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Abstract. In practical contexts where protocols model business inter-
actions (e.g. trading, banking), designers need tools allowing them to
analyse the impact on the possible interactions of regulations, prefer-
ences, conventions and the like. This work faces the issue of how to equip
commitment protocols with formal and practical instruments aimed at
supporting such an analysis by identifying the possible risks of viola-
tion and, thus, enabling the definition of operational strategies aimed
at reducing risks of violation. Specifically, we present an operational se-
mantics for the commitment protocol language 2CL as well as a tool for
visualizing as a graph the possible interactions, labelling the states of
the interaction so as to highlight legal situations and violations.
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1 Introduction and Motivation

Agent interaction is generally specified by defining interaction protocols [18].
For communicating with one another, agents must follow the schema that the
protocol shapes. Different protocol models can be found in the literature, this
work concerns commitment-based protocols [16, 21]. This kind of protocols relies
on the notion of commitment, which in turn encompasses the notions of debtor
and creditor: when a commitment is not fulfilled, the debtor is liable for that
violation but as long as agents reciprocally satisfy their commitments, any course
of action is fine.

In many practical contexts where protocols model business interactions (e.g.
trading, banking), designers must be able to regulate and constrain the possi-
ble interactions as specified by conventions, regulations [4], preferences or habits.
Some proposals attack the issue of introducing similar regulations inside commit-
ment protocols [3, 9, 6, 13], however, none of them brought yet to the realization
of a tool that allows visualizing and analysing how regulations or constraints
impact on the interactions allowed by a commitment-based protocol. The avail-
ability of intuitive and possibly graphical tools of this kind would support the
identification of possible violations, thus enabling an analysis of the risks the



interaction could encounter. As a consequence, it would be possible to raise
alerts concerning possible violations before the protocol is enacted, and to re-
duce risks by defining proper operational strategies, like regimentation (aimed at
preventing the occurrence of violations) or enforcement (introduction of warning
mechanisms) [11].

The work presented in this paper aims at filling this gap. To this purpose,
we started from the commitment protocol language 2CL described in [3], whose
key characteristic is the extension of the regulative nature of commitments by
featuring the definition of patterns of interaction as sets of constraints. Such
constraints declaratively specify either conditions to be achieved or the order in
which some of them should be achieved. The first contribution is, therefore, a
formal, operational semantics for the proposal in [3], which relies on the Gener-
alized Commitment Machine in [17]. We named our extension 2CL-Generalized
Commitment Machines (2CL-GCM for short). On top of this, it was possible
to realize the second contribution of this work: a Prolog implementation for
2CL-GCM, which extends the implementation in [19], and is equipped with a
graphical tool to explore all the possible executions, showing both commitment
and constraint violations. The implementation is part of a plug-in Eclipse which
supports 2CL-protocol design and analysis.

The chief characteristic of our solution is that it performs a state evaluation of
protocol constraints, rather than performing path evaluation (as, instead, done
by model checking techniques). State evaluation allows considering each state
only once, labelling it as a state of violation if some constraint is violated in it
or as a legal state when no constraint is violated. This is a great difference with
respect to path evaluation, where a state belonging to different paths can be
classified as a state of violation or not depending on the path that is considered.
The advantage is practical: state evaluation allows to easily supply the user an
overall view of the possible alternatives of action, highlighting those which will
bring to a violation and those that will not. State evaluation, however, is possible
only by making some restriction on the proposal in [3]. Specifically, we assume
that the domain is expressed in terms of positive facts only.

The paper is organized as follows. Section 2 briefly summarizes 2CL inter-
action protocol specification. Section 3 describes the formalization of 2CL-GCM.
Section 4 presents a Prolog implementation of 2CL-GCM. Section 5 describes the
2CL Tools that supply features for supporting the protocol design and analy-
sis. Related Work and Conclusions end the paper. Along the paper we use as a
running example the well-known NetBill interaction protocol.

