
Solving the Projection Problem with OWL2 Reasoners:
Experimental Study

Wael Yehia1 and Mikhail Soutchanski2

1 Department of Computer Science and Engineering York University, 4700 Keele Street,
Toronto, ON, M3J 1P3, Canada
w2yehia@cse.yorku.ca

2 Department of Computer Science, Ryerson University, 245 Church Street, ENG281, Toronto,
ON, M5B 2K3, Canada mes@scs.ryerson.ca

Abstract. We evaluate HERMIT, an OWL2 reasoner, on a set of test cases that
emerge from an unusual but very practical way of using Description Logics
(DLs). In the field of reasoning about actions, the projection problem is an el-
emental problem that deals with answering whether a certain formula holds after
doing a sequence of actions starting from some initial states represented using an
incomplete theory. We consider a fragment of the situation calculus and Reiter’s
basic action theories (BAT) such that the projection problem can be reduced to
the satisfiability problem in an expressive description logic ALCOU . We adapt
an approach called regression where an input query is equivalently transformed
until it can be directly checked against the initial theory supplemented with the
unique name axioms (UNA) without any consideration to the rest of the BAT.
To study regression in practice, we implemented it in C++, defined an XML
SCHEMA to describe a BAT and queries, created 7 domains some of which are
inspired from well-known planning competition domains, and invented genera-
tors that can create random but meaningful instances of the projection problem.
The formula resulting from regressing a projection query, together with the ini-
tial theory and UNA, is fed to an OWL2 reasoner to answer whether the regressed
query holds given the initial theory and UNA. We measure the input formula us-
ing a number of metrics, such as a number of U-role occurrences and a number
of individuals, and evaluate the performance of HERMIT on formulas along each
dimension.

Keywords: random generator, Description Logics, projection problem, situation
calculus, Action Theory

1 Introduction
We study a new class of formulas that arise from using Description Logics to solve one
of the reasoning problems known as the projection problem (PP) which occurs naturally
in the area of reasoning about actions. We consider a sufficiently broad sub-case of PP
that can be formulated in a fragment of the situation calculus (SC) such that PP becomes
decidable. We will explain later what the PP is, but what’s important to note is that it is
a prerequisite to few other important reasoning problems like planning, which makes it
an interesting problem to tackle.

The reasoning about actions community hasn’t made solutions to the problem very
practical to use so far. There are no practical implementations that can solve the PP
in a logical language that is not purely propositional, and when initial knowledge is
incomplete, i.e., in realistic settings without the closed world assumption (CWA) and

without the domain closure assumption (DCA). Using our approach of transforming
the PP into the satisfiability problem in DL is one way we can start the ball rolling (in
the DL direction). Our goal is to provide automatically generated test cases for the DL
community to work on and speed up reasoning time on. These test cases can be used
for stress testing the DL reasoners. Indeed, our testing clearly shows that the majority
of the time spent on solving one instance of the PP is in the DL reasoner.

Our test cases usually originate from a single common setting. There are two formu-
las: a premise formula (translated into a DL concept representing an initial theory) and
a regressed query formula (translated into another DL concept). The goal is to check
if the regressed query holds given the premise. The two formulas are translated into
concepts in a DL called ALCOU that includes nominals (O), the universal role (U),
and constructs from the well-known logicALC. In addition, each test case may contain
a set of individuals that belong to certain concepts, and might be related to each other
using certain roles. We also make the Unique Name Assumption (UNA) for individuals
by stating they are pairwise unequal.

Finally, the test cases are based on some practical domains such as Logistics and
Assembly from the International Planning Competitions [6, 2], and on other domains
invented by us to illustrate the expressivity of our language L. We provide 7 domains
(Logistics, Assembly, Airport, Turing Machine Addition, Turing Machine Successor,
Scheduling World, and Hemophilia from biology) in which projection queries can be
formulated, and provide query and action sequence generators for the first four domains.
A thorough description of the domains can be found in [5].

