Verification of action theories in ASP: a complete
Bounded Model Checking approach

Laura Giordané, Alberto Martell?, and Daniele Theseider Dugré

t

! DISIT, Universita del Piemonte Orienta{é aur a. gi or dano, dt d}@rf n. uni prm.
2 Dipartimento di Informatica, Universita di Torimor t @li . unito. it

Abstract. Temporal logics are well suited for reasoning about actiassthey
allow for the specification of domain descriptions inclugliemporal constraints
as well as for the verification of temporal properties of tbendin. This paper fo-
cuses on the verification of action theories formulated ienagoral extension of
answer set programminghich combines ASP with a dynamic linear time tem-
poral logic. The paper proposes an approach to bounded robeeking (BMC)
which exploits the Biichi automaton construction whilerebing for a counterex-
ample, with the aim of achieving completeness. The papefigiee an encoding
in ASP of the temporal action domains and of BMC of DLTL formsll

1 Introduction

Temporal logics have been extensively used in the speadficand verification of ac-
tion domains in many fields, from planning to web serviceglémning, both CTL [22,
25] and LTL [4, 3] have been used in the specification of terajypextended goals.
The need for state trajectory constraints has been adwboateDDL3 [15]. [2] ex-
ploits a first order linear temporal logic for defining domdipendent search control
knowledge in the planner TLPIlan, and in [11] strong fairnessstraints expressed in
LTL are used to restrict nondeterminism in generalized pilagn LTL has been used
in the verification of agent interaction protocols [18] arwd €nforcing regulations in
automated Web service composition [26]. In the context afoaing about action, [9]
has introduced a second order extension of the tempora ©FL*, £57, to reason
about non-terminating Golog programs.

In this paper, we start from the temporal action theorie®ahiced in [19], formu-
lated in a temporal extension ahswer set programmin@ASP [14]), and we exploit
Bounded Model Checking (BMC) techniques for the verificatid properties of such
action theories. BMC [5] is an efficient model checking tdghies which does not re-
quire a tableau or automaton construction. Given a systedehfa transition system)
and a property to be checked, it searches for a countererarhitile property as a path
of lengthk, generating a propositional formula that is satisfiableifth a counterex-
ample exists. The boundon the length of the path is iteratively increased and, if no
counterexample exists, the procedure never stops. As @&goesce, bounded model
checking provides only a partial decision procedure forckirey validity. Techniques
for achieving completeness have been described in [5], evhpper bounds fok are
determined for some classes of properties, namely unnestgetrties. To deal with
completeness, [8] proposes@emantidranslation scheme, based on Biichi automata.

In [23] Helianko and Niemela developed a compact encodingooinded model
checking of LTL formulas as the problem of finding stable msd¢ logic programs.
Since ASP naturally accommodates for reasoning aboutres;tio [19] this encoding
is extended to deal with Dynamic Linear Time Temporal Lo@¢TL) formulas, for
reasoning about action theories including complex actiomsprograms. These papers
do not address the problem of achieving completeness.

In this paper we propose an alternative encoding of BMC of Dfdrmulas in
ASP, with the aim of achieving completeness. Unlike [23, 1@re the search for a
counterexample exploits the Buchi automaton constro¢ié] as well as the transition
system. Unlike [8], a “counterexample” path is searchegvidhout assuming that the
Buchi automaton is constructed in advance. Our countenpiais an accepting path
of the product Buichi automaton which can be finitely repnése as dk,l)-loop, i.e., a
finite path of lengthk terminating in a loop back to a previous stjtie which the states
are all distinct from each other. The procedure for verifyingiven property searches
for a (k,l)-loop, providing a counterexample to the property, increaginumtil either a
counterexample is found, or rfk,[)-loop of length greater or equal tocan be found.

As in [19], verification is performed on a transition systerpded by a domain
description in a temporal action theory, and our BMC apphnoiacused for proving
properties of domain descriptions. The action theory ieigiv a temporal extension of
ASP, based on the generalization of the notiomi$wer sefl14] to temporal answer
sets The temporal properties of a domain description can begutdy combining
the construction of temporal extensions of the domain whn terification of their
properties, according to a tableaux-based procedure wiriehides an encoding of
BMC in ASP. The proposed approach provides a decision proeddr the verification
of satisfiability and validity properties of an action domai a temporal action theory.

The outline of the paper is the following. First, we introdube temporal action
language and its answer sets, and we introduce verificataiigms for action theories.
We then describe our approach to action theory verificatyd®MC. Finally we provide
an ASP encoding of BMC and discuss related work.

2 Temporal Action Theories

In this paper we refer to a formulation of DLTL (dynamic lime¢ane temporal logic),

in [24], where the next state modality is indexed by actiomd te until operatot/™

is indexed by a program which, as in PDL, can be any regular expression built from

atomic actions using sequencg londeterministic choicef) and finite iteration £).
Let X = {a4,...,a,} be afinite non-empty alphabet of actions. From the until op-

erator, the derived modalitids), [a], O (next), i, & andO can be defined as follows:

(Ma = TU™a, [da = ~(a)~a, Oa =V exla)a, aUf = U™ B, Ca = TUa,

Oa = ~O-a, wherea is a formula and, i/~ , ¥ is taken to be a shorthand for the

programa; + ...+ a,

2.1 Temporal Action Language

Let £ be a first order language which includes a finite number of teonts and vari-
ables, but no function symbol. L& be the set of predicate symbolgar the set of

variables and’ the set of constant symbols. We clillentsatomic literals of the form
p(t1,...,tn), Where, for each, t; € Var U C. A simple fluent literalor s-literal) [is
an atomic literal®(t1, . . ., t,) or its negation-p(t4, . .., t,). We denote bylits the
set of all simple fluent literalslitr is the set otemporal fluent literalsif | € Litg,
thenla]l, Ol € Lity, wherea is an action name (an atomic proposition, possibly con-
taining variables), anfh] and(are the temporal operators introduced in the previous
section. LetLit = Litg U Lity U { L}, wherel represents the inconsistency. Given a
(simple or temporal) fluent literd| not [represents the default negation/of (sim-
ple or temporal) fluent literal possibly preceded by a defaedjation, will be called an
extended fluent literal

A domain descriptior] is a set of laws describing the effects of actions and their
executability preconditions. The laws are formulated dassrof a temporally extended
logic programming language. Rules have the form

lo—1li,....lm,n0t lyys1,...,n0t 1, Q)

where thel;'s are either simple fluent literals or temporal fluent liteyavith the fol-
lowing constraints: (i) Ifly is a simple literal, then the body cannot contain temporal
literals; (i) If io = [a]l, then the temporal literals in the body must have the forji;

(ii) If 1o = OV, then the temporal literals in the body must have the fopih As usual

in ASP, the rules with variables will be used as a shorthandhi® set of their ground
instances.

A state informally, is a set of ground fluent literals closed witlspect to the rules
above (see Section 2.2). A state is said t@bssistentf it is not the case that botlf
and—f belong to the state, or that belongs to the state. A state is said tochenplete
if, for each fluent name € P, eitherp or —p belong to the state. The execution of an
action in a state may possibly change the values of fluenteistate through its direct
and indirect effects, thus giving rise to a new state. Werassthat a law as (1) can be
applied in all states, while when prefixed with timé , only applies to the initial state.

Example 1.This example describes a mail delivery agent, which chddkeie is mail
in the mailbox of employees and delivers mail to them. Thmastin X are:sense (the
agent verifies if there is mail in any of the mailboxe&)iver(E) (the agent delivers
the mail to employed), wait. The fluent names arewail(E) (there is mail in the
mailbox of). IT contains the following immediate effects and persisteaayst

[deliver(E)]-mail(E)

[sense]mail(E) « not [sense]-mail (E)

Omail(E) «— mail(E), not O ~mail(E)

O—mail(E) «— —~mail(E), not O mail(E)

Their meaning is (in the order) that: after delivering theltma, there is no mail for”
any more; the actiorense may (non-monotonically) causea:l(E) to become true.
The last two rules define the persistency of fluerat!.

Observe that the persistency laws interact with the imntedééfect laws above.
The execution okense in a state in which there is no mail for sonfe(—mail(E)),
may either lead to a state in whiehail(E) holds (by the second action law) or to a
state in which~mail(E) holds (by persistency ofmail(E)). Thus,sense is a nonde-
terministic action. The following precondition laws:

[deliver(E)] L— —mail(E)

[wait] L— mail(E)
specify that, if there is no mail foF, deliver(E) is not executable, while, if there is
mail for F, wait is not executable.

We assume that there are only two employeemdb and, in the initial state, there
is mail fora and not forb, i.e. IT includesInit mail(a) andInit —mail(b).

The language is also well suited to describe causal depeieteamong fluents [19]
by the definition ofstatic and dynamic causal lawsimilar to the ones in the action
language« [12] andC™ [20].

2.2 Temporal Answer Sets

In this section, we recall the notion tdfmporal answer seh [19], which extends the
notion ofanswer sefl4], and we state a new result on the transition system &gsdc
with a domain description. To this purpose, wellEbe the ground instantiation of the
domain description, andl' the set of all the ground instances of the action namés.in

A temporal interpretation is defined as a p@ir.S), wheresc € X is a sequence
of actions andS is a consistent set of ground literals of the fofam; . . . ; ax]l, where
ai - ..ay is a prefix ofo andl is a ground simple fluent literal, meaning thdtolds in
the state obtained by executing. .. ax. S is consistentff it is not the case that both
[a1;...;ax)l € Sand[aq;...;ax]l € S,forsomd, orfay;...;a;]L € S. Atemporal
interpretation(o, S) is said to beotal if either [a1;...;ar]p € Sor[ar;...;ax]—p €
S, for eacha; . .. ay prefix of o and for each fluent name

The notion of satisfiability of a rule in a temporal inter@tdn (o, S), as well as the
notion ofreduct7(°+%) of (a domain description)! relative to(c, S) can be defined as
natural extensions of Gelfond and Lifschitz’ ones [14]. Mfitese notions, a temporal
answer set of! is defined as a temporal interpretati@n.S) such thatS is minimal
(in the sense of set inclusion) among tfesuch that(o, S’) is a partial interpretation
satisfying the rules in the redugk(>9).

The case of total temporal answer sets is of special inteagsa total temporal
answer sefo, S) can be regarded as temporal mo@elVs), where, for each finite
prefixay ...ax of o, Vs(ay,...,ax) = {p : [a1,...,ax]p € S}. In the following,
we restrict our consideration to domain descriptidhssuch that all the answer sets
of IT are total. If the initial state is not complete, we considéthe possible ways
to complete the initial state by introducing ii, for each fluent nam¢, the rules:
Init f <« not —f andInit —f < not f.