2 Background: 2CL Interaction Protocols

Let us briefly recall the chief characteristics of commitment protocols, as defined
in [3]. In this approach, commitment protocols feature an explicit distinction
between a constitutive and a regulative specification. The former defines the
protocol actions, while the latter encodes the constraints the interaction should
respect. Both specifications are based on commitments. Commitments are di-



Relation Operator Repr. LTL formula

Relation
Operators

Correlation
A correlate B A •− B 3A ⊃ 3B

A not correlate B A 6•− B 3A ⊃ ¬3B

Co-existence
A co-exist B A •−• B A •− B ∧B •− A
A not co-exist B A 6•−• B A 6•− B ∧B 6•− A

Temporal
Operators

Response
A response B A •−. B 2(A ⊃ 3B)

A not response B A 6•−. B 2(A ⊃ ¬3B)

Before
A before B A −.• B ¬B ∪A
A not before B A 6−.• B 2(3B ⊃ ¬A)

Cause
A cause B A •−.• B A •−. B∧A −.• B

A not cause B A 6•−.• B A 6•−. B∧A 6−.• B
Table 1. 2CL operators and their meaning.

rected from a debtor to a creditor. The notation C(x, y, r, p) denotes that agent
x commits to an agent y to bring about the consequent condition p when the
antecedent condition r holds. When r equals true, we use the short notation
C(x, y, p). The interacting partners share a social state that contains commit-
ments and other facts that are relevant to their interaction. Every partner can
affect the social state by executing actions, whose definition is given in terms
of operations onto the social state, see [21]. The partners’ behaviour is affected
by commitments, which have a regulative nature, in that debtors should act in
accordance with the commitments they have taken.

Definition 1 (Interaction protocol). An interaction protocol P is a tuple
〈Ro, F, s0, A, C〉, where Ro is a set of roles, identifying the interacting parties,
F is a set of facts and commitments that can occur in the social state, s0 is the
set of facts and commitments in the initial state of the interaction, A is a set of
actions, and C is a set of constraints.

The set of social actions A, defined on F and on Ro, forms the constitutive
specification of the protocol. The social effects are introduced by the construct
means, and their achievement can depend on a precondition (conditional ef-
fects). Both preconditions and effects are given in terms of the set F specified
in the protocol, which contains commitments and facts (i.e. the conditions that
are brought about). The means construct amounts to a counts-as relation [15,
11]. For instance, consider the action sendGoods reported in Table 2. Its social
meaning is that it makes the facts goods true (the goods were delivered to the
customer) and creates the commitment C(m, c, pay, receipt) that corresponds to
a promise by the merchant to send a receipt after the customer has paid. Further
examples can be found in the first part of Table 2, which reports all the actions
of the NetBill protocol. The formalization is inspired by those in [21, 19].

The regulative specification of the protocol is made of the set of 2CL con-
straints C, defined on F and on Ro as well. 2CL is a declarative language,
which allows expressing what is mandatory and what is forbidden without the
need of listing the possible executions extensionally. Constraints have the form
“dnf1 op dnf2”, where dnf1 and dnf2 are disjunctive normal forms of facts and



Action Definitions
(a1) sendRequest means request if ¬quote ∧ ¬goods
(a2) sendQuote means quote ∧ create(C(m, c,C(c,m, goods, pay), goods))

∧ create(C(m, c, pay, receipt))
(a3) sendAccept means create(C(c,m, goods, pay)) if ¬pay
(a4) sendGoods means goods ∧ create(C(m, c, pay, receipt))
(a5) sendEPO means pay
(a6) sendReceipt means receipt if pay

Constraints
(c1) quote −.• C(c,m, goods, pay) ∨ C(c,m, pay)
(c2) C(m, c, pay, receipt) ∧ goods −.• pay
(c2) pay •−.• receipt

Table 2. Actions and constraints for the NetBill protocol: m stands for merchant while
c stands for customer.

commitments, and op is one of the 2CL operators, reported in Table 1 together
with their Linear-time Temporal Logic [8] interpretation and with their graphical
notation. Basically, there are two kinds of operators: relational and temporal.
The former kind expresses constraints on the co-occurrence of conditions (if this
condition is achieved then also that condition must be achieved, but the order of
the two achievements does not matter). For instance, one may wish to express
that both the payment for some item and its delivery must occur without con-
straining the order of the two conditions: no matter which occurs first, when one
is met, also the other must be achieved. Temporal operators, instead, capture
the relative order at which different conditions should be achieved. The second
part of Table 2 reports the constraints imposed by the NetBill protocol: (c1)
means that a quotation for a price must occur before a commitment to pay or a
conditional commitment to pay given that some goods were delivered; (c2) that
the conditional commitment to send a receipt after payment and the delivery of
goods must occur before the payment is done; (c3) that after payment a receipt
must be issued and if a receipt is issued a payment must have occurred before.

Among the possible interactions, derivable from the action specification, those
that respect the constraints are said to be legal. Violations amounting to the
fact that a constraint is not respected can be detected during the execution. The
following section provides the operational semantics 2CL lacked of.