We have developed the C++ program that transforms a PP instance into an instance
of the ALCOU satisfiability problem. Using all our tools, we are able to generate ran-
dom PP instances, and subsequently transform them into ALCOU concepts given as
input to OWL2 reasoners.

There are at least two directions that can be taken from here in terms of testing.
One is to generate test cases by varying the complexity of the projection problem such
as initial state complexity/size, query size, and length of the action sequence. This will
lead to investigation of the projection problem in terms of reasoning time. Second is
to generate arbitrary but simple PP instances, and study the final transformed formulas
based on their structure. That will provide new test suites for DL reasoners, and shed
light on the areas where they need improvement. We take the second approach in this
paper, because the first was studied in [1] where a comparison between two approaches
to solving the projection problem is carried out. In this paper, we will measure the
reasoning time for HERMIT3, an OWL2 reasoner, on a randomly generated pool of test
cases. We group the test cases based on (a) a number of individuals in the domain, for
similar queries, and (b) a number of U-role occurrences, then study the behavior of
HERMIT on each group.

We will now explain the nature of the problem we are solving, and how it leads us
to using DL reasoners.

3 http://www.hermit-reasoner.com/publications.html

2 Background
In the field of reasoning about actions, an important problem is answering whether a for-
mula holds after executing a sequence of actions starting from some initial state. This
problem is known as the projection problem, and there are many flavors of the problem
that differ by the restrictions on the query, a set of initial states, language at hand, and
other properties. In description logics (DLs) and earlier terminological systems, this
problem was formulated using roles to represent transitions and concept expressions to
represent states. This line of research as well as earlier applications of DLs to planning
and plan recognition are discussed and reviewed in [3]. Reiter showed that the projec-
tion problem in the situation calculus can be solved using a method called regression
[7]. The problem is undecidable in the general SC, but by limiting the expressivity to a
fragment of SC one can get decidability. We propose a fragment P based on a language
L in which we solve the projection problem using regression. Regression (explained be-
low) is a method of transforming the projection problem into a satisfiability problem in
some language. This language is critical, as the fact whether SAT in the language is de-
cidable will lead to the decidability of the projection problem. Our test case generation
and testing is based on P , and the language used to solve the satisfiability problem after
regression can be mapped to the DL ALCOU . This is how we end up using the OWL
reasoners because they can easily handleALCOU concepts. The executability problem
is another common problem where an action’s precondition axioms are checked for
satisfiability in a given state. This problem is important as mechanisms like regression
depend on the assumption that the action sequence in the query is executable starting
from the initial situation.

In this paper, all constants start with upper case, and all variables with lower case
letters. The free variables in formulas are assumed to be ∀-quantified at front. We use
the standard first order logic (FOL) definitions of well-formed formulas and terms.

2.1 Basic Action Theories and Language L
This approach is based on Basic Action Theories in SC. We will be brief in our descrip-
tion of BATs, but the interested readers can find formal definitions in [8]. In general,
a BAT D consists of the pre-condition axioms (PAs) DP , the successor state axioms
(SSAs) DSS , which characterize the effects and non-effects of actions; an incomplete
initial theory DS0 about the initial situation S0; a set of domain independent founda-
tional axioms; and axioms for the unique-name assumption (UNA). It is also possible
to augment the BAT with a TBox [9, 4]. In SC, a situation is a sequence of actions.
The truth values of some of the predicates can vary with respect to the state pointed out
by the sequence of actions. The fluents are the predicates with a situation term as their
last argument. You can think of them as “dynamic” predicates whose truth value can
change based on the situation argument. Other predicates (with no situation argument)
are called “static” predicates, because their truth value does not depend on situation.
We say that a SC formula φ(s) is uniform in s, if s is the only situation term mentioned
in φ(s), and φ(s) has no quantifiers over situation variables.

Subsequently, we consider only BATs with relational fluents, and no other function
symbols except do(a, s) and action functions are allowed. Terms of sort object can only
be constants or variables. Action functions can have any number of object arguments.