A total temporal interpretatiofv, .S) provides, for each prefix; . .. ax, a complete
state corresponding to that prefix. We denot@é‘y%k the state obtained by the execu-
tion of the actions; . . . a; in the sequence, namelgéf’,??lk ={l:]ay;...;ax)l € S}.

Given a domain descriptioll over X’ with total answer sets, @#ansition system
(W,I,T) can be associated witll as follows: (i) W is the set of all the possible
consistent and complete states of the domain descriptipii;i§ the set of all the states
in W satisfying the initial state laws ifY; (iii) 7" C W x X x W is the set of all triples
(w,a,w") such thatw,w’ € W, a € X and for some total answer sgt, S) of II:

w=w'"Y andw =w'"® . for someh.
lai;...;an] lai;...;ap;a]

It is possible to show that the next states of a given steite the transition system
(W, I,T)above only depend on the stateLet IT,, be the domain description obtained
form IT by removing all the laws prefixed bgit while adding tol7 Init [, foralll € w.

Proposition 1. Letw be a state ini/” which is reachable form an initial state by the
action sequence, ... ay. If (w,a,w’) € T, then there is an answer sgt’, S’) of I7,,,
such that (L)y = ay...apo’ and (2)[a]l € S’ iff | € w'. Vice versa, if there is an
answer seto’, S’) of I1,, satisfying conditions (1) and (2) above, then o, w’) € T'.

Proposition 1 guarantees that, given a statand an actioru, a next state function
nextlSstate can be defined to compute all the states reachable in thétiparsy/stem
fromw by a. Such a function is used in the following to describe the BM@struction.

2.3 \Verification of Enriched Domain Descriptions

As a total temporal answer set of a domain description canteepreted as an DLTL
model, it is easy to combine domain descriptions with DLTinfialas. This can be done
by adding to the domain descriptidih a set of DLTL formulag® used as constraints
on the executions of the domain description. We denotgby’) the enriched domain
description, and we define tlegtensions ofI7, C) to be the temporal answer s¢ts S)

of IT satisfying the constraints. For example,

(begin) T

O[begin]{sense; (deliv(a) + deliv(b) + wait); begin) T
impose that the agent continuously executes a loop whezases mail and delivers the
mail. DLTL formulas can be used to encode properties to biiegron the enriched
domain description. We may want to check that, if there isl fioaia, the agent will
eventually deliver it, i.e.00(mail(a) D ¢—mail(a)). This does not hold, as there is a
possible scenario in which there is always maild@nd forb, but the mail is repeatedly
delivered tob and never ta.

Given an enriched domain descriptigfi, C), some problems, e.g. planning, can be
formulated asatisfiabilityof a formulay, and others, such as the one in the example
above, as validity of a formula. Usually, the validity of a property formulated as a
DLTL formulais reduced to thansatisfiabilityof —. In this case, if a model satisfying
- is found, it represents a counterexample to the validity.of

3 Model Checking

Satisfiability and validity problems can be solved by meahmodel checkingech-
niques. The standard approach to model checking for LTL$et@n Biichi automata.
The satisfiability problem for a LTL formula can be solved by constructing a Biichi
automatori3,, [16] such that the language ofwords accepted b#,, is non-empty if
and only if« is satisfiable.

Given a system modeled by a transition systEfy which corresponds to a Buchi
automatonBrg, model checkingerifies that the property holds for the system, by
constructing th@roduct automatownf Brg and5-,, and by checking for emptiness of
the accepted language.

Biere et al. [5] showed that model checking can be more effidfe instead of
building the product automaton, a path of the transitiotessysatisfying-« is searched
for. This technique is calledounded model checkif8MC), since it looks for infinite
paths which can be represented as a finite path of Iengfith a back loop from state
to a previous statein the path (gk,l)-loop); the search proceeds iteratively, increasing
the length% until a model satisfyingy is found — if one exists.

A BMC problem can be efficiently reduced to a propositionék§iability problem
or to an ASP problem [23]. If no model exists and the transitigstem contains a loop,
the iterative procedure in general does not stop, i.e.,atggartial decision procedure
for validity. Techniques for achieving completeness aigcdbed in [5] for some kinds
of LTL formulas.

4 Bounded Model Checking with Bichi Automata

In this paper, we propose an approach to model checking witotbines the advan-
tages of BMC, in particular the possibility of formulatingaasily and efficiently as
an ASP problem, with the advantages of reasoning on the ptdglichi automaton
described above, mainly its completeness.

In the following we show how to adapt the procedure for buitga Biichi automa-
ton corresponding to a given DLTL formula [17] to the “on-tfi’ construction of the
productBiichi automaton, and we show how this construction can kd te build a
(k,l)-loopcorresponding to a run of the product Biichi automaton.

In the following construction we assume that, as in [L7]{il formulas are indexed
with finite automata rather than regular expressions. Tha$avenZ/(%) 3 instead of
ald™ 3, whereL(A(q)) = [[r]]. We denote with4(q) a finite automatood with initial
stateq. The following equivalences hold for the until operator]i24

AUADB = (BV (A Ve (@) Vyesga UM B) (¢is afinal state ofd)
aUA D = (a AV en(@) Vyesiga) o494 3) (¢is not a final state afd)
The construction of the nodes makes use of tableau ruleswahicdle DLTLsigned

formulas i.e. formulas prefixed with the symb®lor F. These rules are applied to a set
of formulag as follows:

— ¢ = 11,19, if ¢ belongs to the set of formulas, then agddand+, to the set
— ¢ = 1|be, if ¢ belongs to the set of formulas, then make two copies of the set
and addy/; to one of them and-, to the other one.