3 2CL Generalized Commitment Machine

In order to provide the semantics of commitment protocols as specified in [3] (see
Definition 1 of this paper), we define the 2CL generalized commitment machine
(2CL-GCM). Briefly, 2CL-GCM relies on the notion of generalized commitment
machine (GCM) (introduced in [17]) for what concerns the inference of the pos-
sible evolutions of the social state, that can be obtained by taking into account



only the protocol actions and the commitment life cycle. Additionally, 2CL-GCM
also accounts for 2CL constraints.

According to [17], a GCM features a set S of possible states, each of which is
represented by a logical expression of facts and commitments. S represents the
possible configurations of the social state.

Example 1. Considering NetBill, the expression goods∧ C(c,m, pay) represents
one possible configuration of the social state. This expression means that goods
were shipped and that there is a commitment from c (customer) to m (merchant)
to pay for them.

Particularly relevant is the subset of S, whose elements are named good states:
they are the desired final states of the interaction. The characterization of good
states depends on the particular application. For instance, they may be only
those that do not contain unsatisfied active commitments, or they could be the
ones which satisfy a condition of interest (e.g. payment done and goods shipped).

In GCM, transitions between the states are logically inferred on the basis of

an action theory ∆, that contains a set of axioms of the kind p
a
↪→ q, meaning

that q is a consequence of performing action a in a state where p holds. When q
is false the meaning is that a is impossible if p holds. In general, ∆ contains all
the axioms deriving from the specification of the protocol actions. Additionally,
∆ also contains an axiom for each action a and for each couple of states s and
s′ such that the execution of a in s causes a transition to s′: for instance, if the

precondition p of a is satisfied in s and its effect q is satisfied in s′, then s
a
↪→ s′

is in ∆. The way in which these axioms are obtained is explained in [17].

Example 2. According to the 2CL protocol syntax, the action sendAccept, per-
formed by the customer to accept a quote of the merchant, is defined as sendAc-
cept means create(C(c,m,goods,pay)) if ¬ pay. The corresponding axiom is

¬pay
sendAccept

↪→ C(c,m, goods, pay). Now, if one considers a state in which

¬pay ∧ quote holds, it is also possible to infer the axiom ¬pay ∧ quote
sendAccept

↪→
C(c,m, goods, pay).

In GCM paths must be infinite. All the finite paths are transformed into
infinite ones by adding a transition from the last state of the finite path towards
an artificial new state with a self loop [17]. In 2CL-GCM we adopt the same
assumption and the same mechanism for transforming finite paths into infinite
ones. We are now ready to define 2CL-GCM. The definition adopts the same
notation in [17].

Definition 2 (2CL Generalized Commitment Machine). Let ` and ≡ be,
respectively, the logical consequence and the logical equivalence of propositional
logic. A 2CL-GCM is a tuple P = 〈S,A, s0, ∆,G,C〉, where:

- S is a finite set of states;
- A is a finite set of actions;
- s0 ∈ S is the initial state;
- ∆ is an action theory;



- G ⊆ S is a set of good states;
- C is a set of 2CL constraints.

(i) Members of S are logically distinct, that is: ∀s, s′ ∈ S, s 6≡ s′; (ii) false 6∈ S;
and (iii) ∀s ∈ G, s′ ∈ S : (s′ ` s)⇒ (s′ ∈ G), i.e. any state that logically derives
a good state is also good.

A sequence of states is a path of a 2CL-GCM if it satisfies all of the constraints
in C. Since 2CL constraints are defined in terms of LTL formulas, to perform the
verification one can consider the transition system corresponding to the path.
Given a sequence of states interleaved by actions, the corresponding transition
system can be derived quite straightforwardly. Intuitively, the set of states and
transitions of the system is the same set of states and transitions in the sequence.
A requirement on transition systems is that each state has at least one outgoing
transition (i.e. runs are infinite).

Definition 3 (Transition System). Let τ = 〈(τ0, a0, τ1), (τ1, a1, τ2), . . . 〉 be
an infinite and ordered sequence of triples, where τi is the state at position i in
τ and ai is the action that causes the transition from state τi to state τi+1. The
transition system T (τ) corresponding to τ is a triple 〈Sτ , δτ , Lτ 〉 where:

- Sτ = {τi| τi ∈ τ} is a set of states;
- δτ : Sτ → Sτ is a transition function where: δ(τj) = τk iff (τj , a, τk) ∈ τ ;
- L : Sτ → 2F is a labelling function, where: F is a set of facts and commit-

ments and given l ∈ F , then l ∈ L(τi) iff τi ` l.

