
Verification of action theories in ASP: a complete
Bounded Model Checking approach

Laura Giordano1, Alberto Martelli2, and Daniele Theseider Dupré1

1 DISIT, Università del Piemonte Orientale{laura.giordano,dtd}@mfn.unipmn.it
2 Dipartimento di Informatica, Università di Torinomrt@di.unito.it

Abstract. Temporal logics are well suited for reasoning about actions, as they
allow for the specification of domain descriptions including temporal constraints
as well as for the verification of temporal properties of the domain. This paper fo-
cuses on the verification of action theories formulated in a temporal extension of
answer set programmingwhich combines ASP with a dynamic linear time tem-
poral logic. The paper proposes an approach to bounded modelchecking (BMC)
which exploits the Büchi automaton construction while searching for a counterex-
ample, with the aim of achieving completeness. The paper provides an encoding
in ASP of the temporal action domains and of BMC of DLTL formulas.

1 Introduction

Temporal logics have been extensively used in the specification and verification of ac-
tion domains in many fields, from planning to web services. Inplanning, both CTL [22,
25] and LTL [4, 3] have been used in the specification of temporally extended goals.
The need for state trajectory constraints has been advocated in PDDL3 [15]. [2] ex-
ploits a first order linear temporal logic for defining domaindependent search control
knowledge in the planner TLPlan, and in [11] strong fairnessconstraints expressed in
LTL are used to restrict nondeterminism in generalized planning. LTL has been used
in the verification of agent interaction protocols [18] and for enforcing regulations in
automated Web service composition [26]. In the context of reasoning about action, [9]
has introduced a second order extension of the temporal logic CTL*, ESG, to reason
about non-terminating Golog programs.

In this paper, we start from the temporal action theories introduced in [19], formu-
lated in a temporal extension ofanswer set programming(ASP [14]), and we exploit
Bounded Model Checking (BMC) techniques for the verification of properties of such
action theories. BMC [5] is an efficient model checking techniques which does not re-
quire a tableau or automaton construction. Given a system model (a transition system)
and a property to be checked, it searches for a counterexample of the property as a path
of lengthk, generating a propositional formula that is satisfiable iffsuch a counterex-
ample exists. The boundk on the length of the path is iteratively increased and, if no
counterexample exists, the procedure never stops. As a consequence, bounded model
checking provides only a partial decision procedure for checking validity. Techniques
for achieving completeness have been described in [5], where upper bounds fork are
determined for some classes of properties, namely unnestedproperties. To deal with
completeness, [8] proposes asemantictranslation scheme, based on Büchi automata.

In [23] Helianko and Niemelä developed a compact encoding of bounded model
checking of LTL formulas as the problem of finding stable models of logic programs.
Since ASP naturally accommodates for reasoning about actions, in [19] this encoding
is extended to deal with Dynamic Linear Time Temporal Logic (DLTL) formulas, for
reasoning about action theories including complex actionsand programs. These papers
do not address the problem of achieving completeness.

In this paper we propose an alternative encoding of BMC of DLTL formulas in
ASP, with the aim of achieving completeness. Unlike [23, 19], here the search for a
counterexample exploits the Büchi automaton construction [16] as well as the transition
system. Unlike [8], a “counterexample” path is searched for, without assuming that the
Büchi automaton is constructed in advance. Our counterexample is an accepting path
of the product Büchi automaton which can be finitely represented as a(k,l)-loop, i.e., a
finite path of lengthk terminating in a loop back to a previous statel, in which the states
are all distinct from each other. The procedure for verifying a given property searches
for a (k,l)-loop, providing a counterexample to the property, increasingk until either a
counterexample is found, or no(k,l)-loopof length greater or equal tok can be found.

As in [19], verification is performed on a transition system provided by a domain
description in a temporal action theory, and our BMC approach is used for proving
properties of domain descriptions. The action theory is given in a temporal extension of
ASP, based on the generalization of the notion ofanswer set[14] to temporal answer
sets. The temporal properties of a domain description can be proved by combining
the construction of temporal extensions of the domain with the verification of their
properties, according to a tableaux-based procedure whichprovides an encoding of
BMC in ASP. The proposed approach provides a decision procedure for the verification
of satisfiability and validity properties of an action domain in a temporal action theory.

The outline of the paper is the following. First, we introduce the temporal action
language and its answer sets, and we introduce verification problems for action theories.
We then describe our approach to action theory verification by BMC. Finally we provide
an ASP encoding of BMC and discuss related work.

2 Temporal Action Theories

In this paper we refer to a formulation of DLTL (dynamic linear time temporal logic),
in [24], where the next state modality is indexed by actions and the until operatorUπ

is indexed by a programπ which, as in PDL, can be any regular expression built from
atomic actions using sequence (;), nondeterministic choice (+) and finite iteration (∗).