The rules are the following:

Tor: T(aVp)=TalTs
For: F(aV @) = Fa,Fp
Tneg: T-a = Fa
Fneg: Fra=Ta

TuntilFS: TaUADB = T(BV (a AV, exla) Vyesaa o4 3)) (¢ final state)

Y In this section “formula” means “signed DLTL formula”.

TuntilNFS: TaldA 98 = T(a A Vaes{@Vyes.a o4 3)(g not final state)
FuntilFS: Fald 95 = F(BV (@ A Ve x (@) Vyesiga Oqu<q)3)) (¢ final state)
FUNtiINFS: Fali A9 3 = F(a AV e () y cs(g.0) U7 B) (g not final state)

We use a functioriableauwhich takes as input a set of formulasadds to it
TV ,ecx{a)T, andreturns a (possibly empty) set of sets of formulasjioéteby repeat-
edly applying the above rules (by possibly creating new)setsl all non-elementary
formulas in all sets have been expanded. We eldimentary formulashe formulas
of the formT¢ or F¢ where¢ is eitherT, or L, or a proposition ofa)«. Formula
TV ,ecx{a)T makes explicit that in DLTL each state must be followed by & state.

If the expansion of a set of formulas produces an incondgistet) then this set is
deleted. A set of formulas is inconsistentn the following cases: (if L € s; (ii)
FT € s; (i) Ta € sandFa € s; (iv) T{a)a € sandT (b)3 € s with a # b, because
in a linear time logic two different actions cannot be exedunh the same state.

We describe now how to build a path of the product automatdiginis constructed
by the BMC procedure while searching for a counterexampehEstates of the path
is atuples = (F,w,z, f), whereF is an expanded set of formulas, is a state of
the transition system whose literals are represented asdigrmulasy € {0,1} and
f e {l, v} are used to track fulfillment of until formulas, as we will dabe below.

Given a domain descriptiof/ with the associated transition systéfit, and a
DLTL formula « describing constraints and properties to be proved, thelisitates
will have the form(Fy, wo, 0, v'), whereF, is a set of formulas obtained by applying
functiontableau to a,, andwy is an initial state ofl'.S, such thatF, U wy is consistent.

Transitions of the product automaton are defined by functiast_states(s, a),
defined in Figure 2, which returns the set of successor stéteaftera. This function
makes use of the functiongatT Sstates(w, a), which returns the set of the states of
the transition systerff’S reached with a transition from statew, andnextF(F, a),
which returns a set of formulas obtained by propagating tmmtlas inF through
actiona. FunctionnextF is defined in Figure 1. This function first checks whether it
is possible to execute actienfrom F, then propagates elementary temporal formulas
througha and expands them witiableau

function nextF(F, a)

if 7 does not contain a formulB({a)« then return

else returntableau({Ta|T(a)a € F}
U{Fa|F{a)a € F})

Fig. 1. FunctionnextF

The fieldsz and f are used to characterize accepting states of the prodwarhaut
ton, and are used to check that all until formulas are futfilfea finite number of steps.

If a states; of an accepting rup contains the until formuld@ aZ4(9) 3, then there
must be a state;,7 < j in p satisfying the conditions given by the semantics of un-
til. We say thats; fulfills the until formula. Ifs; does not fulfill the until formula,
then it is possible to show that, according to the axioms ¢if,us) contains a formula

function next_states((F,w, z, f), a)
return {(F',w’,2’, f’) such that
F' € nextF(F,a),
w' € nextT Sstates(w,a),
F' U’ is consistent,
if there exist nd ()P 3 € F
thenz' =1 —a; f' = v
elser’ = x; f' =| }

Fig. 2. Functionnext_states

T(a;)ald*4) 3, whereq' € 6(q, a;)? and, according to functionextF (F;, a;), sit1
contains a formuld al/4(4") 3. We say that this until formula igerivedfrom formula
ToldA9D 3 in states;. If a state contains an until formula which is not derivedniro
a predecessor state, we say that the formulzeis New until formulas are obtained
during the expansion @gébleau

In order to check fulfillment of until formulas, we must be el track them along
the states of the run. This is done by using the fieldnd by extending accordingly
signed formulas so that all true until formulas have a labet @, i.e. they have the
form TaulA(Q)ﬁ wherel € {0,1}. For each stat¢F, w, z, f), the label of an until
formulain F is assigned as follows: if it is a derived until formula, thenlabel is the
same as that of the until formula in the predecessor statritas from, otherwise, if
the formula is new, it is given the labgl— x.

Functiontableau must be suitably modified in order to deal with the labels dflun
formulas. We assume that it has two parameters: a set of fasnand the value of.