To define a 2CL-GCM path, we adapt the definition of GCM path by adding
the requirement that the sequence of states satisfies all the constraints of the
2CL-GCM. This condition is checked on the transition system corresponding to
the path, by means of the LTL satisfaction relation [1]. We denote it with the
symbol |=LTL. In the following definition we adopt the same notation in [17].

Definition 4 (2CL-GCM path). Let P = 〈S,A, s0, ∆,G,C〉 be a 2CL-GCM. Let
τ = 〈(τ0, a0, τ1), . . . 〉 be an infinite sequence of triples and T (τ) be the corre-
sponding transition system. Let inf(τ) be the set of states that occur infinitely
often in τ . τ is a path generated from P when:

(i) ∀(τi, ai, τi+1) in τ then τi, τi+1 ∈ S and ai ∈ A and τi
ai
↪→ τi+1 ∈ ∆; and

(ii) inf(τ) ∩G 6= ∅; and
(iii) ∀c ∈ C : T (τ), τ0 |=LTL c

In the above definition, (i) and (ii) are the conditions for a path to be generated
from a GCM [17]. Condition (i) requires that each state in the sequence is a
state of the 2CL-GCM, that the action that causes the transition from a state
to the subsequent one in the sequence is an action of the 2CL-GCM, and that
the transition is inferable according to the axioms in ∆. It also requires that
the path is infinite. Condition (ii) requires that at least one good state occurs
infinitely often in the sequence. Condition (iii) was added to account for the
evaluation of the protocol constraints. According to the LTL semantics, the



notation M, s |=LTL ϕ means that every execution path π of M, starting at
s, is such that π |=LTL ϕ. Since T (τ) is a transition system made only of one
linear path (by construction), whose starting state is the starting state of τ , the
condition T (τ), τ0 |=LTL c amounts to checking if c is satisfied in the path of the
transition system, corresponding to τ .

Given a protocol specification it is possible to build the corresponding 2CL-
GCM:

Definition 5 (2CL-GCM of a protocol). Let P = 〈Ro, F, s0, A,C〉 be a proto-
col, S be a set of states and G ⊆ S be a set of good states. P = 〈S,LA, s0, ∆,G,C〉
is a 2CL-GCM of P when (i) LA is the set of action labels in A; and (ii) ∆ is
the action theory of A, i.e.:

– for each (a means e if p) belonging to A, then p
a
↪→ e belongs to ∆;

– ∆ is closed under inference rules in [17].

Since the state s0 and the constraints C of a 2CL-GCM are the same of the proto-
col, the definition uses the same symbols. By varying the sets S and G different
2CL-GCMs associated to the same protocol are obtained: when S contains all the
states that can be reached from s0, applying the protocol actions, the machine
can infer all the possible interactions; when S is smaller, only a subset of the
possible interactions is determined.

4 Implementation of the 2CL Commitment Machine

This section describes a Prolog implementation for the 2CL-GCM, formalized
above. It allows exploring all the possible executions of an interaction protocol,
showing the regulative violations— i.e. both those states in which some con-
straint is violated and those that contain unsatisfied commitments. We prove
that if a path is legal according to the implementation, then it is a path of the
corresponding 2CL-GCM.

The implementation is realized in tuProlog1 and it builds upon the enhanced
commitment machine realized by Winikoff et al. [19]. By relying on it, we inherit
the mechanisms for the computation of the possible interactions. Specifically,
enhanced commitment machines feature the generation of the reachable states,
the transitions among them and the management of commitments (like the op-
erations of discharge, creation and so on). Our extension equips them with the
possibility of evaluating 2CL constraints. The aim is to provide a qualitative view
of the possible interactions, highlighting those that violate some constraints. The
interacting parties are not prevented from entering in illegal paths (autonomy is
preserved), but they are made aware of the risks they are encountering and that
they may incur in penalties as a consequence of the violations they caused [4].

In order to provide a compact but global view of the possible interactions,
the evaluation of constraints is performed on one state at a time rather than
on paths (as, instead, usually done in LTL model checking). Specifically, the

1 http://www.alice.unibo.it/xwiki/bin/view/Tuprolog/



Relation State Condition

Correlation
ψ(A •− B) = A ∧B
ψ(A 6•− B) = ¬(A ∧B)

Co-existence
ψ(A •−• B) = ψ(A •− B) ∧ ψ(B •− A)

ψ(A 6•−• B) = ψ(A 6•− B) ∧ ψ(B 6•− A)

Response
ψ(A •−. B) = A ∧B
ψ(A 6•−. B) = ¬(A ∧B)

Before
ψ(A −.• B) = ¬(B ∧ ¬A)

ψ(A 6−.• B) = ¬(A ∧B)