LetΣ = {a1, . . . , an} be a finite non-empty alphabet of actions. From the until op-
erator, the derived modalities〈π〉, [a],© (next),U , 3 and2 can be defined as follows:
〈π〉α ≡ ⊤Uπα, [a]α ≡ ¬〈a〉¬α,©α ≡

∨
a∈Σ〈a〉α, αUβ ≡ αUΣ∗

β, 3α ≡ ⊤Uα,
2α ≡ ¬3¬α, whereα is a formula and, inUΣ∗

, Σ is taken to be a shorthand for the
programa1 + . . .+ an

2.1 Temporal Action Language

Let L be a first order language which includes a finite number of constants and vari-
ables, but no function symbol. LetP be the set of predicate symbols,V ar the set of

variables andC the set of constant symbols. We callfluentsatomic literals of the form
p(t1, . . . , tn), where, for eachi, ti ∈ V ar ∪ C. A simple fluent literal(or s-literal) l is
an atomic literalsp(t1, . . . , tn) or its negation¬p(t1, . . . , tn). We denote byLitS the
set of all simple fluent literals.LitT is the set oftemporal fluent literals: if l ∈ LitS,
then[a]l,©l ∈ LitT , wherea is an action name (an atomic proposition, possibly con-
taining variables), and[a] and© are the temporal operators introduced in the previous
section. LetLit = LitS ∪ LitT ∪ {⊥}, where⊥ represents the inconsistency. Given a
(simple or temporal) fluent literall, not l represents the default negation ofl. A (sim-
ple or temporal) fluent literal possibly preceded by a default negation, will be called an
extended fluent literal.

A domain descriptionΠ is a set of laws describing the effects of actions and their
executability preconditions. The laws are formulated as rules of a temporally extended
logic programming language. Rules have the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where theli’s are either simple fluent literals or temporal fluent literals, with the fol-
lowing constraints: (i) Ifl0 is a simple literal, then the body cannot contain temporal
literals; (ii) If l0 = [a]l, then the temporal literals in the body must have the form[a]l′;
(iii) If l0 =©l, then the temporal literals in the body must have the form©l′. As usual
in ASP, the rules with variables will be used as a shorthand for the set of their ground
instances.

A state, informally, is a set of ground fluent literals closed with respect to the rules
above (see Section 2.2). A state is said to beconsistentif it is not the case that bothf
and¬f belong to the state, or that⊥ belongs to the state. A state is said to becomplete
if, for each fluent namep ∈ P , eitherp or ¬p belong to the state. The execution of an
action in a state may possibly change the values of fluents in the state through its direct
and indirect effects, thus giving rise to a new state. We assume that a law as (1) can be
applied in all states, while when prefixed with theInit , only applies to the initial state.

Example 1.This example describes a mail delivery agent, which checks if there is mail
in the mailbox of employees and delivers mail to them. The actions inΣ are:sense (the
agent verifies if there is mail in any of the mailboxes),deliver(E) (the agent delivers
the mail to employeeE), wait. The fluent names aremail(E) (there is mail in the
mailbox ofE).Π contains the following immediate effects and persistency laws:

[deliver(E)]¬mail(E)
[sense]mail(E)← not [sense]¬mail(E)
©mail(E)← mail(E), not©¬mail(E)
©¬mail(E)← ¬mail(E), not©mail(E)

Their meaning is (in the order) that: after delivering the mail to E, there is no mail forE
any more; the actionsense may (non-monotonically) causemail(E) to become true.
The last two rules define the persistency of fluentmail.

Observe that the persistency laws interact with the immediate effect laws above.
The execution ofsense in a state in which there is no mail for someE (¬mail(E)),
may either lead to a state in whichmail(E) holds (by the second action law) or to a
state in which¬mail(E) holds (by persistency of¬mail(E)). Thus,sense is a nonde-
terministic action. The following precondition laws:

[deliver(E)] ⊥← ¬mail(E)
[wait] ⊥← mail(E)

specify that, if there is no mail forE, deliver(E) is not executable, while, if there is
mail forE, wait is not executable.

We assume that there are only two employees,a andb and, in the initial state, there
is mail fora and not forb, i.e.Π includesInit mail(a) andInit ¬mail(b).

The language is also well suited to describe causal dependencies among fluents [19]
by the definition ofstatic anddynamic causal lawssimilar to the ones in the action
languagesK [12] andC+ [20].

2.2 Temporal Answer Sets

In this section, we recall the notion oftemporal answer setin [19], which extends the
notion ofanswer set[14], and we state a new result on the transition system associated
with a domain description. To this purpose, we letΠ be the ground instantiation of the
domain description, andΣ the set of all the ground instances of the action names inΠ .

A temporal interpretation is defined as a pair(σ, S), whereσ ∈ Σω is a sequence
of actions andS is a consistent set of ground literals of the form[a1; . . . ; ak]l, where
a1 . . . ak is a prefix ofσ andl is a ground simple fluent literal, meaning thatl holds in
the state obtained by executinga1 . . . ak. S is consistentiff it is not the case that both
[a1; . . . ; ak]l ∈ S and[a1; . . . ; ak]¬l ∈ S, for somel, or [a1; . . . ; ak]⊥ ∈ S. A temporal
interpretation(σ, S) is said to betotal if either [a1; . . . ; ak]p ∈ S or [a1; . . . ; ak]¬p ∈
S, for eacha1 . . . ak prefix ofσ and for each fluent namep.

The notion of satisfiability of a rule in a temporal interpretation(σ, S), as well as the
notion ofreductΠ(σ,S) of (a domain description)Π relative to(σ, S) can be defined as
natural extensions of Gelfond and Lifschitz’ ones [14]. With these notions, a temporal
answer set ofΠ is defined as a temporal interpretation(σ, S) such thatS is minimal
(in the sense of set inclusion) among theS′ such that(σ, S′) is a partial interpretation
satisfying the rules in the reductΠ(σ,S).

The case of total temporal answer sets is of special interest, as a total temporal
answer set(σ, S) can be regarded as temporal model(σ, VS), where, for each finite
prefix a1 . . . ak of σ, VS(a1, . . . , ak) = {p : [a1, . . . , ak]p ∈ S}. In the following,
we restrict our consideration to domain descriptionsΠ , such that all the answer sets
of Π are total. If the initial state is not complete, we consider all the possible ways
to complete the initial state by introducing inΠ , for each fluent namef , the rules:
Init f ← not ¬f andInit ¬f ← not f .

