
Chainsaw: A Metareasoner for Large Ontologies

Dmitry Tsarkov and Ignazio Palmisano

University of Manchester,
School of Computer Science,

Manchester, UK
{tsarkov, palmisai}@cs.man.ac.uk

Abstract. In this paper we present the results of running the ORE test
suite and its reasoning tasks with three reasoners: Chainsaw, JFact
and FaCT++. We describe the newest of these reasoners, Chainsaw, in
detail, and we compare and contrast its advantages and disadvantages
with the other two reasoners. We show the results obtained and how they
compare to each other, and we list the cases in which the reasoners fail
to complete a task in the assigned time.

1 Introduction

As it is well known to ontology engineers, ontologies become harder to manage,
in terms of understanding them and reasoning with them, in a way which is,
unfortunately, not proportional to the increase of their size. It is often the case
that a small number of changes makes an ontology much harder for a reasoner
to process. However, keeping ontologies small and simple is not always possible,
because they might fail to satisfy the application requirements. On the other
hand, it is possible for a small ontology to be hard to reason about.

How to best divide an ontology into smaller portions according to the needs
of the task at hand is still an open problem; the rule of thumb that many
approaches follow is that, when in doubt, one should try to keep the ontology
as small as possible.

This is the main intuitive reason for modularisation, i.e., a set of techniques
for splitting ontologies into fragments without loss of entailments for a given set
of terms. To date, however, not many tools provide either user support for these
techniques, nor leverage them for reasoning tasks.

Chainsaw [10], our metareasoner implementation prototype, exploits the
idea in the following way. For every inference query it creates a module of the
ontology that is then used to answer the query. The module is created in a way
that guarantees the result of the query should be the same as for the whole
ontology, i.e., there is no loss of entailments.

Chainsaw is designed as a wrapper for other reasoners. It can use reasoner
factories to build reasoners on modules of its root ontology, and will integrate
the ability to choose the reasoner best suited to each reasoning task on the basis
of the module characteristics, such as size and/or expressivity. The most obvious
characteristic is an OWL 2 profile of the module. E.g., if the profile is OWL 2



EL then some efficient EL reasoner, like ELK [4], could be used to achieve the
best performance.

The advantages of using modules instead of whole ontologies inside a reasoner
reside in the simplification of reasoning. The complexity of reasoning in OWL 2
DL is N2EXPTIME-hard on the size of the input, therefore being able to divide
the ontology is likely to produce performance improvements orders of magnitude
larger than the relative reduction in size.

Moreover, using modules inside the reasoner can help the knowledge engineer
to concentrate on modelling the knowledge instead of worrying about the lan-
guage pitfalls, since the extra complexity can be tackled in a transparent way.
This, however, does not mean that complexity is no longer an issue. Modulari-
sation is not a silver bullet for reasoning, as in some cases the module needed to
answer a query might still include most of the ontology.

Another advantage of Chainsaw architecture is that it is able to use different
OWL reasoners for each query and module; this allows for choosing the reasoner
best suited for the OWL 2 profile of a specific module. In those cases where it
is not clear which reasoner is best, it is possible to start more than one reasoner
and simply wait for the first one to finish the task - this might require more
resources, but statistical records can be kept to improve future choices. This
functionality, however, is not yet implemented.

The reverse of the medal is that, for simple ontologies, Chainsaw is likely
to be slower than most of the reasoners it uses; this derives from the overhead
needed to manage multiple reasoners and modularisation of the ontology itself.
Our objective, in this paper, is to illustrate an approach that can squeeze some
answers out of ontologies that are too troublesome for a single traditional rea-
soner to handle.

In Section 2, we describe briefly the theory behind Atomic Decomposition
and Modularisation, which are the building blocks of this approach; in Section 3
we describe the implementation details, tradeoffs and strategies adopted, and in
Section 5 we present the results on the effectiveness of Chainsaw comparing to
JFact and FaCT++ on the ORE test suite.

2 Atomic Decomposition and Modularisation

We assume that the reader is familiar with the notion of OWL 2 axiom, ontology
and entailments. An entity is a named element of the signature of an ontology.
For an axiom α we denote α̃ the signature of that axiom, i.e. the set of all entities
in α. The same notation is also used for the set of axioms.

Definition 1 (Query). Let O be an ontology. An axiom α is called an entail-
ment in O if O |= α. A check whether an axiom α is an entailment in O is an
entailment query. A subclass (superclass, sameclass) query for a class C in an

ontology O is to determine the set of classes D ∈ Õ such that O |= C v D (resp.
O |= D v C,O |= C ≡ D). A hierarchical query is either subclass, superclass,
or sameclass query.



Definition 2 (Module). Let O be an ontology and Σ be a signature. A subset
M of the ontology is called module of O w.r.t. Σ if for every axiom α such that
α̃ ⊆ Σ, M |= α ⇐⇒ O |= α.

