
Evaluating Reasoners Under Realistic Semantic
Web Conditions

Yingjie Li, Yang Yu and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

{yil308, yay208, heflin}@cse.lehigh.edu

Abstract. Evaluating the performance of OWL Reasoners on ontolo-
gies is an ongoing challenge. LUBM and UOBM are benchmarks to
evaluate Reasoners by using a single ontology. They cannot effectively
evaluate systems intended for multi-ontology applications with ontology
mappings, nor can they evaluate OWL 2 applications and generate data
approximating realistic Semantic Web conditions. In this paper we ex-
tend our ongoing work on creating a benchmark that can generate user-
customized ontologies together with related mappings and data sources.
In particular, we have collected statistics from real world ontologies and
used these to parameterize the benchmark to produce more realistic syn-
thetic ontologies under controlled conditions. The benchmark supports
both OWL and OWL 2 and applies a data-driven query generation al-
gorithm that can generate diverse queries with at least one answer. We
present the results of initial experiments using Pellet, HermiT, OWLIM
and DLDB3. Then, we show the approximation of our synthetic data set
to real semantic data.

Keywords: Benchmark, Ontology generation, Query generation

1 Introduction

Various semantic applications based on ontologies have been developed in re-
cent years. They differ in the ontology expressivity such as RDF, OWL, OWL
2 or some fragment of these languages or the number of ontologies such as
single-ontology systems or multi-ontology federated systems. One of the major
obstacles for these system developers is that they cannot easily find a real world
experimental data set to evaluate their systems in terms of the ontology ex-
pressivity, the number of ontologies and data sources, the ontology mappings
and so on. In order to bridge this gap, LUBM [5] and UOBM [9] were devel-
oped to evaluate Semantic Web knowledge base systems (KBSs) by using a
single domain ontology. But they cannot effectively evaluate systems intended
for multi-ontology applications with ontology mappings, nor can they evaluate
OWL 2 applications and generate data approximating realistic Semantic Web
conditions. To solve these problems, we extend our early work [8] on creating a
benchmark that can generate user-customized ontologies together with related

2 Y. Li, Y. Yu and J. Heflin

mappings and data sources. In particular, we have collected statistics from real
world ontologies and data sources and used these to parameterize the benchmark
to produce realistic synthetic ontologies under controlled conditions. Unlike our
previous work, this benchmark allows us to speculate about different visions of
the future Semantic Web and examine how current systems will perform in these
contrasting scenarios. Although Linking Open Data and Billion Triple Challenge
data is frequently used to test scalable systems on real data, these sources typ-
ically have weak ontologies and little ontology integration (i.e., few OWL and
OWL 2 axioms). The benchmark can be also used to speculate about similar
sized (or larger) scenarios where there are more expressive ontologies and richer
mappings.

Based on our previous work [8], in this paper, we first extend the two-level
customization model including the web profile (to customize the distribution
of different types of desired ontologies) and the ontology profile (to customize
the relative frequency of various ontology constructors in each desired ontol-
ogy) to support any sublanguage of both OWL and OWL 2 by taking OWL 2
constructors as our constructor seeds instead of OWL constructors. Then, we
demonstrate that our benchmark can be used to evaluate OWL/OWL 2 reason-
ers such as Pellet [12], HermiT [10], OWLIM [7] and DLDB3 [11]. Finally, we
show how well our synthetic data approximates real semantic data, specifically
using the Semantic Web Dog Food corpus.

The remainder of the paper is organized as follows: Section 2 reviews the
related work. Section 3 describes the benchmark algorithms. Section 4 presents
the experiments. Finally, in Section 5, we conclude and discuss future work.