A total temporal interpretation(σ, S) provides, for each prefixa1 . . . ak, a complete

state corresponding to that prefix. We denote byw
(σ,S)
a1...ak

the state obtained by the execu-
tion of the actionsa1 . . . ak in the sequence, namelyw(σ,S)

a1...ak
= {l : [a1; . . . ; ak]l ∈ S}.

Given a domain descriptionΠ overΣ with total answer sets, atransition system
(W, I, T) can be associated withΠ as follows: (i)W is the set of all the possible
consistent and complete states of the domain description; (ii) I is the set of all the states
in W satisfying the initial state laws inΠ ; (iii) T ⊆W ×Σ×W is the set of all triples
(w, a, w′) such that:w,w′ ∈ W , a ∈ Σ and for some total answer set(σ, S) of Π :

w = w
(σ,S)
[a1;...;ah] andw′ = w

(σ,S)
[a1;...;ah;a], for someh.

It is possible to show that the next states of a given statew in the transition system
(W, I, T) above only depend on the statew. LetΠw be the domain description obtained
formΠ by removing all the laws prefixed byInit while adding toΠ Init l, for all l ∈ w.

Proposition 1. Letw be a state inW which is reachable form an initial state by the
action sequencea1 . . . ah. If (w, a, w′) ∈ T , then there is an answer set(σ′, S′) ofΠw,
such that (1)σ = a1 . . . ahσ

′ and (2) [a]l ∈ S′ iff l ∈ w′. Vice versa, if there is an
answer set(σ′, S′) ofΠw satisfying conditions (1) and (2) above, then(w, a, w′) ∈ T .

Proposition 1 guarantees that, given a statew and an actiona, a next state function
nextTSstate can be defined to compute all the states reachable in the transition system
fromw bya. Such a function is used in the following to describe the BMC construction.

2.3 Verification of Enriched Domain Descriptions

As a total temporal answer set of a domain description can be interpreted as an DLTL
model, it is easy to combine domain descriptions with DLTL formulas. This can be done
by adding to the domain descriptionΠ a set of DLTL formulasC used as constraints
on the executions of the domain description. We denote by(Π, C) the enriched domain
description, and we define theextensions of(Π, C) to be the temporal answer sets(σ, S)
of Π satisfying the constraintsC. For example,

〈begin〉⊤
2[begin]〈sense; (deliv(a) + deliv(b) + wait); begin〉⊤

impose that the agent continuously executes a loop where it senses mail and delivers the
mail. DLTL formulas can be used to encode properties to be verified on the enriched
domain description. We may want to check that, if there is mail for a, the agent will
eventually deliver it, i.e.:2(mail(a) ⊃ 3¬mail(a)). This does not hold, as there is a
possible scenario in which there is always mail fora and forb, but the mail is repeatedly
delivered tob and never toa.

Given an enriched domain description(Π, C), some problems, e.g. planning, can be
formulated assatisfiabilityof a formulaϕ, and others, such as the one in the example
above, as validity of a formulaϕ. Usually, the validity of a propertyϕ formulated as a
DLTL formula is reduced to theunsatisfiabilityof ¬ϕ. In this case, if a model satisfying
¬ϕ is found, it represents a counterexample to the validity ofϕ.

3 Model Checking

Satisfiability and validity problems can be solved by means of model checkingtech-
niques. The standard approach to model checking for LTL is based on Büchi automata.
The satisfiability problem for a LTL formulaα can be solved by constructing a Büchi
automatonBα [16] such that the language ofω-words accepted byBα is non-empty if
and only ifα is satisfiable.

Given a system modeled by a transition systemTS, which corresponds to a Büchi
automatonBTS , model checkingverifies that the propertyα holds for the system, by
constructing theproduct automatonof BTS andB¬α, and by checking for emptiness of
the accepted language.

Biere et al. [5] showed that model checking can be more efficient if, instead of
building the product automaton, a path of the transition system satisfying¬α is searched
for. This technique is calledbounded model checking(BMC), since it looks for infinite
paths which can be represented as a finite path of lengthk with a back loop from statek
to a previous statel in the path (a(k,l)-loop); the search proceeds iteratively, increasing
the lengthk until a model satisfyingα is found — if one exists.

A BMC problem can be efficiently reduced to a propositional satisfiability problem
or to an ASP problem [23]. If no model exists and the transition system contains a loop,
the iterative procedure in general does not stop, i.e., it isa partial decision procedure
for validity. Techniques for achieving completeness are described in [5] for some kinds
of LTL formulas.

4 Bounded Model Checking with B̈uchi Automata

In this paper, we propose an approach to model checking whichcombines the advan-
tages of BMC, in particular the possibility of formulating it easily and efficiently as
an ASP problem, with the advantages of reasoning on the product Büchi automaton
described above, mainly its completeness.

In the following we show how to adapt the procedure for building a Büchi automa-
ton corresponding to a given DLTL formula [17] to the “on-the-fly” construction of the
productBüchi automaton, and we show how this construction can be used to build a
(k,l)-loopcorresponding to a run of the product Büchi automaton.