Cause
ψ(A •−.• B) = ψ(A •−. B) ∧ ψ(A −.• B)

ψ(A 6•−.• B) = ψ(A 6•−. B) ∧ ψ(A 6−.• B)
Table 3. State conditions corresponding to 2CL operators.

state content is given in terms of positive facts and commitments. A fact that
is not true in a state has not been achieved yet, so we use negation as failure
in the conditions of the action definitions to verify whether a fact is present or
not in the social state. In this setting, the evaluation of 2CL constraints can
be made on single states. For instance, if in a state b holds but a does not, we
can infer that the constraint ‘a before b’ is violated. This kind of verification,
however, can be performed only on a subset of 2CL formulas, specifically, only
on constraints corresponding to conditions that persist (i.e. that involve DNFs
of facts without negation). Since commitments do not persist because they can
be cancelled, discharged, etc., another requirement is to associate a fact to each
operation that is performed on commitments (along the line of [12]). These facts
are automatically asserted whenever an operation is performed on a commitment
and they can be used in constraint formulas. For instance, when a commitment
C(x, y, r, p) is created, the fact created(C(x, y, r, p)) is added to the state,
and so forth for the other operations. Notice that these facts are not meant to
associate to each commitment its current state in the commitment life cycle,
as instead done in [5]. This information can be inferred from the presence or
absence of the commitment in the state.

Given a constraint c, we denote by ψ(c) the corresponding condition to be
verified one state at a time (state condition). The above assumptions allow the
simplification of the LTL formulas, corresponding to the 2CL operators, in the
way that is reported in Table 3. Consider, for instance, the before operator (−.•):
it requires that A is met before or in the same state of B. So, given a run π, if
in π there is a state j such that B holds while A does not, that is a state where
a violation occurred. In formulas: πi |=LTL A −.• B ⇔ ¬∃j ≥ i s.t. πj |=LTL

(B ∧ ¬A) (when a formula does not contain temporal operators, the relation
|=LTL checks the condition in the first state of a path).

The other 2CL operators can be divided in two groups. Correlation (•−) and
response (•−.) are part of the same group. A •− B requires that if A is achieved in
a run, then also B is achieved in the same run (before or after A is not relevant).
If B is achieved before A it will remain true also after. Therefore, in those cases
in which the constraint is satisfied, from a certain time onwards both conditions



will hold. In formulas: πi |=LTL A •− B ⇔ ¬∃j ≥ i s.t. πj |=LTL A and ∀j′ ≥
j, πj′ |=LTL (A∧¬B). The same equivalence holds for πi |=LTL A •−. B. In 2CL
A •−. B requires that when A is met, B is achieved at least once later (even if
it already occurred in the past) but under our assumptions it can be checked in
the same way of correlation. The state condition amounts to verifying whether
a state satisfies A but does not satisfy B. Notice that states that satisfy the
test cannot be marked as states of violation because the constraint does not
require B to hold whenever A holds. A state of violation is signalled when the
interaction does not continue after it: we say that there is a pending condition.

Negated correlation, response and before correspond to the same formula:
πi |=LTL A op B ⇔ ¬∃j ≥ i s.t. πj |=LTL (A ∧ B) where op ∈ { 6•−, 6•−., 6−.•}.
Intuitively, a constraint of the kind A 6•− B (negative correlation) requires that
if A holds, B is not achieved. Since facts persist, this amounts to check that
the two conditions do not hold in the same state, otherwise a violation occurs.
Negative response (negative before) adds a temporal aspect to not-correlation: if
A holds, B cannot hold later (before, respectively). Since facts persist, the first
achieved condition will remain true also after the other becomes true. Also in
this case we only need to check that the two conditions do not hold together.

Derived operators are decomposed and the reasoning made for the operators,
from which they derive, is applied. For instance, cause (•−.•) derives from before
and response. If a state does not satisfy the response part of the cause, it is
marked as “pending”; if it violates the before part, it is marked as a “violation”.
Both labels are applied when the state does not satisfy any of the two.

Summarizing, given a constraint formula and a state in which to verify it,
we have three possible cases: (i) the state satisfies the formula; (ii) the state
does not satisfy the formula and this leads to a violation; and (iii) the state
does not satisfy the formula but the violation is potential, depending on future
evolution. Considering all the constraints of a protocol, a state can both violate
some constraint and have pending conditions. Moreover, states are also evaluated
based on the presence of unsatisfied active commitments.

These considerations enable the generation and the labelling of all the states
that can be reached by applying the protocol actions. The result is a labelled
graph, as defined in Definition 6, where each state is associated a set of labels.