The following is a short and informal definition of the language L that is used to
construct formulas that are allowed in our restricted BATs. The precise definition is
provided in [9]. L is a set of FOL formulas that is divided into two symmetric subsets
Lx and Ly . It uses a finite set of auxiliary variables usually denoted by z1, z2, and
so on (whose sole purpose is to be replaced by constants during regression), as well
as the x and y variables. The main restriction is that z-variables cannot be quantified
over, hence they are always free in L formulas, while the x and y variables can be
quantified, but only one of them can be free in a particular L formula. The Lx set
includes all formulas with free x, and Ly includes all formulas with free y. The L
formulas without occurrences of x, y, and the L formulas where all occurrences of x
and y variables are bound belong to both Lx and Ly . Informally, an Lx formula (Ly

formulas are symmetric) has one of these syntactic forms:

1. atomic formulas such as true, false, x = t1, A(t1), and R(t1, t2),
where A and R are unary and binary predicate symbols respectively, t1 and t2 can
be either constants or z-variables, and t1 can also be x.

2. non atomic formulas such as:
(a) A(x)∧B(x),A(x)∨B(x), and ¬A(x), whereA(x) andB(x) are Lx formulas.
(b) ∀t1.D(t1), ∃t1.D(t1), ∀y.R(t2, y)⊃C(y), and ∃y.R(t2, y)∧C(y),

where D(t1) is a Lx or Ly formula depending on whether t1 is x or y, C(y) is
Ly formula, R is a binary predicate symbol, and t2 can be either x, a constant,
or a z-variable.

Note any zi variable other than x and y has to be free in a formula from L. The intuition
behind the definition ofL is thatL formulas with zi variables instantiated with constants
should be ALCOU representable.

Lemma 1. For any formula φ ∈ L with all z-variables instantiated with constants,
there exist a translation to an ALCOU concept with no more than a linear increase in
the size of φ. The inverse also holds, i.e. anyALCOU concept can be translated into an
L formula without z-variables.

The variables zi are important for our purposes because they serve as arguments of ac-
tions in axioms. Thanks to them, we can consider BATs where actions may have any
number of arguments, thereby increasing expressivity of BATs that can be formulated.
This becomes important when benchmark planning domains (considered as FOL spec-
ifications) have to be represented as our BATs. Notice that L formulas do not always
have equivalent ALCOU concepts; only L formulas without z-variables do have. But
this is exactly what is required for our purposes of regression. The final regressed for-
mula is guaranteed to be z-variable free, since in the projection formula uniform in S
all arguments of actions mentioned in the situation term S must be instantiated with
constants. As a consequence, all z variables become instantiated as well. The Lemma 1
is the reason why we can use the DLALCOU to solve any PP instance in our class P of
BATs. Lemma 1 is proved using the standard translation between DLs and First Order
Logic (FOL); the proof is similar to the proof of Lemma 1 in [4]. Notice that using the
standard translation between FOL and a DL, the formula ∀y.R(t2, y)⊃C(y) translates
as ∀R.C, the formula ∃y.R(t2, y)∧C(y) becomes ∃R.C, and the formulas ∀t1.D(t1),

∃t1.D(t1) can be translated as ∀U.D and ∃U.D, respectively. The latter formulas are
handy for our purposes because in our axioms we need unguarded quantifiers. As an-
other example, a z-free L formula ∃x.(Box(x)∧x 6=B1∧ready(x)), some box distinct
from B1 is ready, can be translated to ALCOU as ∃U.(Box u ¬{B1} u ready), where
B1 is a nominal. Notice that the nominals are handy to translate exceptions.

We proceed to describing how L is used in the BAT, and how it expands the expres-
sivity of the BAT to beyond DLs, while maintaining complexity of deciding the PP in
the range acceptable from a DL perspective. To facilitate understanding of each part of
the BAT, we will use examples from one of our domains, the Logistics domain.

The domain describes objects (boxes or luggage) that can be loaded and unloaded
from vehicles (trucks or airplanes) and transported from one location to another. Trucks
can be driven from one location to another in the same city, while airplanes can fly be-
tween airports (which are locations) in different cities. Let the logical language include:

1. Four action functions: load(obj, vehicle, location), unload(obj, vehicle, location),
drive(truck, locFrom, locTo, city), fly(airplane, locFrom, locTo).