One way to build modules is through the use of axiom locality. An axiom is
called (⊥-) local w.r.t a signatureΣ if replacing all entities not inΣ with⊥makes
the axiom a tautology. This syntactic approximation of locality was proposed
in [1] and provides a basis for most of the modern modularity algorithms [3].

This modularisation algorithm is used to create an atomic decomposition of
an ontology, which can then be viewed as a compact representation of all the
modules in it [12].

Definition 3 (Atomic Decomposition). A set of axioms A is an atom of the
ontology O, if for every module M of O, either A ⊆M or A∩M = ∅. An atom
A is dependent on B (written B 4 A) if for every module M if A ⊆ M then
B ⊆ M . An Atomic Decomposition of an ontology O is a graph G = 〈S,4〉,
where S is the set of all atoms of O.

The dependency closure of an atom, computed by following its dependencies,
constitutes a module; this module can then be used to answer queries about the
terms contained in this closure.

However, for a hierarchical query the signature would contain a single entity,
but the answer set would contain entities that might not be in the module built
for that signature.

In order to address this problem, we use Labelled Atomic Decomposition
(LAD), as described in [11].

Definition 4 (Labelled Atomic Decomposition). A Labelled Atomic De-
composition is a tuple LAD = 〈S,4, L〉, where G = 〈S,4〉 is an atomic de-
composition and L is a labelling function that maps S into a set of labels. A
top-level labelling maps an atom A to a (possibly empty) subset of its signature

L(A) = Ã \ (
⋃

B4A L(B)).

Proposition 1. Let LAD = 〈S,4, L〉 be a top-level labelled atomic decompo-

sition of an ontology O. Then for all named classes x, y from Õ the following
holds:

1. If O |= x v y, then ∃A,B ∈ S : x ∈ L(A), y ∈ L(B) and B 4 A;
2. If O |= x ≡ y, then ∃A ∈ S : x ∈ L(A) and y ∈ L(A).

Proof. 1) From [3], Proposition 11, O |= x v y iff for the ⊥-locality-based module
M of O w.r.t. signature {x} holds M |= x v y. Assume O |= x v y. Then M is

non-empty and x ∈ M̃ . Thus there is an atom A ∈ S such that x ∈ L(A). Due
to the atomic decomposition properties, the union of an atom together with all
the dependent atoms forms a module. So let MA =

⋃
B4AB be such a module.

This module also has x in its signature, so M ⊆MA. But by the definition of the
top-level labelling MA is the smallest module that contains x in the signature;



so M = MA. This also means that there is only one atom which label contains x.
Now, using the results from [3], we can conclude that y ∈ M̃A; that means, that
one of the atoms B ∈MA is labelled with y. But all such atoms are dependencies
of A, i.e. B 4 A.

2) Assume O |= x ≡ y, which is equivalent to O |= x v y and O |= x v
y. From Case 1) this means that there are atoms A,A′, B,B′ such that x ∈
L(A), x ∈ L(A′), y ∈ L(B), y ∈ L(B′) and B′ 4 A,A′ 4 B. As shown in Case 1),
there is only one atom that contains x (resp. y) in its label, so A = A′, B = B′

and B 4 A,A 4 B. The latter is possible only in case A = B. ut

This proposition provides a way to separate parts of the ontologies necessary
to answer hierarchical queries about named classes. Indeed, it is enough to label
the atomic decomposition with a top-level labelling and the modules for finding
a subsumption relation can easily be found. This approach is orthogonal to
a modularity-based one: while the latter deals easily with the entailment-like
queries, the former provides a way to describe an ontology subset suitable to
answer hierarchical queries.

This also explains the choice of ⊥-locality in our approach. It is possible
to define >-locality in a similar manner (replace all entities not in signature
with >), and use it for the module extraction. Module extraction could be also
done in a more complex manner, called STAR, interleaving > and ⊥ extraction
passes until a fixpoint is reached. However, >-local modules are usually larger
than ⊥-local ones, so there is no reason to use them. The STAR modularisa-
tion, although provides slightly smaller modules, does not ensure properties from
Proposition 1, that are necessary for our approach.

3 Implementation of Chainsaw

The essence of Chainsaw is mirrored in the paper’s title. Unlike other reasoners,
which usually do the classification of the ontology before any query is asked,
Chainsaw deals with requests in a lazy way, leaving classification to the delegate
reasoners, which are usually at work on a small subset of the ontology.

For each query received, Chainsaw tries to keep the subset of the ontology
needed to answer as small as possible without sacrificing completeness. This is
achieved using different strategies according to the query; i.e., it is not possible
to reduce the size of the ontology when checking for its consistency; however,
other queries, as detailed in Section 2, can be answered by using modules built
via LAD or locality based modules. More in detail, querying about superclasses
of a term will only need the dependency closures of the top-level atoms for that
term for the answers to be computed; the opposite is true for subclass requests.