In the following construction we assume that, as in [17],until formulas are indexed
with finite automata rather than regular expressions. Thus,we haveαUA(q)β instead of
αUπβ, whereL(A(q)) = [[π]]. We denote withA(q) a finite automatonA with initial
stateq. The following equivalences hold for the until operator [24]:

αUA(q)β ≡ (β ∨ (α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αU
A(q′)β)) (q is a final state ofA)

αUA(q)β ≡ (α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αU
A(q′)β) (q is not a final state ofA)

The construction of the nodes makes use of tableau rules which handle DLTLsigned
formulas, i.e. formulas prefixed with the symbolT or F. These rules are applied to a set
of formulas1 as follows:

– φ⇒ ψ1, ψ2, if φ belongs to the set of formulas, then addψ1 andψ2 to the set
– φ ⇒ ψ1|ψ2, if φ belongs to the set of formulas, then make two copies of the set

and addψ1 to one of them andψ2 to the other one.

The rules are the following:

Tor: T(α ∨ β)⇒ Tα|Tβ
For: F(α ∨ β)⇒ Fα,Fβ
Tneg: T¬α⇒ Fα
Fneg: F¬α⇒ Tα
TuntilFS: TαUA(q)β ⇒ T(β ∨ (α ∧

∨
a∈Σ〈a〉

∨
q′∈δ(q,a) αU

A(q′)β)) (q final state)

1 In this section “formula” means “signed DLTL formula”.

TuntilNFS: TαUA(q)β ⇒ T(α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αU
A(q′)β)(q not final state)

FuntilFS: FαUA(q)β ⇒ F(β ∨ (α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αU
A(q′)β)) (q final state)

FuntilNFS: FαUA(q)β ⇒ F(α ∧
∨

a∈Σ〈a〉
∨

q′∈δ(q,a) αU
A(q′)β) (q not final state)

We use a functiontableauwhich takes as input a set of formulass, adds to it
T

∨
a∈Σ〈a〉⊤, and returns a (possibly empty) set of sets of formulas, obtained by repeat-

edly applying the above rules (by possibly creating new sets) until all non-elementary
formulas in all sets have been expanded. We callelementary formulasthe formulas
of the formTφ or Fφ whereφ is either⊤, or ⊥, or a proposition or〈a〉α. Formula
T

∨
a∈Σ〈a〉⊤ makes explicit that in DLTL each state must be followed by a next state.
If the expansion of a set of formulas produces an inconsistent set, then this set is

deleted. A set of formulass is inconsistentin the following cases: (i)T⊥ ∈ s; (ii)
F⊤ ∈ s; (iii) Tα ∈ s andFα ∈ s; (iv) T〈a〉α ∈ s andT〈b〉β ∈ s with a 6= b, because
in a linear time logic two different actions cannot be executed in the same state.

We describe now how to build a path of the product automaton, which is constructed
by the BMC procedure while searching for a counterexample. Each states of the path
is a tuples = (F , w, x, f), whereF is an expanded set of formulas,w is a state of
the transition system whose literals are represented as signed formulas,x ∈ {0, 1} and
f ∈ {↓,X} are used to track fulfillment of until formulas, as we will describe below.

Given a domain descriptionΠ with the associated transition systemTS, and a
DLTL formula α describing constraints and properties to be proved, the initial states
will have the form(F0, w0, 0,X), whereF0 is a set of formulas obtained by applying
functiontableau toα, andw0 is an initial state ofTS, such thatF0 ∪w0 is consistent.

Transitions of the product automaton are defined by functionnext states(s, a),
defined in Figure 2, which returns the set of successor statesof s aftera. This function
makes use of the functionsnextTSstates(w, a), which returns the set of the states of
the transition systemTS reached with a transitiona from statew, andnextF(F , a),
which returns a set of formulas obtained by propagating the formulas inF through
actiona. FunctionnextF is defined in Figure 1. This function first checks whether it
is possible to execute actiona fromF , then propagates elementary temporal formulas
througha and expands them withtableau.

function nextF(F , a)
if F does not contain a formulaT〈a〉α then return ∅
else return tableau({Tα|T〈a〉α ∈ F}

∪{Fα|F〈a〉α ∈ F})

Fig. 1. FunctionnextF

The fieldsx andf are used to characterize accepting states of the product automa-
ton, and are used to check that all until formulas are fulfilled in a finite number of steps.

If a statesi of an accepting runρ contains the until formulaTαUA(q)β, then there
must be a statesj , i ≤ j in ρ satisfying the conditions given by the semantics of un-
til. We say thatsj fulfills the until formula. Ifsi does not fulfill the until formula,
then it is possible to show that, according to the axioms of until, si contains a formula

function next states((F ,w, x, f), a)
return {(F ′, w′, x′, f ′) such that

F ′ ∈ nextF(F , a),
w′ ∈ nextTSstates(w,a),
F ′ ∪ w′ is consistent,
if there exist noT〈a〉αUA(q)

x β ∈ F
then x′ = 1 − x; f ′ = X

elsex′ = x; f ′ =↓ }

Fig. 2.Functionnext states

T〈ai〉αUA(q′)β, whereq′ ∈ δ(q, ai)
2 and, according to functionnextF(Fi, ai), si+1

contains a formulaTαUA(q′)β. We say that this until formula isderivedfrom formula
TαUA(q)β in statesi. If a state contains an until formula which is not derived from
a predecessor state, we say that the formula isnew. New until formulas are obtained
during the expansion oftableau.

In order to check fulfillment of until formulas, we must be able to track them along
the states of the run. This is done by using the fieldx and by extending accordingly
signed formulas so that all true until formulas have a label 0or 1, i.e. they have the
form TαUA(q)

l β wherel ∈ {0, 1}. For each state(F , w, x, f), the label of an until
formula inF is assigned as follows: if it is a derived until formula, thenits label is the
same as that of the until formula in the predecessor state it derives from, otherwise, if
the formula is new, it is given the label1− x.