2. Three relational fluents: loaded(obj, vehicle, s), at(x, loc, s), and ready(obj, s)
(where x can be an object or a vehicle).

3. Static unary predicates (i.e. predicates with no situation term) to describe each
type of entity, and one static binary predicate in city(loc, city).

For brevity, let a vector x of object variables denote either x, y, or 〈x, y〉, and let z
denote a vector of place holder variables 〈z1, z2, ...〉.
Action precondition axioms (PAs) DAP : the preconditions that have to hold before an
action can be executed. There is one axiom per action Act(z) of the following form:

(∀z, s). Poss(A(z), s) ≡ ΠA(z, s),

where Poss (derived from ’possible’) is a special binary predicate that occurs on the
left hand side of PAs only, and ΠA is an L formula whose only free variables are the
place holder zi variables. The formula ΠA(z, s) is uniform in s. For example, the PA
for action load(Object, V ehicle, City) is the following:

Poss(load(z1, z2, z1), s) =

(obj(z1) ∧ veh(z2) ∧ loc(z3) ∧ ready(z1, s) ∧ at(z1, z3, s) ∧ at(z2, z3, s))

Definition 1. Let φx and φy be Lx and Ly formulas, respectively, such that they are
uniform in s (φx, φy are called context conditions). Let u be a vector of variables
at most containing z and an optional x variable, v be a vector of variables at most
containing z, and optionally x or y variables. Let Act(u) and Act(v) be action terms,
and a be an action variable. A CC formula has one of the following two forms:

∃z.a = Act(u) ∧ φx(x, z, s) SSA for an unary fluent
∃z.a = Act(v) ∧ φx(x, z, s) ∧ φy(y,z, s) SSA for a binary fluent

Successor state axioms (SSAs) DSS : Define the direct effects and non-effects of ac-
tions. There is one SSA for each fluent F (x, s) of the following syntactic form:

F (x, do(a, s)) ≡ γ+F (x, a, s) ∨ F (x, s) ∧ ¬γ−F (x, a, s), (1)

where each of the γF ’s are disjunctions of CC formulas. For example, the SSA for fluent
loaded is as follows:

loaded(x, y, do(a, s)) =

[∃z1.a = load(x, y, z1) ∧ obj(x) ∧ veh(y) ∧ loc(z1) ∧ ready(x, S) ∧ at(x, z1, s)]
∨ [loaded(x, y, s) ∧ ¬[∃z1.a = unload(x, y, z1)]]

TBox axioms DT :
These are TBox axioms for unary predicates, where the right hand side is an L formula
without z variables. For example:

veh(x) ≡ truck(x) ∨ airplane(x)
loc(x) ≡ street(x) ∨ airport(x)

Initial Theory DS0 : The DS0 is an L sentence without z variables, i.e. it can be trans-
formed into an ALCOU concept. For example:

city(Toronto) ∧ airport(Y Y Z) ∧ in city(Y Y Z, Toronto) ∧ street(Y onge)∧
in city(Y onge, Toronto) ∧ box(B1) ∧ at(B1, Y onge, S0)∧
mail truck(T1) ∧ at(T1, Y onge, S0) ∧ ∀x(obj(x) ⊃ ready(x, S0))∧
box(B2) ∧ (loaded(B2, T1, S0) ∨ ¬∃x(loaded(B2, x, S0) ∧ vehicle(x)))

Finally, a projection query is an L sentence, without z variables, and there is a
ground situation term S representing the action sequence after which the formula should
hold or not. For example, given the above initial theory, the action sequence represented
by situation do(drive(T1, Y onge, Y Y Z, Toronto), S0) is executable and the follow-
ing query answers true:

at(T1, Y Y Z, do(drive(T1, Y onge, Y Y Z, Toronto), S0))

