
jcel: A Modular Rule-based Reasoner

Julian Mendez

Theoretical Computer Science, TU Dresden, Germany
mendez@tcs.inf.tu-dresden.de

Abstract. jcel is a reasoner for the description logic EL+ that uses a
rule-based completion algorithm. These algorithms are used to get sub-
sumptions in the lightweight description logic EL and its extensions. One
of these extensions is EL+, a description logic with restricted expressiv-
ity, but used in formal representation of biomedical ontologies. These
ontologies can be encoded using the Web Ontology Language (OWL),
and through the OWL API, edited using the popular ontology editor
Protégé. jcel implements a subset of the OWL 2 EL profile, and can be
used as a Java library or as a Protégé plug-in. This system description
presents the architecture and main features of jcel, and reports some of
the challenges and limitations faced in its development.

1 Introduction

This system description presents jcel1, a reasoner for the description logic EL+.
The design and implementation details refer to jcel 0.17.1, unless other version
is specified.

The lightweight description logic (DL) EL and its extensions have recently
drawn considerable attention since important inference problems, such as the
subsumption problem, are polynomial in EL [1,4,2]. In addition, biomedical on-
tologies such as the large ontology SNOMED CT2, can be defined using this
logic.

The basic entities are concepts (class expressions), which are built with con-
cept names (classes) and role names (object properties).

An ontology is a formal vocabulary of terms which refers to a conceptual
schema inside a domain. The terms are related using an ontology language. The
main service that this reasoner provides is classification, a hierarchical relation
of the concepts in the ontology.

2 Language Subset Supported

jcel, as an EL+ reasoner, includes the standard constructors of EL: conjunction
(CuD), existential restriction (∃r.C), and the top concept (>). In addition, this
logic includes role composition (r ◦ s v t) and role hierarchy (r v s).

1 http://jcel.sourceforge.net/
2 http://www.ihtsdo.org/snomed-ct/

Table 1. Syntax and semantics.

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C v D CI ⊆ DI

role hierarchy r v s rI ⊆ sI

role composition r ◦ s v t rI ◦ sI ⊆ tI

Table 1 summarizes the semantics of the mentioned constructors.
There is an experimental development of jcel [7] to support inverse and func-

tional roles.

3 Syntaxes and Interfaces Supported

jcel is developed in Java and can be compiled in Java 1.6 or Java 1.7 indis-
tinctly. jcel is integrated to the OWL API 3.2.43, which is a Java application
programming interface (API) and reference implementation for creating, manip-
ulating and serializing OWL ontologies. Using the OWL API, jcel can be used
as a Protégé4 plug-in. Protégé is a free, open source ontology editor, and also
a knowledge base framework. Protégé ontologies can be exported to several for-
mats, like RDF, OWL and XML Schema. In order to keep compatibility with
Protégé 4.1, jcel is distributed as a Java binary for Java 1.6.

jcel can also be used as a library without the OWL API. It has its own
factories to construct the optimized data types used in the core.

4 Reasoning Algorithm Implemented

The algorithm is rule-based, and there is a set of rules that are successively
applied to saturate data structures. These rules are called completion rules. The
process is called classification, and is the main part of jcel’s algorithm.

An algorithm that classifies the set of axioms by applying these rules could be
expensive in time if it is performed by a systematic search. The algorithm used by
jcel is based on CEL’s algorithm [2,3], but generalized with a change propagation
approach [6]. This approach detects the changes in the data structure being
saturated, and triggers the rules in consequence.

The input of the algorithm is a normalized set of axioms T as in the following
list: A v B, A1 u · · · uAn v B, A v ∃r.B, ∃r.A v B, r v s, r ◦ s v t.

3 http://owlapi.sourceforge.net/
4 http://protege.stanford.edu/

The invariant of the algorithm has a set S, called set of subsumptions, such
that for each pair of concept names A, B in T : (A,B) ∈ S if and only if T |=
A v B, and a set R such that for each triple of role r, and concept names A,
B in T : (r,A,B) ∈ R if and only if T |= A v ∃r.B, where |= has the usual
meaning.

The algorithm finishes when S is saturated. The output is S itself, which
tells the subsumption relation for every pair of concept names.

In Figure 1, we can observe S and R, the completion rules (CR-1, CR-2, . . .),
the duplicates checker, and a set Q which has a set of entries to be processed.

In each iteration, an S-entry (a pair) or an R-entry (a triple) is taken from
Q and added to either S or R. This change is propagated and sent to the chain
of rules sensitive to changes in S (S-chain) or in R (R-chain). Every completion
rule takes the new entry as input and returns a set of S- and R-entries. The
arrows indicate how these entries flow.

Every element proposed by the rules is verified by the duplicates checker
before being added to Q. The dashed lines indicate that the duplicates checker
uses S and R for the verification. This procedure is repeated until Q is empty.

Fig. 1. Dynamic diagram.

5 Architecture and Optimization Techniques

jcel axioms are encoded using integers. This optimizes the use of memory and
required time in comparisons. Any program using jcel as a library can encode
its entities with integers, and take advantage of this efficient representation.

jcel is composed by several modules, as shown in Figure 2. The arrows indicate
the relation “depends on”.

jcel.coreontology and jcel.core are modules that use only normalized axioms.
The former contains the normalized axioms themselves, the latter contains the
implementation of the completion rules, together with the data structures for
the subsumption graphs.

jcel.ontology is a module that contains the axioms for the ontology and the
procedures to normalize the ontology. jcel.reasoner is the reasoner interface. It
can classify an ontology and compute entailment.