Functiontableaumust be suitably modified in order to deal with the labels of until
formulas. We assume that it has two parameters: a set of formulas and the value ofx.

Let us assume that in a statesi we havex = 0. Then all new until formulas ofsi

have label 1, and all until formulas with label 0 must be derived from previous states.
If si belongs to an accepting run, all until formulas will be fulfilled in a finite number
of steps. The value 0 ofx is propagated to the next states until a statesj does not
contain any more until formulas with label 0. Thenx is switched to 1, and we proceed
in the same way. Wheneverx changes its value, we setf = X. A state withf = X is
anaccepting stateof the product automaton, and a runρ containing infinite accepting
states is anaccepting run.

It is an obvious consequence of the construction that:

Proposition 2. (i) Any accepting run of the product automaton corresponds an infinite
path of the transition system (i.e., a temporal answer set ofΠ) satisfying the initial
DLTL formulaα; (ii) every infinite path of the transition system which is a model ofα
corresponds to an accepting run of the product automaton.

The proof, omitted for lack of space, exploits Theorems 4 and5 in [17].
Our approach to BMC relies on the well known result [7] that the language accepted

by a Büchi automaton is nonempty iff there is a reachable accepting state with a cycle
back to itself. The construction of the(k,l)-loop is described by the functionBMC in
Figure 3. The constructchoose inS returns any of the elements of setS or null if

2 δ is the transition relation ofA.

function BMC(max k)
k := 0
do

path := choose in{s0
a0→ s1

a1→ . . . sk+1 such that
sj 6= sm for 0 ≤ j < m ≤ k,
sl = sk+1 for somel ≤ k,
sacc is an accepting state for somel ≤ acc ≤ k}

k := k + 1
while path = null ∧ k ≤ max k

return path

Fig. 3. FunctionBMC

function max()
i := 0
do

i := i + 1

path := choose in{s0
a0→ s1

a1→ . . . si such that
sj 6= sm for 0 ≤ j < m ≤ i}

while path 6= null

return i − 1

Fig. 4. Functionmax

S = ∅. With s0
a0→ s1

a1→ . . . si we represent a finite path of the product automaton,
wheres0 is an initial state andsi ∈ next states(si−1, ai−1). Given an integerk, we
look for a path of lengthk + 1, such thatsk+1 = sl for some previous statesl in the
path. Furthermore the loop must contain an accepting state.If such a loop is found, it
finitely represents an accepting run. Otherwise,k is increased untilmax k is reached.

Observe that the standard approach for bounded model checking in [5] does not
guarantee termination, because the path of lengthk is a path of the transition system,
and thus it is not possible to restrict the search to simple paths without missing so-
lutions. On the other hand, we can consider onlysimplepaths, that is paths without
repeated states. This property allows to define a terminating algorithm, thus achieving
completeness, by passing the length of the longest simple path as parameter toBMC.

The length of the longest simple path can be found iteratively, searching for a simple
path of lengthi (without loop), and incrementingi at each step (See Figure 4). Since
the number of different states if finite, this procedure terminates.

The set of tableau rules can be easily extended to deal with other boolean connec-
tives and derived modal operators. In the following, we use tableau rules for2 and⋄,
using the equivalences2β ≡ (β ∧©2β)) and3β ≡ (β ∨©3β)). Observe that, as
false box formulae correspond to negated until formulas, weneed to label them withx.

Example 2.Consider the domain description given in Example 1 with the constraints
and the property given in Section 2.3. We describe some stepsof the (non determin-
istic) construction of a(k,l)-loop for k = 7. For the initial states0 we havew0 =
{Tmail(a),Fmail(b)}, x0 = 0, f0 = X. F0 contains the following formulas:
F0.1 : T〈begin〉⊤

F0.2 : T2[begin]〈A(q0)〉⊤

F0.3 : F21(mail(a) ⊃ 3¬mail(a))

F0.4 : T[begin]〈A(q0)〉⊤− fromF0.2

F0.5 : T© 2[begin]〈A(q0)〉⊤ fromF0.2

F0.6 : F© 21(mail(a) ⊃ 3¬mail(a)) fromF0.3

The first two formulas are the two constraints, where the automatonA(q0) is equiva-
lent to the regular programsense mail; (deliver(a) + deliver(b) + wait); begin (A
has states{q0, q1, q2, q3}, initial stateq0, final stateq3 and transition functionq1 =
δ(q0, sense), q2 = δ(q0, del(a)) = δ(q0, del(b)) = δ(q0, wait), q3 = δ(q2, begin)).
The third formula is the negation of the property. Note that the2 operator has label 1
sincex0 = 0. All other formulas are obtained by applying thetableau rules3.