2.2 Regression for Solving the Projection Problem

In the context of BATs and SC, regression is a recursive transformation converting a
formula uniform in situation do(a, s) into a logically equivalent formula uniform in
s (that is one action shorter down the situation term) by making use of the SSAs. A
modified regression operatorR is defined to guide the regression process in our class P
of BATs, and it is defined recursively on formulas of the underlying language at hand,
L in our case. We do not define the modified operator here due to space limitations,
but interested readers can see [4] for more details about regression in a language that
is similar to L (but that is a proper subset of L). The idea is that all static predicates
are not affected by regression, and hence remain the same after the regression operator
is applied. Fluents (“dynamic” predicates) on the other hand are transformed byR. On
each step, the regression operator R replaces each fluent formula uniform in situation
do(a, s) by the right hand side (RHS) of the SSA for the fluent (recall that the CC
formulas on the RHS are uniform in s). Subsequently, regression continues until all
fluents have S0 as the only situation term. Consider the following example query:

loaded(B1, T1, do(load(B1, T1, Y onge), S0))

Also, let the above DS0
be the initial theory against which this query is checked. First,

replace the fluent (with its constant arguments and situation term) by the right hand side
of the SSA, to get:(

∃z1.load(B1, T1, Y onge) = load(B1, T1, z1) ∧ obj(B1) ∧ veh(T1)
∧ loc(z1) ∧ ready(B1, S0) ∧ at(B1, z1, S0)

)
∨(

loaded(B1, T1, S0) ∧ ¬∃z1.load(B1, T1, Y onge) = unload(B1, T1, z1)
)

By applying UNA – similar action names denote the same action and similar constant
names denote the same object in the world – we get a shorter FOL formula:(

∃z1.B1=B1 ∧ T1=T1 ∧ Y onge=z1 ∧ obj(B1) ∧ veh(T1) ∧ loc(z1)∧
ready(B1, S0) ∧ at(B1, z1, S0)

)
∨
(
loaded(B1, T1, S0) ∧ ¬∃z1.false

)
Further simplifications yield the formula, which is the result of one step of regression:(

obj(B1) ∧ veh(T1) ∧ loc(Y onge) ∧ ready(B1, S0) ∧ at(B1, Y onge, S0)
)
∨

loaded(B1, T1, S0)

It is clear that the first disjunct holds given the above DS0
. Hence, the answer to this

projection problem is true.
Note that the resulting formula is uniform in S0. In general, a query whose situa-

tion term mentions n ground actions, requires n consecutive regression steps to bring it
down to situation S0. The benefit of regression is that the final regressed formula is logi-
cally equivalent to the original query, but now we do not need to consider the whole BAT
to answer the query, justDS0 and UNA. Thereby, the projection problem is transformed
from solving whether BAT |= Query to solving whether UNA ∪ DS0 |= R[Query],
where R[Query] is the formula resulting from regression of the query. Since DS0

,
UNA and R[Query] are z-free L formulas, they can be converted into ALCOU con-
cepts, and the above entailment problem can be transformed into the satisfiability prob-
lem of the ALCOU concept (abusing notation) DS0

u UNA u ¬R[Query].

3 Test Case Generation

As a means of representing a PP instance, we used XML to represent each part of the
BAT and designed an XML SCHEMA to characterize the representation. After perform-
ing regression on the query of the PP instance, the input to the reasoner was represented
in OWL Manchester syntax. A PP test case contains a fixed part consisting of the SSAs,
PAs, and TBox axioms for a particular domain, and a varying part consisting of (1) the
initial theory, (2) the query and (3) the action sequence. We obviously need to gener-
ate the variable part. Due to the non-trivial expressivity of the language at hand, it is
hard to generate useful test cases. We looked in the literature and found no precedence
for such an attempt, i.e. generating random projection problem test cases. Planning do-
mains [2] had some test case generation involved, but still on purely propositional level,
so that inconsistencies in input data can be easily avoided. In contrast, generating ran-
dom ALCOU formulas usually yields meaningless queries or initial theories that are

inconsistent. Building formulas from patterns is one step forward towards generating
good test cases, but it suffers from the fact that generated formulas might be similar
and consequently this approach does not provide the extensive coverage that random
formula generation does. We tried mixing patterns with a bit of randomness.