Let us assume that in a statewe havexr = 0. Then all new until formulas of;
have label 1, and all until formulas with label 0 must be dedifrom previous states.
If s; belongs to an accepting run, all until formulas will be fldfil in a finite number
of steps. The value O of is propagated to the next states until a stateloes not
contain any more until formulas with label 0. Theris switched to 1, and we proceed
in the same way. Wheneverchanges its value, we sgt= v'. A state withf = v is
anaccepting stat®f the product automaton, and a rgrcontaining infinite accepting
states is amccepting run

It is an obvious consequence of the construction that:

Proposition 2. (i) Any accepting run of the product automaton corresponaénite
path of the transition system (i.e., a temporal answer sdff pkatisfying the initial
DLTL formulaq; (ii) every infinite path of the transition system which is adal of«

corresponds to an accepting run of the product automaton.

The proof, omitted for lack of space, exploits Theorems 4&id[17].

Our approach to BMC relies on the well known result [7] th&tfdnguage accepted
by a Buchi automaton is nonempty iff there is a reachablepting state with a cycle
back to itself. The construction of ti{k,I)-loopis described by the functioBMC' in
Figure 3. The construathoose inS returns any of the elements of sgtor null if

2 § is the transition relation ofl.

function BM C(max_k)
k:=0
do
path := choose in{sy =3 s; £ ... s,41 such that
sj#smfor0<j<m<Ek,
s; = si+1 for somel < k,
Sace IS @n accepting state for sorheC ace < k}
k=k+1
while path = null A k < max_k
return path

Fig. 3. FunctionBM C

function max()
1:=0
do
ti=1+1
path := choose in{sy 2% s % ... s; such that
s;j £ smfor0<j<m<i}
while path # null
return i — 1

Fig. 4. Functionmax

S = (. With s 28 s; & ... s; we represent a finite path of the product automaton,
wheres, is an initial state and; € next_states(s;—1,a;—1). Given an integek, we
look for a path of lengthk + 1, such thats;,,; = s; for some previous statg in the
path. Furthermore the loop must contain an accepting dfegach a loop is found, it
finitely represents an accepting run. Otherwises increased untitnaz_k is reached.

Observe that the standard approach for bounded model ctreeki5] does not
guarantee termination, because the path of lekgtha path of the transition system,
and thus it is not possible to restrict the search to simptagpaithout missing so-
lutions. On the other hand, we can consider asilmplepaths, that is paths without
repeated states. This property allows to define a termigatigorithm, thus achieving
completenesdy passing the length of the longest simple path as parameetV/ C.

The length of the longest simple path can be found iteratjgelarching for a simple
path of lengthi (without loop), and incrementingat each step (See Figure 4). Since
the number of different states if finite, this procedure teates.

The set of tableau rules can be easily extended to deal witr dbolean connec-
tives and derived modal operators. In the following, we @ddeiau rules fobd ando,
using the equivalencess = (8 A OOQ)) and<p = (6 v O<©)). Observe that, as
false box formulae correspond to negated until formulaspeed to label them with.

Example 2.Consider the domain description given in Example 1 with thestraints
and the property given in Section 2.3. We describe some sieftee (non determin-
istic) construction of gk,l)-loop for & = 7. For the initial states, we havew, =
{Tmail(a),Fmail(b)}, zo =0, fo = v. Fo contains the following formulas:

Fo.1: T{(begin)T

Fo-2: TOlbegin]{(A(q)) T

Fo.3 : FOq(mail(a) D O—mail(a))

Fo-4: Tbegin](A(qo)) T— from Fy.2

Fo.5: T O Olbegin](A(qo))T from Fy.2

Fo.6 : FO O1(mail(a) D O—mail(a)) from Fy.3
The first two formulas are the two constraints, where theraaton.A(q) is equiva-
lent to the regular prograsense_mail; (deliver(a) + deliver(b) + wait); begin (A
has stateqqo, 91, g2, g3}, initial stateqo, final stategs and transition functiorn; =
0(qo, sense), g2 = d(qo,del(a)) = d(qo,del(b)) = §(qo, wait), g3 = §(gz, begin)).
The third formula is the negation of the property. Note tihat@ operator has label 1
sincezo = 0. All other formulas are obtained by applying thélcau rules.

SinceF, contains the formul@ (begin) T, we can only execute actidrgin in s.
In s; we havew; = {Tmail(a), Fmail(b)}, from the domain description, and = 1,
fo = v'. x1 changes its value from the previous state, because theredgmmulas
in sg with label 0.F; is obtained by propagating the “next” formulasfy and by
applyingtableauto them:

Fi.l: T<A(q0)>OT from Fo.4

F1.2: TO[begin](A(qo)) T from Fy.5

F1.3: FOq(mail(a) D O—mail(a)) from Fy.6

Fi.4: T(sense)(A(q))oT from F;.1

F1.5: Tlbegin](A(qo))T from F;.2

F1.6 : T O Olbegin](A(qo)) T from F;.2

F1.7: F(mail(a) D O—mail(a)) from F;.3

F1.8 1 F-mail(a)) from F,.7

F1.9 : FO—mail(a)) from F1.7

F1.10: FO ©—mail(a)) from F;.9
Because ofF; .4 the next action will besense. This action is non deterministic, and
we chooseavy = {Tmail(a), Trnail(b)}. By continuing with the construction, we can
get the following path (we omit the value of tt#g’s in the states, and we writeform
mail(a) andb for mail(b)):

(Fo, {Ta, FbY,0,v) L™ (Fy {Ta, Fb}, 1,v) *5 (Fo, {Ta, Tb},0,v) “4%

(Fa, {Ta, Fb),0,) "4™ (Fy, {Ta, Fb),0, |) “55¢ (Fs, {Ta, Tb}, 1, v))
(Foo {Ta,Fo},1, 1) 5" (Fr, {Ta,Fb}, 1, |) *° (Fs, {Ta, Tb},0,)
SinceFs = F» , the two statesis andny are equal. Thus we have an arc back from

s7 10 s9, and the path from, to s; contains an accepting state. The path represents a
counterexample to the property we wanted to prove.