SinceF0 contains the formulaT〈begin〉⊤, we can only execute actionbegin in s0.
In s1 we havew1 = {Tmail(a),Fmail(b)}, from the domain description, andx1 = 1,
f0 = X. x1 changes its value from the previous state, because there areno formulas
in s0 with label 0.F1 is obtained by propagating the “next” formulas inF0 and by
applyingtableauto them:
F1.1 : T〈A(q0)〉0⊤ fromF0.4

F1.2 : T2[begin]〈A(q0)〉⊤ fromF0.5

F1.3 : F21(mail(a) ⊃ 3¬mail(a)) fromF0.6

F1.4 : T〈sense〉〈A(q1)〉0⊤ fromF1.1

F1.5 : T[begin]〈A(q0)〉⊤ fromF1.2

F1.6 : T© 2[begin]〈A(q0)〉⊤ fromF1.2

F1.7 : F(mail(a) ⊃ 3¬mail(a)) fromF1.3

F1.8 : F¬mail(a)) fromF1.7

F1.9 : F3¬mail(a)) fromF1.7

F1.10 : F©3¬mail(a)) fromF1.9

Because ofF1.4 the next action will besense. This action is non deterministic, and
we choosew2 = {Tmail(a),Tmail(b)}. By continuing with the construction, we can
get the following path (we omit the value of theFi’s in the states, and we writea form
mail(a) andb for mail(b)):

(F0, {Ta,Fb}, 0,X)
begin
→ (F1, {Ta,Fb}, 1,X)

sense
→ (F2, {Ta,Tb}, 0,X)

del(b)
→

(F3, {Ta,Fb}, 0, ↓)
begin
→ (F4, {Ta,Fb}, 0, ↓)

sense
→ (F5, {Ta,Tb}, 1,X)

del(b)
→

(F6, {Ta,Fb}, 1, ↓)
begin
→ (F7, {Ta,Fb}, 1, ↓)

sense
→ (F8, {Ta,Tb}, 0,X)

SinceF8 = F2 , the two statesn8 andn2 are equal. Thus we have an arc back from
s7 to s2, and the path froms2 to s7 contains an accepting state. The path represents a
counterexample to the property we wanted to prove.

Let us modify the domain description by adding a fluentpr(E) which associates a
priority to the mailboxes. We can add the following rules:

[deliver(E)]¬pr(E)

[deliver(E)]pr(E′)← E 6= E′,mail(E′)

[deliver(E)] ⊥← ¬pr(E), pr(E′), E 6= E′

3 For lack of space we consider only the most significant formulas.

By applying functionmax, we obtain that the longest path has length 17. By exe-
cuting functionBMC(17) we get no solution. Therefore the property2(mail(a) ⊃
3¬mail(a)) holds in the modified domain description.

5 An ASP Encoding of BMC with Büchi Automata

We now provide a translation into standard ASP of the above procedure for building
a path of the product Büchi automaton. We use predicates like fluent, action,

state to express the type of atoms. As we are interested in infinite runs represented
as(k,l)-loops, we assume a boundK to the number of states. States are represented in
ASP as integers from0 toK, whereK is given by the predicatelaststate(State).
The predicateoccurs(Action,State) describes transitions. Occurrence of exactly
one action per state can be encoded as:
-occurs(A,S):- occurs(A1,S),action(A),action(A1),A!=A1,state(S).

occurs(A,S):- not -occurs(A,S),action(A),state(S).

As we have seen, states are associated with a set of fluent literals, a set of signed
formulas, and the values ofx andf . Fluent literals are represented with the predicate
holds(Fluent,State),T orF formulas withtt(Formula,State)orff(Formula,
State), x with the predicatex(Val,State) andf with the predicateacc(State),
which is true ifState is an accepting state.

States on the path must be all different, and thus we need to define a predicate
eq(S1,S2) to check whether the two statesS1 andS2 are equal:
eq(S1,S2):- state(S1), state(S2),not diff(S1,S2).

diff(S1,S2):- state(S1),state(S2),tt(F,S1),not tt(F,S2).

diff(S1,S2):- state(S1),state(S2),holds(F,S1),not holds(F,S2).

and similarly for other components of a state.
The following constraint requires all states up toK to be different:

:-state(S1),state(S2),S1!=S2,eq(S1,S2),laststate(K),S1<=K,S2<=K.

Furthermore we need constraints stating that there is a transition from stateK to a
previous stateL4, and that there is a stateS, L ≤ S ≤ K, such thatacc(S) holds, i.e.
S is an accepting state. To do this we compute the successor of stateK, and check that
it is equal toS.
loop(L):- state(L), laststate(K), L<=K,SuccK=K+1, eq(L,SuccK).

accept:- loop(L), state(S), laststate(K), L<=S, S<=K, acc(S).

:- not accept.

Given a domain descriptionΠ and a set of DLTL formulasϕ1, . . . ϕn, representing
constraints or negated properties, we want to compute the temporal answer sets of the
domain descriptionΠ satisfying the temporal formulas, if any. The rules inΠ can be
easily translated to ASP, similarly to [14]. In the following we provide the translation
of our running example, see [19] for details.
action(sense).

action(deliver(a)).

action(deliver(b)).

4 Since states are all different, there will be at most one state equal to the successor ofK.

action(wait).

fluent(mail(a)).

fluent(mail(b)).

action effects:
holds(mail(E),NS):- occurs(sense,S), fluent(mail(E)),NS=S+1,

not -holds(mail(E),NS).

-holds(mail(E),NS):-occurs(deliver(E),S),fluent(mail(E)),NS=S+1.

persistence:
holds(F,NS):- holds(F,S), fluent(F),NS=S+1,not -holds(F,NS).

-holds(F,NS):- -holds(F,S),fluent(F),NS=S+1,not holds(F,NS).

preconditions:
:- occurs(deliver(E),S),-holds(mail(E),S).

:- occurs(wait,S), holds(mail(E),S).

initial state:
-holds(mail(a),0). -holds(mail(b),0).