We have 7 domains in our disposal, and we created query generators and action
sequence generators for 4 of them (lack of time is the only obstacle for the other 3).
For every domain, we created a few patterns to guide in creating the query formula
(6-10 per domain). Some of these patterns can take a human input, or can generate
their random input if none given. A pattern for the Logistics domain might for example
describe the question of whether there are any boxes on a truck X in some city Y, where
X and Y is the input to the pattern. The objective is to have as versatile patterns as
possible but keeping them simple because we make use of them in the next step. Next,
we generate a random propositional DNF formula made up of, say n, unique literals.
Then, use the patterns with random input (or guided input if used with action sequence
generators) to generate n atomic queries, and replace every literal in the DNF formula
with one of those queries (we map each of the n literals to a specific atomic query
to avoid propositional inconsistency). The motivation for this approach is that having
randomness at the propositional level is good, but not at the FOL level.

To generate random but executable action sequences, we used patterns again. But
now a pattern is a generic description of a sequence of actions necessary to satisfy a
goal. The pattern is represented by an algorithm that computes an executable sequence
of actions based on the provided pattern. For instance, one action sequence in the Lo-
gistics domain describes the process of gathering all known boxes in a particular city
and transporting them to another city. The choice of the cities is random, and pick-
ing the transportation vehicle is random as well. Basically, the generator extract all the
information it can from the given initial theory, and picks its random input from the
gathered information. Of course, we could have tried picking random actions with ran-
dom ground arguments and check the executability of these actions, but most likely
they would fail to be executable. In fact, picking an executable ground action is related
to conjunctive query answering which is a totally different and nontrivial problem. Be-
sides that, solving the executability problem will incur an expensive running time for
test case generation.

It is important to note that the query and action sequence generators use the initial
theory as input, so that they can generate meaningful queries and executable actions.
One limitation is that only literals are used from the initial theory, assuming the initial
theory is a conjunction containing some literals. This assumption simplifies signifi-
cantly solving the executability problem, because the preconditions of an action can be
easily verified using these literals (again, assuming the preconditions are simple enough
to be verified with the information from the literals, which is true in our case).

Finally, the initial theory (IT) contains both static and dynamic incomplete knowl-
edge. Due to lack of time and the nature of some of our metrics, we decided to manually
create ITs, and did that for only one domain: Logistics. Hence, we did not make use of
the generators for the other 3 domains. We created 55 unique ITs, with number of in-
dividuals per IT varying between 5 and 60 individuals. We built them starting from a
small IT of size 5, and incrementally added an individual to the IT to create the next

bigger IT. This way we have a monotonically ascending order of IT size. This is im-
portant because the projection queries generated from a smaller initial theory can then
be run against a bigger initial theory simply because the preconditions of an action are
satisfied in the bigger IT if they are satisfied in the smaller IT. This way we can better
measure the effect of varying the number of individuals on the same query.

Using the ITs, and the two generators, we were able to generate at least 10 unique
combinations of query + action sequence (QAS) for each IT. And by reusing QASs
from smaller initial theories, we generated a pool of around 12000 test cases.

The next step is to classify the pool of test cases based on several metrics.

3.1 Classification

We use 2 metrics to classify our generated formulas, in an effort to show how the vari-
ation of values in each metric affects the reasoning time in HERMIT. The metrics are:
(a) number of constants in the initial theory, and (b) number of U-role occurrences.
Metric (b) is measured using the initial theory and the regressed query formula com-
bined, while metric (a) can be measured using the initial theory DS0 only because DS0

(together with UNA) defines all the individuals allowed in a PP instance. Neither the
query nor regression can add new individuals to the domain, and the query and action
sequence would use individuals mentioned in the initial theory.