Let us modify the domain description by adding a fluertF) which associates a
priority to the mailboxes. We can add the following rules:

[deliver(E)]—pr(E)

[deliver(E)|pr(E") «— E # E', mail(E")

[deliver(E)] L« —pr(E),pr(E"),E # E’

% For lack of space we consider only the most significant foasul

By applying functionmaz, we obtain that the longest path has length 17. By exe-
cuting functionBM C(17) we get no solution. Therefore the propettymail(a) D
&-mail(a)) holds in the modified domain description.

5 An ASP Encoding of BMC with Blichi Automata

We now provide a translation into standard ASP of the aboweetture for building

a path of the product Buchi automaton. We use predicatesf likent, acti on,

st at e to express the type of atoms. As we are interested in infinite represented
as(k,l)-loops we assume a bound to the number of states. States are represented in
ASP as integers froito K, whereK is given by the predicateast st at e(St at e) .

The predicateccur s(Acti on, St at e) describes transitions. Occurrence of exactly
one action per state can be encoded as:

-occurs(A ' S):- occurs(Al, S),action(A), action(Al), Al=Al, state(S).
occurs(A S):- not -occurs(A S),action(A),state(S).

As we have seen, states are associated with a set of flueatdjta set of signed
formulas, and the values afand f. Fluent literals are represented with the predicate
hol ds(Fl uent, St ate), T orF formulaswitht t (For nul a, St at e) orf f (For nul a,
St at e) , 2 with the predicate(Val , St at e) and f with the predicatecc(St at e) ,
which is true ifSt at e is an accepting state.

States on the path must be all different, and thus we needfioeda predicate
eq(S1, S2) to check whether the two stat®ég and.S2 are equal:
eq(S1, S2):- state(S1), state(S2),not diff(S1,S2).
diff(S1,S2):- state(Sl),state(S2),tt(F,S1),not tt(F, S2).
diff(S1,S2):- state(Sl), state(S2), holds(F, S1), not hol ds(F, S2).
and similarly for other components of a state.

The following constraint requires all states upiao be different:

:-state(S1), state(S2), S1!=S2, eq(S1, S2), | ast st at e(K), S1<=K, S2<=K.

Furthermore we need constraints stating that there is aitiamfrom statek to a
previous statd.4, and that there is a stafg L < S < K, such thaticc(S) holds, i.e.
S is an accepting state. To do this we compute the successtatefs and check that
it is equal toS.
| oop(L):- state(L), laststate(K), L<=K, SuccK=K+1, eq(L, SuccK).
accept:- loop(L), state(S), laststate(K), L<=S, S<=K, acc(S).

:- not accept.

Given a domain descriptiof and a set of DLTL formulagy, . .. ¢,, representing
constraints or negated properties, we want to compute thpdeal answer sets of the
domain descriptiord! satisfying the temporal formulas, if any. The rules/incan be
easily translated to ASP, similarly to [14]. In the followinve provide the translation
of our running example, see [19] for details.
action(sense).
action(deliver(a)).
action(deliver(b)).

4 Since states are all different, there will be at most onesiguial to the successor &f.

action(wait).

fluent(mail (a)).

fluent(mail (b)).
action effects:

hol ds(nmai | (E), NS): - occurs(sense,S), fluent(mail (E)), NS=S+1,
not -holds(mail (E),NS).

-hol ds(mail (E), NS): -occurs(deliver(E),S),fluent(mail (E)), NS=S+1.
persistence:

hol ds(F, NS): - hol ds(F,S), fluent(F), NS=S+1, not -hol ds(F, NS).

-hol ds(F, NS): - -holds(F, S), fluent (F), NS=S+1, not hol ds(F, NS).
preconditions:

:- occurs(deliver(E),S),-holds(mail (E),S).

:- occurs(wait,S), holds(mail (E),S).
initial state:

-holds(mail (a),0). -holds(nuil (b),0).