Definition 6 (Labelled Graph). Let P = 〈Ro, F, s0, A,C〉 be a protocol, the
corresponding labelled graph G(P) is a triple (S, δ, L) where:

– S is a set of states reachable from s0, such that ∀s, s′ ∈ S, s 6≡ s′;
– δ ⊆ S ×A× S is a transition relation such that ∀(s, a, s′) ∈ δ then s, s′ ∈ S

and ∃a ∈ A s.t. when a is executed in s it determines s′;
– L ⊆ S × {pending,violation,final,non-final} is a labelling relation such that

given s ∈ S:
• violation ∈ L(s) iff ∃c ∈ C s.t. s 2LTL ψ(c) and c is not a response or a

correlation;
• pending ∈ L(s) iff ∃c ∈ C s.t. s 2LTL ψ(c) and c is a response or a

correlation;
• final ∈ L(s) iff there are no unsatisfied active commitments in s;



1 exp lo r e (StateNum , Free , NextFree ) :−
2 s t a t e (StateNum , State , ) ,
3 f i n d a l l ( t ( StateNum ,A, S2 ) , nex t s ta t e ( State ,A, S2 ) ,Ts ) ,
4 add s ta t e s (Ts , Free , NextFree ) , a dd t r an s i t i o n s (Ts ) .
5

6 add s ta t e s ( [ ] ,N,N) .
7 add s ta t e s ( [ t ( , , S ) | Ss ] ,N,N1) :−
8 s t a t e ( , St , ) , s e t eq ( St , S ) , ! , add s ta t e s ( Ss ,N,N1 ) .
9 add s ta t e s ( [ t ( , , S ) | Ss ] ,N,N3) :−

10 l a b e l s (S ,L) , a s s e r t ( s t a t e (N, S ,L ) ) ,
11 N1 i s N+1, exp lo r e (N,N1 ,N2) , add s ta t e s ( Ss ,N2 ,N3 ) .
12

13 l a b e l s ( State , Labels ) :− f i n d l a b e l s ( State , [ ] , Labels ) .
14

15 f i n d l a b e l s (S , L1 ,R) :−
16 c h e c k v i o l a t i o n (S , L1 , L2 ) ,
17 check pending (S , L2 , L3 ) ,
18 check commitments (S , L3 ,R) .
19

20 check pending ( State , L , [ pending ( Constr ) |L ] ) :−
21 re sponse (A,B, Constr ) ,
22 consequence (A, State ) , \+consequence (B, State ) .
23

24 c h e c k v i o l a t i o n ( State , L , [ v i o l a t i o n ( Constr ) |L ] ) :−
25 be f o r e (A,B, Constr ) ,
26 consequence (B, State ) , \+consequence (A, State ) .
27

28 check commitments ( State , L , [ f i n a l |L ] ) :−
29 \+member( c ( , , ) , State ) .
30 check commitments ( State , L , [ non−f i n a l |L ] ) :−
31 member( c ( , , ) , State ) .

Listing 1.1. Prolog clauses that generate the labelled graph: consequence(A,State) is
a clause that determines if the fact (or the DNF formula) A can be derived in State;
response and before are constraints. The complete program is downloadable at the
URL http://di.unito.it/2cl.

• not-final ∈ L(s) iff s contains unsatisfied active commitments.

Following Definition 6, our implementation starts from the initial state and de-
termines all the reachable states, by applying a depth-first search, as in [19]. The
difference is that our representation of the states contains also a list of labels,
which identify the presence of active commitments and of pending or violated
conditions. Listing 1.1 reports part of the Prolog program that generates the
labelled graph. The mechanism is as follows: given a state, explore finds the set
of the possible successors by applying the effects of the actions, whose precon-
ditions are satisfied in the state. A state is added only if it is new (not explored
yet). Before adding it, find labels considers all the constraints and checks them
on the state. Constraints are represented as constraint(A,B, Id), where con-
straint is the 2CL operator used by the constraint, A and B are the antecedent
and the consequent conditions of the constraint, and Id is the identifier of the
constraint. Listing 1.1 reports, as an example of tests performed on states, the
verification of a response and of a before. The clause check pending, that is re-
ported here, verifies response constraints: it is satisfied if there is a constraint
of kind response, whose antecedent condition can be derived in the state, while



the consequent condition cannot. In this case, the label pending is added to the
list of labels of the state. A similar clause checks the correlation constraint. In-
stead, the clause check violation, checks before constraints, which are violated
if the consequent condition can be derived in the state while their antecedent
cannot. Other similar clauses, checking different conditions, are defined for the
other operators. Finally, the program checks the presence of unsatisfied commit-
ments (check commitments) and adds the label final or not-final consequently.
The result of running this program on a protocol specification is a graph of
the reachable annotated states. Annotations follow the graphical convention ex-
plained in Section 5.