The number of individuals in the domain is an interesting factor because in practice
it would be useful to know the effect of adding more individuals on the run time of
answering a projection query. Note that the regression of a QAS is the same regardless
of the IT, but the ITs are increasing in size in each test case, which enables us to see the
direct affect of having more individuals in a domain. For this metric, we create groups
of test cases, such that each group has a single query common to all test cases, and the
number of individuals in the initial theory of each test case increases monotonically.

We picked the second metric, number of U-role occurrences, because we noticed
that even test cases that have few occurrences of U-roles slow down solving SAT for
a concept. Out of curiosity, we also tried to replace all occurrences of U-roles with
some ordinary role R (we know semantics drastically change), and the reasoning time
dropped by a factor of 10 or more.

There could be other possible metrics, such as the number of disjunctions, or the
depth of propositional connectives, or the depth of quantifiers in the formula, but we
didn’t use them due to lack of time.

One last observation we made, is that the initial theory in L usually contains a
lot of assertive formulas, i.e. of the form A(c) and R(c, b) for some unary predicate
A, binary predicate R, and constants/individuals c and b. For instance, in the Logistics
example above, we have formulas such as city(Toronto) and at(Mt1,Main, S0), and
they appear as conjuncts in the initial theory DS0 . Note that these assertive formulas
can be fluents, not just static predicates. Instead of representing these formulas from
the initial theory as an ALCOU concept, we may represent them as concept and role
assertions in the test case. While doing this, we may expect speed-up in reasoning time
as this is the more natural way of representing this sort of information in OWL. For
this reason, we created yet another set of test cases which are ABox’ed versions of the
original set of test cases. We call a test case ABoxed if it represents its initial theory as

OWL assertions. Note that this representation does not leave the initial theory empty,
but only shortens it by removing those assertive formulas from it, and keeping the other
formulas untouched. In the next section, we deal with these two sets of test cases, where
SAT test cases are the regular test cases where the initial theory is represented as a
complex ALCOU concept with all assertive formulas included. Finally, to get UNA in
OWL2 we declare all individuals to be pairwise different (using the OWL2 construct
differentIndividuals).

4 Results

For all testing we used a machine with the following specs: Intel R©CoreTM 2 Duo E8400
CPU with a clock frequency of 3.00 GHz, and 4 GB of RAM. We used JVM version
1.7.0 and HermiT 1.3.6. We used a cutoff time of 30 sec. All results and test-cases can
be found at: http://www.cse.yorku.ca/˜w2yehia/ORE_results.html

4.1 Number of Constants

We already explained how we measure this metric, and how our choice and construction
of ITs is suitable for the purpose of testing this metric. In the two graphs below, we show
the reasoning time taken by HERMIT as a function of the number of individuals in the
initial theory.

Fig. 1.

The left graph shows the running time of ABoxed test cases, and the right graph
shows the regular non-ABoxed test cases. We chose to graph the part of our testing
results where all test cases in a group finished in under the 30 seconds cutoff time.
The groups of test cases shown below are labeled with the prefix ’ABoxed’ and ’SAT’,
followed by the individual count in the initial theory that spawned the QAS for that
particular group, and the last number is just an index of the QAS for the particular
individual count.

4.2 Number of U -role Occurrences

For this metric, we counted the number of U-role occurrences in a test case (tc). Then,
we grouped the test cases into sets, with a range of allowed number of U-role occur-
rences per set. For better granularity, the ranges are narrow for small number of U-roles,
and widen as the number grows. Table 1 shows the ranges that we used in the first col-
umn, the number of test cases tested for that range (some ranges had > 1000 test cases,
so we picked the first 100 for each range) in the second column, and the number of test
cases that was answered in under 30 sec in the third. The fourth column simply shows
the success rate for that range. The next three columns show the same as the previous
three but for ABoxed test cases.

