is implemented over four distinct logic layers.

The data layer manages physical low-level operations for acquiring and storing ele-

mentary data types. The layer defines primitives for the input/output and for the modi-

fication of Log data, representing log files, of Model data, representing the abstraction

of a process model, and of Custom data, representing user defined data-types. Regard-

ing log representation, ProMetheuS supports the MXML data model [5], while a sub-

set of the standard XPDL 2.0 [6] is used for model representation.

The API layer is responsible of two basic functionalities. Firstly, it supports the ef-

ficient internal storage of log files. In particular, it handles a main-memory repository

storing dependencies graphs, i.e., graphs whose nodes represent the activities in the

process log and whose edges represent the relationship of precedence among them. In

fact, these structures are internally built by scanning once the input log, while further

I/O operations may be executed when additional information is needed
3
. Secondly, it

allows a transparent access to the data layer through dedicated managers. In details, a

2
ProM 6.0 uses the OpenXES library---see http://www.xes-standard.org/openxes/start.

3SAX libraries are used for reading XML streams---see http://www.saxproject.org.

LogManager, a DependenciesManager, and a ModelManager provide primitives to

manipulate logs, dependencies graphs, and models respectively (see Fig. 1).

Above the API layer, it is placed the computational layer. In ProMetheuS, a com-

putational resource is a plug-in component, which performs a specific task in a flow

of mining. ProMetheuS provides three main templates for computational resource. A

source is a template conceived to access the input data on which the mining analysis

has to be performed. In particular, a Log Source, a Model Source, and a Custom

Source are provided for handling logs, models, and custom data sources respectively.

Mining modules are responsible of performing mining algorithms and statistical eval-

uations on the input provided by source modules. In particular, a Log Miner template

manages a Log as input, and produces as output one or more instances of Log. A

Model Miner template works on a Log input, and produces a Model. ProMetheuS

comes equipped with various mining modules, with the default one being the α-miner

[1]. A Custom Module template is conceived to work on Custom types. Finally, sinks

templates are intended to manage the outputs of the mining process. These templates

are useful for visualization, statistical analysis and storage of the computed results.

At the computational layer a Mediator manages communications between plug-ins

and the Front Office layer. In particular, during the batch execution mode, the media-

tor automatically checks for the dependencies among the involved plug-ins, by tracing

the state of the various executions and the execute availability of their input. Indeed, a

plug-in may be executed only when all its inputs are available. Importantly, during the

interactive mode, the mediator manages the interaction between the various graphical

component associated with the different plug-ins. Basically, when the state of a com-

ponent is modified, an event is generated and sent to the mediator, being then in

charge of dispatching it to the other components, which can react accordingly.

The Front Office Layer exports GUI functionalities for the creation of a process

mining flow, for the configuration of environment parameters, and for the visualiza-

tion of results. A workflow engine is provided for the batch execution of the analysis.

3 ProMetheuS in action

We now overview the functionalities of ProMetheuS, by showcasing the complete

deployment of a sample flow of mining. We also discuss some scalability results ob-

tained by executing the flow in different configuration scenarios.

3.1 Designing and executing a flow of mining

To design a flow of mining, ProMetheuS provides the user with an intuitive GUI

consisting of several graphical elements and facilities. The Workspace Explorer

shows all available workspaces as navigable entries, in which plug-ins are organized

according their type (i.e., source, mining modules, or sinks). The Workarea is the

design panel on which users can freely customize mining flow properties. Users can

quickly add/remove concrete instances of plug-in definitions (by dragging them from

Fig. 2. Flow of mining: A MXML Log is connected to a Basic α-Miner redirecting computed

model to sinks for visualization in XPDL format and statistics evaluations. Plug-ins's parame-

ters can be configured by double-clicking on the plug-in instance.

the workspace explorer), edit connections between plug-ins, combine input/outputs,

and control execution flow. Once a plug-in instance is placed, users can configure its

execution environment in two steps: Parameters Configuration, where if the selected

plug-in requires some input parameters, then users can proceed to their configuration,

and Edge Configuration, where users can insert a new connection between modules,

can rearrange a defined connection, or can remove it from the mining flow.

A sample flow of mining ready for the execution is depicted in Fig. 2. Given a flow

of mining, users can run all executable plug-ins at once, or execute only selected ones.

Interestingly, users may define different flows in the same work area and run unrelat-

ed plug-ins in parallel, reducing the overall execution time of the analysis. After the

computation, users can visualize the actual value of input/output data by using

ProMetheuS’s default inspectors graphical components. An inspector is a very gener-

ic data explorer, which is able to produce a suitable representation of a specific data

type of the flow (see Fig. 3). Notably, users can program their own inspectors for

custom data types or can create multiple views on the same data set, each one depict-

ing some portion of the data information of interest.