DLTL formulas are represented as ASP terms. In the encoding,each formulaαUA(q)β

is represented asuntil(A,q,alpha,beta), where the automatonA is described by
the predicatestrans(A,Q1,Act,Q2) defining transitions, andfinal(A,Q) defining
final states. Predicatex(L,S) gives the valueL = 0, 1 of x in stateS. We introduce the
termsuntil(A,q,alpha,beta,L)anddiamond(Act,alpha) for encoding labeled
until formulas and〈a〉α formulas. The expansion of signed formulas can be formulated
by means of ASP rules corresponding to the tableau rules given in the previous section.

Disjunction:
tt(F1,S) v tt(F2,S):- tt(or(F1,F2),S).

ff(F1,S):- ff(or(F1,F2),S).

ff(F2,S):- ff(or(F1,F2),S).

Negation:
ff(F,S):- tt(neg(F),S).

tt(F,S):- ff(neg(F),S).

Until :
tt(until(Aut,Q,F1,F2,1-N),S):- state(S),

tt(until(Aut,Q,F1,F2),S),x(N,S),label(N).

tt(or(F2,and(F1,diamond(Act,until(Aut,Q1,F1,F2,L)))),S):-

tt(until(Aut,Q,F1,F2,L),S),state(S),label(L),final(Aut,Q),

occurs(Act,S),choose(until(Aut,Q,F1,F2,L),S,Act,Q1).

tt(and(F1,diamond(Act,until(Aut,Q1,F1,F2,L))),S):- state(S),

tt(until(Aut,Q,F1,F2,L),S),label(L),not final(Aut,Q),

occurs(Act,S),choose(until(Aut,Q,F1,F2,L),S,Act,Q1).

ff(F2,S):- state(S),ff(until(Aut,Q,F1,F2),S), final(Aut,Q).

ff(diamond(Act,until(Aut,Q1,F1,F2)),S):-state(S),

occurs(Act,S),ff(until(Aut,Q,F1,F2),S),trans(Aut,Q,Act,Q1).

Diamond
tt(F,NS):- tt(diamond(Act,F),S), NS=S+1.

ff(F,NS):- ff(diamond(Act,F),S),occurs(Act,S), NS=S+1.

Note that, to express splitting of sets of formulas, as in thecase of disjunction, we
can exploit disjunction in the head of clauses, provided by some ASP languages such
as DLV, or choice constructs available in other languages. The predicatechoose below
non deterministically chooses a transition Q1 among those possible for actionAct in
the automatonAut, and uses that choice in the expansion of the until formula:
choose(until(Aut,Q,F1,F2,L),S,Act,Q1):- state(S),action(Act),

not-choose(until(Aut,Q,F1,F2,L),S,Act,Q1),trans(Aut,Q,Act,Q1).

-choose(until(Aut,Q,F1,F2,L),S,Act,Q1):- state(S),action(Act),

choose(until(Aut,Q,F1,F2,L),S,Act,Q2),Q1!=Q2.

Inconsistency of signed formulas is formulated with the following constraints:
:- ff(true,S), state(S).

:- tt(F,S), ff(F,S), state(S).

:- tt(diamond(Act1,F),S),tt(diamond(Act2,F),S), Act1!=Act2.

:- tt(F,S), not holds(F,S).

:- ff(F,S), not -holds(F,S).

As a difference with the tableau construction, rather than introducing the translation
of formulaT

∨
a∈Σ〈a〉⊤ in the initial state, we include the rule

tt(diamond(A,true),S):- occurs(A,S).

as we know that at least one action (and at most one) occurs in astate.
Predicates x and acc are defined as follows:

cont(S):-state(S),x(Lab,S),tt(diamond(,until(, , ,Lab)),S).

x(Lab,SN):- x(Lab,S),SN=S+1, cont(S).

-acc(SN):- x(Lab,S),SN=S+1, cont(S).

x(1-Lab,SN):- x(Lab,S),SN=S+1, not cont(S).

acc(SN):- x(Lab,S),SN=S+1, not cont(S).

x(0,0). acc(0).

Finally, we must add a facttt(tr(ϕi),0) for each DLTL formulaϕi to be satisfied
in the model, wheretr(ϕi) is the ASP term representingϕi.

It is easy to see that the (groundization of the) encoding in ASP is linear in the size
of the formulaφ to be verified and in the numberf of ground fluents while quadratic
in the size ofk. We can prove that there is a one to one correspondence between the
extensions of a domain description satisfying a given temporal formula and the answer
sets of the ASP program encoding the domain and the formula.

Proposition 3. LetΠ be a domain description whose temporal answer sets are total,
let tr(Π) be the ASP encoding ofΠ (for a givenk), and letφ be a DLTL formula.

If there is a temporal answer set ofΠ that satisfies the formulaφ, then there exists
an answer sets of the ASP programtr(Π) ∪ tt(tr(φ), 0) (wheretr(φ) is the ASP term
representingφ); and vice versa.

For achieving completeness, the search for the longest simple path can be done by
removing from the above ASP encoding the rules for defining loops and the rules for
defining the Büchi acceptance condition.

The translation has been run in iClingo [13]. For the dining philosophers problems
in [23], the scalability of the approach in this paper is similar to the one for the method
(without Büchi automaton) in [19] and the one in [23], when looking for a counterex-
ample. E.g., a counterexample for DP(12) is found in 183 seconds, wrt 274 seconds

for a Clingo implementation of the method in [19] — see also Appendix C in that pa-
per. The search for the longest simple path is substantiallymore costly and practically
feasible only for problems where the action domain is sufficiently constrained.

6 Conclusions

The paper presents a bounded model checking approach for theverification of prop-
erties of temporal action theories in ASP. The temporal action theory is formulated in
a temporal extension of ASP, where DLTL constraints in domain descriptions allow
for state trajectory constraints to be captured. The approach provides a uniform ASP
metodology for specifying and verifying domain descriptions, which can be used for
several reasoning tasks, including business process verification [10] and planning.