Given a labelled graph we are now able to define when a path is legal.

Definition 7 (Legal path). Let G(P) = (S, δ, L) be a labelled graph, π =
〈(π0, a0, π1), . . . , (πn−1, an−1, πn)〉 be a path of at least one state. π is a legal
path of G(P) when:

(i) ∀i ≥ 0, πi is a state of the graph and (πi, ai, πi+1) ∈ δ.
(ii) @i ≥ 0 such that πi ∈ π and violation ∈ L(πi);
(iii) pending 6∈ L(πn) and final ∈ L(πn).

Condition (i) requires that the transitions in the path find correspondence in the
graph; (ii) requires that none of the states of the path violates a constraint; (iii)
requires that the last state of the path does not contain pending conditions or
unsatisfied commitments.

Given a legal path π, of a labelled graph produced by Listing 1.1, we can
prove its correctness w.r.t. the 2CL-GCM built on the same protocol specification.
This actually corresponds to prove that π is a path of the 2CL-GCM.

Theorem 1 (Soundness). Let P = 〈Ro, F, s0, A,C〉 be a protocol; let G(P) be
the corresponding labelled graph; let π = 〈(π0, a0, π1), . . . , (πn−1, an−1, πn)〉 be
a path; and let P = 〈Sπ, A, s0, ∆,G,C〉 be the 2CL-GCM of P, where Sπ is the
set of states in π and G is the set of states in π that do not contains unsatisfied
commitments. If π is a legal path of G then π is a path of P.

The proof is by contradiction. It is omitted for lack of space.

5 2CL Tool for Protocol Design and Analysis

Let us now present the tool that we developed based on the technical framework,
described in the previous sections. The tool supports the user in two different
ways: (i) it features two graphical editors for specifying the protocol actions and
the constraints; (ii) it generates different kinds of graphs for supporting the user
in the analysis of the possible interactions and in understanding which of them
are legal. The system is realized as an Eclipse plug-in, available at the URL
http://di.unito.it/2cl.

The functionalities that the system supports can be grouped into three com-
ponents: design, reasoning and visualization.



Design Component. The design component provides the tools that are nec-
essary for defining the protocol. It supplies two editors: one for the definition of
the actions and one for the definition of constraints. The action definition editor
is basically a text editor, where actions can be specified following the grammar
in [4]. The regulative specification editor allows the user to graphically define
a set of constraints. Constraints are represented by drawing facts, connecting
them with 2CL arrows (following the graphical representation of Table 1) or
with logical connectives so as to design DNF formulas. The advantage of having
a graphical editor is that it supplies a global view of constraints, thus giving the
perception of the flow imposed by them, without actually specifying any rigid
sequence (no-flow-in-flow principle [2]).
Reasoning Component. The reasoning component consists of a Java Parser
and of the Prolog implementation of the commitment machine described in Sec-
tion 4. The former generates different kinds of graphs as well as the Prolog
program corresponding to the protocol specification. The latter is the input of
the Prolog implementation of the commitment machine for the generation of the
labelled graph. As explained, the labelled graph represents all the possible inter-
actions where each state is labelled according to the evaluation of the protocol
constraints. The graphical conventions is: (i) a state of violation is represented as
a red diamond, with an incoming red arrow (e.g. states 54, 57, 108 in Figure 1);
(ii) a state in which there is a pending condition is yellow (e.g. states 45, 53,
108); (iii) a state with a single outline, independently from the shape (e.g. 49,
57, 60), is a state that contains unsatisfied commitments; (iv) a state with a dou-
ble outline, independently from the shape, does not contain active commitments
(e.g. 41, 108). Graphical notations can be combined, e.g. a yellow diamond with
single outline is a state where there are unsatisfied active commitments, where a
constraint is violated and where there is a pending condition (e.g. 53, 57, 114).
Visualization Component. All the graphs produced by the reasoning com-
ponent can be visualized as images. Labelled graph, however, can be explored
by means of the tool Graph Explorer, which is realized in Java and relies on
iDot (Incremental Dot Viewer) – an open source project that uses the prefuse2

visualization framework for Dot graph display. The Graph Explorer supplies dif-
ferent functionalities, like the visualization of the shortest path given a source
and a target state, and the visualisation of legal (or illegal) paths only. The user
can add or delete a node in a path; search a state starting from its label; and
search all the states that contain a certain fact or commitment. Moreover, the
tool allows the exploration of the graph one state at a time, by choosing which
node to expand. Figure 1 reports part of the labelled graph for NetBill.