All the modules mentioned above work with data types based on integers.

jcel.owlapi is the module that connects to the OWL API. This module per-
forms the translation between the OWL API axioms and jcel axioms. jcel.protege
is a tiny module used to connect to Protégé.

Figure 2 describes the module dependencies and shows that jcel can be used:

– extending the core (with jcel.coreontology and jcel.core)
– as a library using integers (adding jcel.ontology and jcel.reasoner)
– as a library using the OWL API (adding jcel.owlapi)
– as a Protégé plug-in (adding jcel.protege)

Fig. 2. Module dependencies.

6 Particular Advantages and Disadvantages

jcel is a pure Java, open source project. Its source code can be cloned with
Git5 and compiled using Apache Ant6 or Apache Maven7 indistinctly.

5 http://git-scm.com/
6 http://ant.apache.org/
7 http://maven.apache.org/

jcel includes several advantages derived from its design and from good prac-
tices of software engineering. Regarding the design, jcel has independent main-
tenance of rules. Each rule works as an independent unit that can be imple-
mented, improved and profiled independently.

Regarding the good practices, jcel uses no null pointers. Every public
method is prevented of accepting null pointers (throwing a runtime exception)
and no public method returns a null pointer. Referred by its inventor as “The
Billion Dollar Mistake”8, a null pointer may have different intended meanings.
For example, min(1,null), may give the results “0” (considering null as 0), “1”
(considering null as an empty argument), or “null” (considering null as an
undefined value).

Another good practice is that public methods return unmodifiable collec-
tions when they refer to collections used in the internal representation. This
prevents a defective piece of code from modifying the collection.

jcel has no cyclic dependencies of packages in each module. This facil-
itates maintenance, since modifications on one package do not alter any other
package that does not depend on the former.

jcel has also some points that are not implemented yet, but can be considered
as good future improvements.

One of the improvements is to apply techniques to unchain properties [5].
This would be useful for large ontologies.

Another improvement is incremental classification. This could be espe-
cially interesting for entailment, since jcel computes entailment by adding fresh
auxiliary concepts and reclassifying the ontology.

Finally, the reduction of use of memory is an important improvement to
consider. jcel 0.16.0 was the first version to include entailment, but also became
significantly slower than jcel 0.15.0 when classifying large ontologies. The reason
was a side effect resulting from the memory required for the entailment, produc-
ing a frequent execution of the garbage collector. This was partially solved in
jcel 0.17.0.

7 Application focus

jcel can be used to classify small and medium-sized ontologies of the EL family.
jcel was designed to be robust, resilient, modular and extensible. Its binaries

are small and can be distributed inside other tools. One tool that uses jcel is
Gel9 (Generalizations for EL) [7], which extends the core of jcel.

Another example is OntoComP10. It is a Protégé plug-in for completing OWL
ontologies, and for checking whether an OWL ontology contains “all relevant
information” about the application domain. This tool uses the OWL API to
connect to jcel as a library.

8 http://qconlondon.com/london-2009/speaker/Tony+Hoare
9 http://sourceforge.net/p/gen-el/

10 http://ontocomp.googlecode.com/

jcel is also used to verify correctness in UEL11, Unification for the description
logic EL.

8 Conclusion

jcel is a reasoner for lightweight ontologies. Its rule-based design makes it easy to
be configured according to the rules. Provides a high-level interface to be used
as a tool seamlessly integrated to the OWL API.

The implementation is modular, resilient and highly extensible. Implemented
in a state-of-the-art technology, it has a low coupling and a high cohesion, it is
portable, and has an optimal interface to connect to other technologies of the
Semantic Web.

References

1. Franz Baader. Terminological cycles in a description logic with existential restric-
tions. In Proc. IJCAI’03, 2003.

2. Franz Baader and Sebastian Brandt and Carsten Lutz. Pushing the EL envelope.
In Proc. IJCAI’05, 2005.

3. Franz Baader and Carsten Lutz and Boontawee Suntisrivaraporn. Is Tractable
Reasoning in Extensions of the Description Logic EL Useful in Practice?. Journal
of Logic, Language and Information, Special Issue on Method for Modality (M4M),
2007.

4. Sebastian Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. ECAI’04, 2004.

5. Yevgeny Kazakov and Markus Krötzsch and Frantǐsek Simanč́ık. Unchain My EL
Reasoner. In Riccardo Rosati, Sebastian Rudolph, Michael Zakharyaschev, editors,
Proceedings of the 24th International Workshop on Description Logics (DL-11).
CEUR, 2011.

6. Julian Mendez. A Classification Algorithm for ELHIfR+. Dresden University of
Technology, 2011.

7. Julian Mendez and Andreas Ecke and Anni-Yasmin Turhan. Implementing
completion-based inferences for the EL-family. In Riccardo Rosati, Sebastian
Rudolph, and Michael Zakharyaschev, editors, Proceedings of the international De-
scription Logics workshop, volume 745. CEUR, 2011.

8. Quoc Huy Vu. Subsumption in the Description Logic ELHIfR+ w.r.t. General
TBoxes. Dresden University of Technology, 2008.

11 http://uel.sourceforge.net/