Plug-ins can be graphically composed in high-level blocks of components perform-

ing user-defined operations. In many occasions, it might be necessary to perform the

same operation many times in the same mining flow or in different flows as well. In

order to suite this need, ProMetheuS supports the grouping of connected plug-ins into

macros that can be used as bricks with their own input and outputs (see Fig. 4).

Fig. 3. Inspecting the flow: The input/output of executed plug-ins can be inspected by clicking

on flow arrows or on connection ports. The log inspector shows relevant statistics (e.g., number

of activities) on the log, the model inspector draws the process workflow reporting summary

information (e.g., frequency of a transition), the output inspector provides the resulting XPDL.

Fig. 4. Defining a macro: The source log is processed by collapsing looping activities, and by

filtering activities names. Then, the output of the macro is used as input in the original flow.

Fig. 5. Model refinement: The user runs the α-miner to compute a preliminary model. Based on

summary information, (s)he sets a cut parameter for removing infrequent activities, an runs the

α-miner again to compute a pruned model. Finally, (s)he identifies the desired workflow by

interactively collapsing some of the intermediate model's activities through the interface.

3.2 Interactive refinement of intermediate results

ProMetheuS allows users to modify at the run-time the parameters of mining algo-

rithms and to manipulate their execution logic on the basis of feedbacks they provide

during the current execution. To support interaction, plug-ins can be equipped with

customizable graphical components. In particular, a plug-in can be associated with a

menu, with a toolbar, with a main pane (i.e., a graphical area for controlling execu-

tion), with a bottom pane (i.e., a panel for setting parameters), and with the quick view

(i.e., a panel providing an overview of the plug-in status). Fig. 5 depicts a possible

interactive refinement of a model computed by the α-miner of the flow of Fig. 2.

3.3 Example execution

The execution time of the flow shown in Fig. 2 has been measured in both

ProMetheuS and ProM considering different log sizes
4
 (see Fig. 6). Notably, the time

required by ProMetheuS to complete the whole flow is much lower than the time

ProM needs to just import the log. Moreover, as shown in Table 1, the performances

of the ProM buffered importer deteriorate quickly at the growing of the log size, be-

cause of the overhead of writing swap files.

4
 We used a Xeon 4 quad-core, with 8 Gb of Ram and running Ubuntu 11.04 Server.

Fig. 6. Analysis Execution Times

4 Conclusions

In this paper we presented ProMetheuS, a suite for process mining applications [7]

providing novel design elements. ProMetheuS is based on the concept of flow of min-

ing, which enables user to design complex mining processes in which different min-

ing tasks can be combined. Each task can be controlled interactively, and users can

exploit run-time feedbacks to improve the quality of their analysis. In the case of min-

ing large logs, the stream-based log handling may also help in achieving good scala-

bility performances by just loading information needed for the analysis.

References

1. W. van der Aalst, A. Weijters and L. Maruster, "Workflow Mining: Discovering Process

Models from Event Logs," IEEE Transactions on Knowledge and Data Engineering, vol.

16, no. 9, pp. 1128-1142, 2004.

2. H. Verbeek, J. Buijs, B. van Dongen and W. van der Aalst, "ProM 6: The Process Mining

Toolkit," in Proceedings of BPM Demonstration Track, 2010.

3. N. van Beest and L. Maruster, "A Process Mining Approach to Redesign Business

Processes - A Case Study in Gas Industry," in Proceedings of SYNASC '07, 2007.

4. J. Ingvaldsen and J. Gulla, "Preprocessing Support for Large Scale Process Mining of

SAP transactions," in Proceedings of Business Process Management Workshops, 2008.

5. W. van der Aalst and B. van Dongen, "A meta model for process mining data," in

Proceedings of the CAiSE 05 Workshops, 2005.

6. J. Ping, Q. Mair, and J. Newman, "Using UML to design distributed collaborative

workflows: from UML to XPDL," in Proceedings of IEEE International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003.

7. W. van der Aalst, B. van Dongen, and J. Herbs, "Workflow mining: a survey of issues and

approaches," Data Knowledge Engineering, vol. 47, no. 2, pp. 237-267, 2003.

Log size ProMetheuS ProM

1 Gb 55 1750

3 Gb 180 1800

5 Gb 225 1800

7 Gb 420 1800

10 Gb 580 1800

Table 1Log importing time

(timeout: 1800 sec)