2 Related Work

The LUBM [5] is an example of a benchmark for Semantic Web knowledge base
systems with respect to large OWL applications. It makes use of a university
domain workload for evaluating systems with different reasoning capabilities and
storage mechanisms. L. Ma et al. [9] extended the LUBM to make another bench-
mark - UOBM so that OWL Lite and OWL DL can be supported. However, both
of them use a single domain/ontology and did not consider the ontology mapping
requirements that are used to integrate distributed domain ontologies in the real
Semantic Web. In addition, they do not allow users to customize requirements
for their individual evaluation purposes. S. Bail et al. proposed a framework
for OWL benchmarking called JustBench [1], which presents an approach to
analyzing the behavior of reasoners by focusing on justifications of entailments
through selecting minimal entailing subsets of an ontology. However, JustBench
only focuses on the ontology TBoxes and does not consider the ABoxes (data
sources) and the TBox mappings. C. Bizer et al. proposed a Berlin SPARQL
Benchmark (BSBM) for comparing the SPARQL query performance of native
RDF stores with the performance of SPARQL-to-SQL rewriters [2]. This bench-
mark aims to assist application developers in choosing the right architecture and
the right storage system for their requirements. However, the BSBM can only

Evaluating Reasoners Under Realistic Semantic Web Conditions 3

output benchmark data in an RDF representation and a purely relational repre-
sentation and does not support users’ customizations on OWL and OWL 2 for
different applications. I. Horrocks and P. Schneider [6] proposed a benchmark
suite comprising four kinds of tests: concept satisfiability tests, artificial TBox
classification tests, realistic TBox classification tests and synthetic ABox tests.
However, this approach neither creates OWL ontologies and SPARQL queries
nor ontology mappings, and only focuses on a single ontology at a time. Also, it
did not consider users’ customizability requirements.

3 The Benchmark Algorithms

In this section, we first introduce our extended two-level customization model
consisting of a web profile and several ontology profiles for users to customize
ontologies, then briefly describe the axiom construction and data source gen-
eration, and finally give an introduction to the data-driven query generation
algorithm.

3.1 The Extended Two-level Customization Model

In order to support both OWL and OWL 2, our extended two-level customization
model chooses the set of OWL 2 DL constructors as our constructor seeds and
is designed to be flexible in expressivity by allowing users to customize these
constructors in range of OWL 2 DL. Similar to our previous work [8], we still
use ontology profiles to allow users to customize the relative frequency of various
ontology constructors in the generated ontologies and web profile to allow users
to customize the distribution of different types of ontologies. However, in this
paper, besides user customized ontology profile, our extended benchmark can
also automatically collect statistics of Table 1 listed types of axioms from real
world ontologies and use them to parmeterize our ontology profile in order to
generate realistic synthetic ontologies.

Compared to OWL, OWL 2 offers new constructors for expressing additional
restrictions on properties such as property self restriction, new characteristics of
properties such as data property cardinality, property chains such as property
chain inclusions and keys such as property key. OWL 2 also provides new data
type capabilities such as data intersection, data union, etc. In order to support
these new additions in OWL 2, we categorized all OWL 2 DL constructors into
five groups: axiom types, class constructors, object property constructors, data
type property constructors and data type constructors. Since the data type prop-
erty constructors contain one and only one constructor (DatatypeProperty), in
each ontology profile, we let users fill in four tables with their individual config-
urations: the axiom type (AT) table, the class table (CT), the object property
constructor table (OPT) and the datatype constructor table (DTT). The new
constructor table is shown in Table 1. Compared to the old one in [8], the new ta-
ble extends AT with constructors of disjointUnionOf , ReflexiveProperty, etc.
and CT with constructors of dataAllV aluesFromRestriction, dataSomeV alues

4 Y. Li, Y. Yu and J. Heflin

FromRestriction, etc. The new DTT contains data constructors such as dataCo
mplementOf , dataUnionOf , etc. As a result, Table 1 contains eleven types of
operands in total: class type (C), named class type (NC), object property type
(OP), datatype property type (DP), instance type (I), named object property
(NOP), named datatype property (NDP), which is not listed in the table be-
cause it is only for DatatypeProperty, facet type (F), data type (D), a literal
(L) and an integer number (INT). The C means the operand is either an atomic
named class or a complex sub-tree that has a class constructor as its root. The
NC means the operand is a named class. The OP , DP means the operand can
be one of constructors listed in the table of object property and a datatype
property, respectively. The NOP , NDP means the operand is not a complex
constructor but a named object property or a named datatype property respec-
tively. The I means the operand can be a single instance. The F is the facet
type borrowed from XML Schema Datatypes. The D is the data type. The L is
a literal. The INT stands for an integer number for the cardinality restriction.
In these types, NC, NOP , NDP , F , I, L and INT are leaf node types.