DLTL formulas are represented as ASP terms. In the encoda) formula/(*(@) 3
is represented amti | (A q, al pha, bet a) , where the automatad is described by
the predicatesr ans(A, QL, Act, @) defining transitions, antli nal (A, Q defining
final states. Predicat€ L, S) givesthe valud, = 0, 1 of z in stateS. We introduce the
termsunti | (A, g, al pha, bet a, L) anddi anond(Act, al pha) for encoding labeled
until formulas anda)« formulas. The expansion of signed formulas can be formdlate
by means of ASP rules corresponding to the tableau rules givine previous section.
Disjunction:
tt(F1,S) v tt(F2,9):- tt(or(F1,F2),9).
ff(F1,S):- ff(or(F1,F2),S).
ff(F2,S):- ff(or(F1,F2),S).
Negation
ff(F,S):- tt(neg(F),9S).
tt(F, S):- ff(neg(F),S).
Until :
tt(until (Aut, QF1,F2,1-N),S):- state(S),
tt(until (Aut, Q F1,F2),S),x(N,S),|abel (N).
tt(or(F2,and(F1, di anond(Act,until (Aut, QL, F1,F2,L)))),S):-
tt(until (Aut, Q F1,F2,L),S),state(S), | abel (L), final (Aut, Q,
occurs(Act, S), choose(until (Aut,Q F1,F2,L), S, Act, Ql).
tt (and(F1, di anond(Act,until (Aut, QL, F1,F2,L))),S):- state(S),
tt(until (Aut,Q F1,F2,L),S),label (L), not final (Aut, Q,
occurs(Act, S), choose(until (Aut,Q F1,F2,L),S, Act, Ql).
ff(F2,S):- state(S),ff(until (Aut,Q F1,F2),S), final (Aut, Q.
ff(diamond(Act,until (Aut, QL, F1,F2)),S):-state(S),
occurs(Act,S),ff(until (Aut, Q F1,F2),S),trans(Aut, Q Act, QL) .
Diamond
tt(F, NS):- tt(dianmond(Act,F),S), NS=S+1.
ff(F, NS):- ff(dianmond(Act,F),S),occurs(Act,S), NS=S+1.

Note that, to express splitting of sets of formulas, as incéhee of disjunction, we
can exploit disjunction in the head of clauses, provideddmmes ASP languages such
as DLV, or choice constructs available in other languaghs.predicate hoose below
non deterministically chooses a transition Q1 among thessiple for actiorct in
the automatorut , and uses that choice in the expansion of the until formula:
choose(until (Aut,Q F1,F2,L),S, Act,Ql):- state(S), action(Act),
not - choose(until (Aut, Q F1,F2,L), S, Act, Ql),trans(Aut, Q Act, QL) .

-choose(until (Aut, Q F1,F2,L), S, Act,Ql):- stat e(S) ,action(Act),
choose(until (Aut, Q F1,F2,L), S, Act, Q), QL! =

Inconsistency of signed formulas is formulated with thdaowlng constraints:

:- ff(true,S), state(S).

- tt(FS), ff(F'S), state(S).

;- tt(dianmond(Actl,F),S),tt(dianond(Act2,F),S), Actl!=Act?2.

- tt(F, S), not holds(F,S).

- ff(F,S), not -holds(F,S).

As a difference with the tableau construction, rather tiémoducing the translation
of formulaT /. s,(a) T in the initial state, we include the rule

tt(diamond(A true),S):- occurs(A'S).
as we know that at least one action (and at most one) occurstatea

Predicates x and acc are defined as follows:
cont(S):-state(S), x(Lab,S),tt(diamond(_ until(_ _, __, Lab)),S).
x(Lab, SN): - x(Lab, S), SN=S+1, cont(S).

-acc(SN): - x(Lab,S), SN=S+1, cont(S).
x(1-Lab, SN): - x(Lab, S), SN=S+1, not cont(S).
acc(SN): - x(Lab,S), SN=S+1, not cont(S).
x(0,0). acc(0).

Finally, we must add a fact (tr(p;), 0) for each DLTL formulap; to be satisfied
in the model, wherer(y;) is the ASP term representing.

Itis easy to see that the (groundization of the) encoding3®As linear in the size
of the formulag to be verified and in the numbgrof ground fluents while quadratic
in the size ofk. We can prove that there is a one to one correspondence bethee
extensions of a domain description satisfying a given tam@gormula and the answer
sets of the ASP program encoding the domain and the formula.

Proposition 3. Let IT be a domain description whose temporal answer sets are, total
lettr(II) be the ASP encoding éf (for a givenk), and let¢ be a DLTL formula.

If there is a temporal answer set &f that satisfies the formula, then there exists
an answer sets of the ASP prograntI) U tt(tr(¢),0) (wheretr(¢) is the ASP term
representingp); and vice versa.

For achieving completeness, the search for the longesteipah can be done by
removing from the above ASP encoding the rules for definirmg$oand the rules for
defining the Biichi acceptance condition.

The translation has been run in iClingo [13]. For the dinihggsophers problems
in [23], the scalability of the approach in this paper is $amio the one for the method
(without Blichi automaton) in [19] and the one in [23], wheoH’ing for a counterex-
ample. E.g., a counterexample for DP(12) is found in 183 mésowrt 274 seconds

for a Clingo implementation of the method in [19] — see als@é&pdix C in that pa-
per. The search for the longest simple path is substantiadiye costly and practically
feasible only for problems where the action domain is sfitly constrained.

6 Conclusions

The paper presents a bounded model checking approach feetiieation of prop-
erties of temporal action theories in ASP. The temporabadtieory is formulated in
a temporal extension of ASP, where DLTL constraints in dentsgscriptions allow
for state trajectory constraints to be captured. The amprpaovides a uniform ASP
metodology for specifying and verifying domain descripgpwhich can be used for
several reasoning tasks, including business processcagidgin [10] and planning.

Helianko and Niemela [23] developed a compact encodingohbded model check-
ing of LTL formulas as the problem of finding stable modelsagfit programs. In [19]
this encoding is extended to address the verification obactomains including DLTL
constraints. In this paper, we follow a different approaztBMC which exploits the
Buchi automaton construction to achieve completenedirf® proposed the use of
the Buchi automaton in BMC. As a difference, our encoding 8P is defined without
assuming that the Biichi automaton is computed in advance.