Table 1. Testing Results based on U-role number of occurrences

of # of # of success # of # of success
U-role SAT tcs successful rate ABoxed tcs successful rate
occur. tested SAT tcs (%) tested ABoxed tcs (%)

0-5 0 0 - 100 98 98
6-10 0 0 - 100 89 89
11-15 10 10 100 100 60 60
16-20 25 25 100 100 67 67
21-25 57 57 100 100 13 13
26-30 100 100 100 100 33 33
31-35 100 100 100 80 31 39
36-40 100 100 100 100 82 82
41-50 100 99 99 100 44 44

It is important to note that for all test cases, doing regression alone takes in most
cases 1 second or less, and at most 2 seconds. Thus, most of the time spent on solving
a PP is in HERMIT.

5 Discussion and Future Work

For the number of constants in the initial theory, it is clear that ABoxed test cases are
less affected by the increase in individual count as compared to the non-ABoxed test
cases. This shows that ABox-ing an initial theory is the more efficient way of represen-
tation when it comes to HERMIT.

For the number of U-role occurrences, we believe that the reason why ABoxed test-
cases seem to run much slower on average (lower success rate), is because of the way
we translate an assertion into a concept - we use U-roles. So, the ABoxed version will
contain less U-roles coming from the initial theory, than the regular version, simply
because the assertions turned into concepts using U-roles in the regular version, be-
come OWL assertions in the ABoxed version. As a consequence, the remaining U-roles
come from the regressed formula so that the total number of U-roles is same (recall the
number of U-role occurrences is counted both in the initial theory and in the regressed
formula). For example, if a test-case had 10 U-roles coming from the initial theory and
5 U-roles from the regressed formula, then the ABoxed version will contain 5 U-roles
only, because the initial theory U-roles disappear as a result of ABoxing, but SAT (non-
ABoxed) version will contain 15 (5+10) U-roles. This means that you cannot compare
directly a SAT test-case with n occurrences of U-roles to an ABoxed test-case with n
occurrences of U-roles because they represent different test-cases. You should expect
that the ABoxed one will run slower because it has a bigger regressed formula to handle
(this is where the extra U-roles come from).

Finally, the long reasoning time in HERMIT can be attributed to either (a) inefficient
representation of the regression formula when outputted by our regression program, or
(b) slow performance of HERMIT when it comes to dealing with U-roles.

Future work: We started with 7 domains, and wrote generators for 4 of them, and
manually created initial theories for one domain. So there is some work left to be done,
at least to make use of the generators for the 3 domains. We only managed to measure
the performance of HERMIT, but the generated test cases are in Manchester syntax, and
any reasoner using OWL API can run those test cases. We mentioned already that more
metrics can be measured, and the effects of ABox’ing can be studied in more details.

References

1. Baader, F., Lippmann, M., Liu, H., Soutchanski, M., Yehia, W.: Experimental Results on
Solving the Projection Problem in Action Formalisms Based on Description Logics. In: De-
scription Logics W/sh DL-2012 (Accepted). (2012)

2. Bacchus, F.: The AIPS ’00 planning competition. AI Magazine 22(3) (2001) 47–56
3. Devanbu, P.T., Litman, D.J.: Taxonomic plan reasoning. Artif. Intell. 84(1-2) (1996) 1–35
4. Gu, Y., Soutchanski, M.: A Description Logic Based Situation Calculus. Ann. Math. Artif.

Intell. 58(1-2) (2010) 3–83
5. Kudashkina, E.: An Empirical Evaluation of the Practical Logical Action Theory (Undergrad-

uate Thesis CPS40A/B, Fall 2010 - Winter 2011). Department of Computer Science, Ryerson
University, Toronto, Ontario, Canada (2011)

6. McDermott, D.V.: The 1998 AI Planning Systems Competition. AI Magazine 21(2) (2000)
35–55

7. Reiter, R.: The projection problem in the situation calculus: A soundness and completeness
result, with an application to database updates. In: In Proceedings First International Confer-
ence on AI Planning Systems, Morgan Kaufmann (1992) 198–203

8. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing Dy-
namical Systems. The MIT Press (2001)

9. Yehia, W., Soutchanski, M.: Towards an Expressive Logical Action Theory. In: Proc. of the
25th Intern. Workshop on Description Logics (DL-2012), Rome, Italy (2012) to appear