In Table 1, {x} stands for a set of instances, whose cardinality is set by
a uniform distribution. For cardinality constructors such as minCardinality,
maxCardinality, Cardinality, minQualifiedCardinality, maxQualifiedCard
inality, qualifiedCardinality, since the involved integer value should be posi-
tive and 1 is the most common value in the real world, we apply the Gaussian
distribution with mean being 1, standard deviation being 0.5 (based on our
experiences) and each generated value required to be greater than or equal to 1.

Table 1. Axiom type constructors, class constructors and property constructors.

Axiom Type Constructor Class Constructor

Constructors DL Syntax Op1 Op2 Op3 Constructors DL Syntax Op1 Op2 Op3

rdfs:subClassOf C1 ⊑ C2 C C allValuesFrom ∀P.C OP C
rdfs:subPropertyOf P1 ⊑ P2 OP OP someValuesFrom ∃P.C OP C

equivalentClass C1 ≡ C2 C C intersectionOf C1 ⊓ C2 C C
equivalentProperty P1 ≡ P2 OP OP one of {x1,...,x2} {I}

disjointWith C1 ⊑ ¬C2 C C unionOf C1 ⊔ C2 C C

TransitiveProperty P+ ⊑ P NOP complementOf ¬C C

SymmetricProperty P≡(P−) NOP minCardinality ≥ nP OP INT

FunctionalProperty T ⊑ ≤1P+ NOP maxCardinality ≤ nP OP INT
InverseFunctionalP. T ⊑ ≤1P NOP Cardinality = nP OP INT

rdfs:domain ≥1P ⊑C NOP,DP NC hasValue ∃ P.{x} OP I
rdfs:range T ⊑ ∀U.D NOP,DP NC,D namedClass

disjointUnionOf C {C} dataAllValuesFromR. DP D
ReflexiveProperty NOP dataSomeValuesFromR. DP D
IrreflexiveProperty NOP minQualifiedCardinality OP,DP INT C,D

AsymmetricProperty NOP maxQualifiedCardinality OP,DP INT C,D
propertyDisjointWith OP,DP OP,DP qualifiedCardinality OP,DP INT C,D
propertyChainAxiom NOP NOP NOP dataHasValue DP L

hasKey C {C} hasSelf OP TRUE

Object Property Constructor Datatype Constructor

inverseOf P− OP dataComplementOf D
namedProperty dataUnionOf D D

xsdDatatype
namedDatatype F

dataIntersectionOf D D
dataOneOf L

A sample input of the new ontology profiles and web profile is shown in
Fig.1. In this sample input, the web profile contains eight ontology profiles:
RDFS, OWL Lite, OWL DL, Description Horn Logic (DHL), OWL 2 EL, OWL

Evaluating Reasoners Under Realistic Semantic Web Conditions 5

OWL2QL SWRC DHL

RDFS 0.2 OWL Lite 0.1 OWL DL 0.2

DHL 0.1 OWL 2 EL 0.1 OWL 2 RL 0.1

OWL2QL 0.1 SWRC 0.1

subClassOf 0.4

subPropertyOf0.1

……
allValuesFrom 0.0

intersectionOf 0.0

……
namedProperty 1

inverseOf 0

subClassOf 0.3

subPropertyOf 0.1

……
allValuesFrom 0.2 0.5

complementOf 0.1 0.1

……
namedProperty 0.9

inverseOf 0.1

subClassOf 0.08

subPropertyOf 0.0

……
allValuesFrom

Restriction 0.6

……
namedProperty 0.0

inverseOf 0.007

……

Ontology

Profiles
……

subPropertyOf 0.2

PropertyDisjointWith 0.1

……
dataSomeValuesFromRes

triction 0.2

intersectionOf 0.1

……
dataIntersectionOf 0.1

namedDatatype 0.1

Web

Profile

……

RDFS

Fig. 1. Two-level customization model.