The action language in this paper is related to the logic ranogning based plan-
ning languagéC [12] and with the languageésandC™ [21, 20]. Unlike/C, C andC™ our
action language does not allow for concurrent actions,ttprovides general temporal
constraintskC, C andC* can perform several kinds of reasoning, such as, prediction
postdiction and planning. However, they do not exploit d&ad temporal logic con-
structs to reason about actions.

ESG [9] is a second order extension of CTL* for reasoning aboutteaminating
Golog programs. The paper presents a method for verificatican first order CTL
fragment of£SG, using model checking and regression based reasoninguSead
first order quantification, this fragment is in general uridable.

In[1] the verification problem for action logic programs witonterminating behav-
ior is addressed using an action formalism based on a tefigertalescription logic,
ALCO-LTL. DLTL does not allow for first order constructs asCCO-LTL, while it
allows for the specification of regular expressions.

In [6] Cabalar introduces normal forms for Temporal Equilicn Logic (TEL),
an extension of the Answer Set semantics to arbirary theami¢he syntax of Linear
Temporal Logic. The rules if/, in our action theories, appear to be in normal form. It
would be interesting to investigate the possibility of miagpthe LTL fragment of our
action theories into TEL.

Acknowledgments
We thank the anonymous referees for their helpful commaéihis.work has been par-
tially supported by the project of Regione Piemonte “ICTAl a

References

1. Franz Baader, Hongkai Liu, and Anees ul Mehdi. Verifyimgpgerties of infinite sequences
of description logic actions. IECAI, pages 53-58, 2010.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

F. Bacchus and F. Kabanza. Using temporal logics to esm@arch control knowledge for
planning.Artificial Intelligence 116(1-2):123-191, 2000.

. Jorge A. Baier, Fahiem Bacchus, and Sheila A. McllraithheArristic search approach to

planning with temporally extended preferencastif. Intell., 173(5-6):593—-618, 2009.

. C. Baral and J. Zhao. Non-monotonic temporal logics f@ gpecification. IHJCAI 2007

pages 236-242, 2007.

. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. ZhBounded model checking.

Advances in Computer§8:118-149, 2003.

. Pedro Cabalar. A normal form for linear temporal equilibr logic. InJELIA, LNCS 6341

pages 64-76, 2010.

. Edmund M. Clarke, Orna Grumberg, and Doron PeMddel checkingMIT Press, 2001.
. E.M. Clarke, D. Kroening, J. Ouaknine, and O. Strichmaom@leteness and complexity of

bounded model checking. MMCAI, pages 85-96, 2004.

. J. ClaRen and G. Lakemeyer. A logic for non-terminatindo@g@rograms. IrProc. KR

2008 pages 589-599, 2008.

D. D'Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Bzzato, and D. Theseider Dupré.
Verifying business process compliance by reasoning alaigres. InCLIMA 2010, LNCS
6245 2010.

Giuseppe De Giacomo, Fabio Patrizi, and SebastianfBardseneralized planning with
loops under strong fairness constraintsPhac. KR 20102010.

T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polle#&dogic programming approach to
knowledge-state planning: Semantics and compleX®M TOCL, 5(2):206—-263, 2004.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. &ah, and S. Thiele. Engineering
an incremental ASP solver. Proc. ICLP08 volume 5366 of. NCS pages 190-205, 2008.
M. Gelfond.Handbook of Knowledge Representation, ch. 7, Answer S&tsvier, 2007.

A. Gerevini and D. Long. Plan constraints and preferencd®DDL3. Technical Report,
Department of Electronics and Automation, University afdia, Italy 2005.

R. Gerth, D. Peled, M.Y.Vardi, and P. Wolper. Simple be-fly automatic verification of
linear temporal logic. Ir15th Work. Protocol Specification, Testing and Verificatib®o5.

L. Giordano and A. Martelli. Tableau-based automatatantion for dynamic linear time
temporal logic.Annals of Mathematics and A46(3):289-315, 2006.

L. Giordano, A. Martelli, and C. Schwind. Specifying aratifying interaction protocols in
a temporal action logicJournal of Applied Logic5:214—-234, 2007.

L. Giordano, A. Martelli, and D. Theseider Dupré. Rewmsg about actions with temporal
answer setsTPLP, To appear. Available at http://arxiv.org/abs/1110.3672

E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, , and Hurfier. Nonmonotonic causal
theories.Atrtificial Intelligence 153(1-2):49-104, 2004.

E. Giunchiglia and V. Lifschitz. An action language lzhea causal explanation: Preliminary
report. INAAAI/IAAI pages 623-630, 1998.

F. Giunchiglia and P. Traverso. Planning as model chegckin Proc. The 5th European
Conf. on Planning (ECP’99)pages 1-20, 1999.

K. Heljanko and I. Niemela. Bounded LTL model checkinghwstable models. TPLP,
3(4-5):519-550, 2003.

J.G. Henriksen and P.S. Thiagarajan. Dynamic lineag temporal logic.Annals of Pure
and Applied logi¢c96(1-3):187—-207, 1999.

M. Pistore and P. Traverso. Planning as model checkingeftended goals in non-
deterministic domains. IRroc. IJCAI 2001 pages 479-486, 2001.

S. Sohrabi and S. A. Mcllraith. Optimizing web servicenposition while enforcing regu-
lations. INISWC 2009, Chantilly, USA, LNCS 582&ges 601-617, 2009.