During preprocessing of the ontology, a LAD of that ontology is built, us-
ing the Atomic Decomposition algorithm available in FaCT++ [5], and both
dependency closure and its reverse are cached for every class name. For every
query the module is constructed: via modularisation algorithm for entailment
queries and via LAD for hierarchical queries. Then a suitable reasoner is created



for that module, and the query is delegated to it. The answer then is returned
to a user.

A naive strategy for answering any query would consist of:

– Build a module M for the query
– Start a new reasoner R on M
– Answer the original query using R

However, it is easy to find possible optimisations to this strategy.
First, this approach creates a new reasoner for each query; if two queries with

the same signature are asked, two (identical) modules would be built and two
reasoners would be initialized, while just keeping the same reasoner would be
enough.

Moreover, while the number of possible signatures for a query is exponential
in the size of the ontology signature (not counting possible fresh entities used
in the query), the number of distinct modules that can be computed against a
given ontology with these signatures is much smaller [2]. This means that, given
a module, there is a good chance that it can be reused for answering queries
with a slightly different signature; therefore, the same reasoner can be used to
answer more than one specific query.

Therefore, a tradeoff exists between reducing the size of the module to be
reasoned upon, the complexity of determining such a module and the cost of
starting a new reasoner for each query; to this, one must add the memory re-
quirements of keeping a large module and reasoner cache.

Our approach in Chainsaw is to use a cache for modules and a cache for
reasoners, both limited in the number of cached elements, and ordered as least
recently used (LRU) caches; this has shown to perform rather well in some of
our tests, where around one hundred thousand entailment checks against a large
ontology have been satisfied using approximately 100 simultaneous reasoners,
some of which were reused up to 20 times before being discarded. Similar results
have been obtained when caching the modules to avoid rebuilding the same
module for the same signature.

3.1 Future Improvements

There is one more optimisation that was not implemented: if a module is included
in another module, the larger module can be used in place of the smaller one.
However, this presents a slippery slope problem: at what level do we stop using
the next containing module, since we do not have an easy way to predict where
this series of modules will become really hard to reason with?

Determining the containment is also an expensive operation; for simple mod-
ules, this operation might cost more than the actual reasoning required. The
sweet spot for this optimisation is a situation in which many fairly complex
modules share a large number of axioms and are used often, and their union
does not produce a module which pushes the reasoner’s envelope. Using the
union would provide for a good boost in performance and save memory as well,
but at the time of writing we do not have an effective way of finding such spots.



It seems that atomic decomposition could provide relevant information for
this task; an educated guess would be that such sweet spots reside near the parts
of the dependency graph where a number of edges converge, but, to the best of
our knowledge, there is no strong evidence in favor of this correlation. Future
work might well explore this area.

Another improvement is to add a strategy to choose the best suited reasoner
for a given module; such a strategy would have to take into account the known
weak spots and strong points of each reasoner, as well as the characteristics of
the module and of the query, such as size and OWL profile, or whether the
query requires classification of the module or not. Where this is not sufficient,
statistical records could be kept in order to create evidence based preferences
and improve the strategy over time.

4 Characteristics of the Reasoners

In this paper we present the comparison between three reasoners that have
something in common.

Chainsaw is an OWL 2 DL reasoner that uses modularity to improve query
answering for large and complex ontologies. FaCT++ [5] is a tableaux highly
optimised OWL 2 DL reasoner implemented in C++. JFact1 is a Java imple-
mentation of FaCT++, that has extended datatypes support. The description
of the reasoners’ features can be found in Table 1.

Characteristic Chainsaw JFact FaCT++

OWL 2 profile supported EL, RL, QL, DL

Interfaces OWLAPI2 OWLAPI OWLAPI, LISP

Algorithms AD/sub-reasoner tableaux tableaux

Optimisations meta-reasoning same as N/A
sub-reasoner FaCT++

Advantages scalability; pure Java; good general
good modularity extended DT performance
approximation

Disadvantages AD overhead work in progress OWLAPI interface
is complicated

Application focus large ontologies general purposes

Table 1. Characteristics of compared reasoners.

Some notes about the table. The algorithm used in Chainsaw for answering
hierarchical queries is based on Labelled Atomic Decomposition. For entailment
queries an algorithm used in the chosen sub-reasoner is applied. The architecture

1 http://jfact.sourceforge.net
2 http://owlapi.sourceforge.net



provides the possibility of using different kinds of reasoners for different queries,
so that more efficient reasoners can be used when possible; however, our current
implementation does not provide this functionality yet.