Protocol Analysis. The tool can be used as a support in protocol analysis [4].
Particularly interesting is the possibility of exploring the labelled graph by means
of the Graph Explorer, which can be used to predict whether performing a certain
sequence of actions results in a violation and, in this case, if there is a way to
return on a legal path. For what concerns the designer, it is not always easy,

2 http://prefuse.org/



Fig. 1. Part of NetBill labelled Graph.

when specifying a protocol, to individuate which constraints to introduce but,
with the help of the tool, it becomes easy to identify misbehaviours and revise the
constraints so as to avoid them. Moreover, a designer can decide, by analysing
the graph, to modify the specification so as to regiment some of the patterns
expressed as constraints, or to remove some of them. For instance, considering
the running example, from Figure 1 it is possible to infer that the protocol does
not allow the customer to pay (sendEPO) before the merchant sends the goods.
This is due to the constraint created(C(m, c, pay, receipt)) ∧ goods −.• pay. If
this behaviour was not in the intention of the designer, he/she can discover it and,
e.g., relax the before constraint (−.•) transforming it into a co-existence (•−•).
If, instead, that is exactly the desired behaviour, one may decide to regiment
sendEPO so as to enable the payment only after the goods have been sent.

The complete NetBill protocol encoding and the corresponding labelled graph
together with further examples (like CNet, OECD guidelines and MiFID [4]) are
available at http://di.unito.it/2cl (section Examples).

6 Related Work and Conclusions

This work provides an operational semantics of 2CL protocols [3], based on an
extension of the Generalized Commitment Machine [17], and describes a Prolog
implementation of this formalization, where the constraint evaluation is per-
formed thanks to state conditions rather than by considering paths. The pro-
vided formalization allows the creation of compact and annotated graphs, which
provide a global overview of the possible interactions, showing which are legal
and which cause constraint (or commitment) violations. The aim was to support
a tool, which enables the verification of exposure to risk on the graph of the



possible executions, and taking decisions concerning how to behave or to modify
the protocol in order to avoid such a risk. Due to this aim, we decided to base
our implementation on [19], rather than on formalizations which support, for
instance, model checking. The reason is that this work already is along the same
line of ours, the intent being to give a global view on desirable and undesir-
able states. Winikoff et al. [19], however, propose to cope with undesired paths
or undesired final states by adding ad-hoc preconditions to the actions, or by
adding active commitments to states that are desired not to be final. This, how-
ever, complicates the reuse and the adaptation of the specification to different
domains. On the contrary, the proposal in [3] results to be easily adaptable and
customizable so as to address different needs of different domains, and it also
allows for the specification of more expressive patterns of interaction, given as
2CL constraints.

Other approaches, are based on expectations and abductive logic program-
ming. Chesani et al. [5] focus on the verification of a-posteriori trace compliance
with respect to the specification. Montali et al. [14], instead, face the verification
of static properties on the specification, stopping the verification when a coun-
terexample that falsifies the property is found. None of these works, however,
provide a global overview of the possible interactions and of potential risks of
violation.

Concerning model checking, El-Menshawy et al. [7] propose a branching-
time logic that extends CTL*, used to give a logical semantics to the opera-
tions on commitments. This approach was designed to perform verifications on
commitment-protocol ruled interactions by exploiting symbolic model checking
techniques. The properties that can be verified are those that are commonly
checked in distributed systems: fairness, safety, liveness, and reachability. It
would be interesting to integrate in this logical framework the 2CL constraints
in order to combine the benefits of both approaches: on the one hand, the possi-
bility to embed in the protocols expressive regulative specification, and, on the
other hand, the possibility to exploit the logical framework to perform the listed
verifications.

For what concerns the semantics of commitment protocols, the literature
proposes different formalizations. Some approaches present an operational se-
mantics that relies on commitment machines to specify and execute protocols
[21, 20, 19]. Some others, like [9], use interaction diagrams, operationally specify-
ing commitments as an abstract data type, and analysing the commitment’s life
cycle as a trajectory in a suitable space. Further approaches rely on temporal
logics to give a formal semantics to commitments and to the protocols defined
upon them. Among these, Giordano et al. [10] uses DLTL. All these approaches
allow the inference of the possible executions of the protocol, but, differently
than [3], all of them consider as the only regulative aspect of the protocol the
regulative value of the commitments.
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