Helianko and Niemelä [23] developed a compact encoding of bounded model check-
ing of LTL formulas as the problem of finding stable models of logic programs. In [19]
this encoding is extended to address the verification of action domains including DLTL
constraints. In this paper, we follow a different approach to BMC which exploits the
Büchi automaton construction to achieve completeness. [8] first proposed the use of
the Büchi automaton in BMC. As a difference, our encoding inASP is defined without
assuming that the Büchi automaton is computed in advance.

The action language in this paper is related to the logic programming based plan-
ning languageK [12] and with the languagesC andC+ [21, 20]. UnlikeK, C andC+ our
action language does not allow for concurrent actions, but it provides general temporal
constraints.K, C andC+ can perform several kinds of reasoning, such as, prediction,
postdiction and planning. However, they do not exploit standard temporal logic con-
structs to reason about actions.
ESG [9] is a second order extension of CTL* for reasoning about nonterminating

Golog programs. The paper presents a method for verificationof a first order CTL
fragment ofESG, using model checking and regression based reasoning. Because of
first order quantification, this fragment is in general undecidable.

In [1] the verification problem for action logic programs with nonterminating behav-
ior is addressed using an action formalism based on a temporalized description logic,
ALCO-LTL. DLTL does not allow for first order constructs asALCO-LTL, while it
allows for the specification of regular expressions.

In [6] Cabalar introduces normal forms for Temporal Equilibrium Logic (TEL),
an extension of the Answer Set semantics to arbirary theories in the syntax of Linear
Temporal Logic. The rules inΠ , in our action theories, appear to be in normal form. It
would be interesting to investigate the possibility of mapping the LTL fragment of our
action theories into TEL.

Acknowledgments
We thank the anonymous referees for their helpful comments.This work has been par-
tially supported by the project of Regione Piemonte “ICT4Law”.

References

1. Franz Baader, Hongkai Liu, and Anees ul Mehdi. Verifying properties of infinite sequences
of description logic actions. InECAI, pages 53–58, 2010.

2. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning.Artificial Intelligence, 116(1-2):123–191, 2000.

3. Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. Aheuristic search approach to
planning with temporally extended preferences.Artif. Intell., 173(5-6):593–618, 2009.

4. C. Baral and J. Zhao. Non-monotonic temporal logics for goal specification. InIJCAI 2007,
pages 236–242, 2007.

5. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
Advances in Computers, 58:118–149, 2003.

6. Pedro Cabalar. A normal form for linear temporal equilibrium logic. InJELIA, LNCS 6341,
pages 64–76, 2010.

7. Edmund M. Clarke, Orna Grumberg, and Doron Peled.Model checking. MIT Press, 2001.
8. E.M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Completeness and complexity of

bounded model checking. InVMCAI, pages 85–96, 2004.
9. J. Claßen and G. Lakemeyer. A logic for non-terminating Golog programs. InProc. KR

2008, pages 589–599, 2008.
10. D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, and D. Theseider Dupré.

Verifying business process compliance by reasoning about actions. InCLIMA 2010, LNCS
6245, 2010.

11. Giuseppe De Giacomo, Fabio Patrizi, and Sebastian Sardiña. Generalized planning with
loops under strong fairness constraints. InProc. KR 2010, 2010.

12. T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres.A logic programming approach to
knowledge-state planning: Semantics and complexity.ACM TOCL, 5(2):206–263, 2004.

13. M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. Engineering
an incremental ASP solver. InProc. ICLP08, volume 5366 ofLNCS, pages 190–205, 2008.

14. M. Gelfond.Handbook of Knowledge Representation, ch. 7, Answer Sets. Elsevier, 2007.
15. A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. Technical Report,

Department of Electronics and Automation, University of Brescia, Italy, 2005.
16. R. Gerth, D. Peled, M.Y.Vardi, and P. Wolper. Simple on-the-fly automatic verification of

linear temporal logic. In15th Work. Protocol Specification, Testing and Verification, 1995.
17. L. Giordano and A. Martelli. Tableau-based automata construction for dynamic linear time

temporal logic.Annals of Mathematics and AI, 46(3):289–315, 2006.
18. L. Giordano, A. Martelli, and C. Schwind. Specifying andverifying interaction protocols in

a temporal action logic.Journal of Applied Logic, 5:214–234, 2007.
19. L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about actions with temporal

answer sets.TPLP, To appear. Available at http://arxiv.org/abs/1110.3672.
20. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, , and H. Turner. Nonmonotonic causal

theories.Artificial Intelligence, 153(1-2):49–104, 2004.
21. E. Giunchiglia and V. Lifschitz. An action language based on causal explanation: Preliminary

report. InAAAI/IAAI, pages 623–630, 1998.
22. F. Giunchiglia and P. Traverso. Planning as model checking. In Proc. The 5th European

Conf. on Planning (ECP’99), pages 1–20, 1999.
23. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.TPLP,

3(4-5):519–550, 2003.
24. J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic.Annals of Pure

and Applied logic, 96(1-3):187–207, 1999.
25. M. Pistore and P. Traverso. Planning as model checking for extended goals in non-

deterministic domains. InProc. IJCAI 2001, pages 479–486, 2001.
26. S. Sohrabi and S. A. McIlraith. Optimizing web service composition while enforcing regu-

lations. InISWC 2009, Chantilly, USA, LNCS 5823, pages 601–617, 2009.