We are not going to say much about FaCT++ and JFact here; the optimi-
sations used in FaCT++ are described in a number of publications [6–9], and
JFact is a port of FaCT++, so it uses the same techniques and contains the
same optimisations. The advantage of Chainsaw is the focus: for every query
it uses only the necessary part of the ontology. This allows it to work in sit-
uations where the ontology is too large and complex to be dealt with by any
other reasoner. So we see the main application area of Chainsaw as large and
complex ontologies. Both FaCT++ and JFact are general purpose reasoners,
which can be easily integrated in any application that uses OWLReasoner inter-
face. In addition to that, FaCT++ could be used directly from C and C++
programs.

Summarising the paper results, the main disadvantage of Chainsaw is the
overhead that is brought in by the need to build a LAD and maintain a number
of sub-reasoners that answers particular entailment queries. JFact is still a
work in progress, so there is a high variance in performance depending on the
task. Also, it has a small user base, by which we mean that there are probably
bugs which have not been found yet. FaCT++ main problem, when used from
Java applications, is its JNI interface, which makes it cumbersome to set up in
some environments; for example, in web applications, native libraries are not
straightforward to load and work with, and an error might cause issues to the
whole application server. The datatype support is not very refined at the time
of writing as well.

5 Empirical Evaluation

To check the performance of Chainsaw we ran several tests with it. For the
tests we used a MacBook Pro laptop with 2.66 GHz i7 processor and 8Gb of
memory.

We use Chainsaw with FaCT++ v 1.5.3 as a delegate reasoner, and com-
pare the results with the same version of FaCT++ and JFact v 0.9.

In Table 2 we present the results coming from the ORE test suite, specifically
the number of tests that our reasoners failed; these failures are either timeout
failures or problems with some unsupported feature of the input ontologies.

As reported in the Total row, Chainsaw has the least amount of failures,
while JFact has the highest; this can be explained in terms of time needed for the
tasks: we know already that JFact performances are worse than FaCT++, and
Chainsaw does not need to perform all tasks on the whole ontology. This gives it
an edge over both JFact and FaCT++ in the case of large/complex ontologies;
although FaCT++ is much faster on smaller ontologies, larger ontologies push
it over our five minutes timeout, thus causing a failure.

We do not report detailed timings for every task in the test suite. Instead,
for every task we select the minimal time for successfully completing the task



Task Chainsaw JFact FaCT++

Classification 10 9 21
Class Sat 0 14 3
Ontology Sat 0 11 0
Pos. Entailment 2 3 2
Neg. Entailment 0 0 0
Retrieval 0 1 2

Total 12 38 28

Table 2. Number of failed tests in the ORE test suite.

and use it to calculate a normalised performance index for each reasoner. This
provides a relative measure on how good a reasoner is compared to the others.

The index is calculated for the initialisation of a reasoner and for perform-
ing the task itself. We then average this index for every reasoner over all the
ontologies in every test suite task, and the resulting values are in Table 3.

Task Init Main Task
Chainsaw JFact FaCT++ Chainsaw JFact FaCT++

Classification 1.01 3.85 1.75 46.6 43.59 1.32
Class Sat 1.04 2.86 1.74 14.15 126.9 3.9
Ontology Sat 1.05 2.77 1.85 19.17 56.6 1
Pos. Entailment 1 4.18 2.2 51.27 76.2 1
Neg. Entailment 1 4.13 2.06 58.36 119 1
Retrieval 1.04 3.35 1.88 4.39 44.37 25.57

Table 3. Average performance indexes for all reasoners over the ontologies included
in each reasoning task.

As can be seen from the data in Table 3, initialisation is a simple process for
Chainsaw; in fact, it does very little work at this stage, while both JFact and
FaCT++ do a substantial amount of loading and preprocessing; Chainsaw is
instead delegating this work until it becomes necessary, i.e., at query answering
time.

At query time, FaCT++ turns out to be the fastest reasoner by a large
margin; Chainsaw comes second and JFact last. Chainsaw is faster in the
retrieval task, but its results were checked manually and they are incorrect; the
speed is therefore probably due to a bug in the modularisation code that is used
for building the module to be used, and its good performance should not be
taken into account.

It is worth mentioning that Chainsaw average includes the ontologies on
which the other reasoners failed; therefore, we can conclude that, while slower
than FaCT++, it can provide answers in cases in which the other reasoners
would not be able to answer in a timely manner at all.



6 Conclusions

In this paper, we presented the relative performances of the three reasoners, and
listed their advantages and disadvantages. From these results, we deduce that
Chainsaw has the potential of providing acceptable performances where other
reasoners fail; it also emerges that its current performances in other cases are
not on a par with more mature reasoners such as FaCT++. We consider this
an encouraging result, and we presented a few improvements that are already
under development.
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