2 RL, OWL 2 QL and SWRC (Semantic Web Dog Food). Their distribution
probabilities are set to be 0.2, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1 and 0.1 respectively.
This configuration means that in our final generated ontologies, 20% ontologies
use RDFS, 10% ontologies use OWL Lite, 20% ontologies use OWL DL, 10% use
DHL, 10% use each of the three OWL 2 profiles and 10% use SWRC ontology.
For each ontology profile, the distributions of different ontology constructors
used in the generated ontology are displayed. Each cell in the input tables is a
number between 0 and 1 inclusive, which means the percentage of this construc-
tor appearing in a generated ontology. Note, the SWRC profile is learned from
the statistics of the real SWRC ontology instead of user customization. Also, in
ontology languages such as DHL, an axiom has different restrictions on its left
hand side (LHS) and right hand side (RHS). To support this, users can specify
two probabilities for a constructor, as shown in the DHL profile of Fig. 1.

3.2 Axiom Construction and Data Source Generation

Since each ontological axiom can be seen as a parse tree with the elements in
the axiom as tree nodes, the table AT actually contains those elements that can
be used as the root. The tables CT , OPT and DTT provide constructors that
can be used to create class, object property and datatype property expressions
respectively as non-root nodes. From this perspective, the axiom construction
can be seen a parse tree construction. During this process, the web profile is first
used to select the configured ontology profile(s). Second, we use the distribution
in the selected ontology profile to randomly select one constructor from AT
table as the root node. Then, according to operand type of the selected root
constructor, we use the CT , OPT or DTT tables to randomly select one class,
one object property or one data type constructor to generate our ontological
axioms. This process is repeated until either each branch of the tree ends with a
leaf node type or the depth of the parse tree exceeds the given depth threshold.
For ontology mappings, since each mapping is essentially an axiom, we apply
the same procedure. Thus, the mapping ontologies have the same expressivity
as the domain ontologies. Besides, we also need to consider the linking strategy
of different ontologies, which is described in detail in our previous work [3].

6 Y. Li, Y. Yu and J. Heflin

For every domain ontology, we generate a specified number of data sources.
In our configuration, this number can be set by the benchmark users according
to their individual needs. For every source, a particular number of classes and
properties are used for creating triples. They can be also controlled by specifying
the relevant parameters in our configuration. To determine how many triples each
source should have, we collected statistics from 200 randomly selected real-world
Semantic Web documents. Since we found that the average number of triples in
each result document is around 54.0 with a standard deviation of 163.9, we set
the average number of triples in a generated source to be 50 by using a Gaussian
distribution with mean 50 and standard deviation 165. In addition, based on
our statistics of the ratio between the number of different URIs and the number
of data sources in the Hawkeye knowledge base [4], we set the total number of
different URIs in the synthetic data set to equal to the number of data sources
times a factor around 2 in order to avoid the instance saturation during the source
generation. In order to make the synthetic data set much closer to real world
data, we ensure that each source is a connected graph, which more accurately
reflects most real-world RDF files. To achieve this point, in our implementation,
those instances that have already been used in the current source are chosen to
generate new triples with higher priority.

In our benchmark, we also generate some owl:sameAs triples. Based on our
Sindice statistics of randomly issuing one term query and took the top 1000 re-
turned sources as samples, we found 27.1% of them contain owl:sameAs state-
ments. Thus, our benchmark generates owl:sameAs triples in a ratio of 27.1%
of the total number of triples. Furthermore, for each instance involved into the
owl:sameAs triple, according to our experiences, we take a probability of 0.1
to select it from the set of all generated instances in the whole data set and a
probability of 0.9 to select it from the set of all generated instances in the cur-
rent source. As a result, all of owl:sameAs triples in our data set are categorized
into different equivalence classes. Each equivalence class is defined to be a set of
instances that are equivalent to each other (explicitly or implicitly connected by
owl:sameAs). The average cardinality of the equivalence class is around 3.7.

3.3 Data-driven Query Generation Algorithm

It is well-known that the RDF data format is by its very nature a graph. There-
fore, a given semantic web knowledge base (KB) can be essentially modeled as
one big possibly disconnected graph. On the other hand, each SPARQL query
is basically a subgraph and in order to guarantee each query has at least one
answer, our SPARQL queries can be generated from the subgraphs over the big
KB graph. Therefore, we proposed a data-driven query generation algorithm in
our work [8]. Here, we only summarize this algorithm in order to make the paper
complete.

According to the algorithm, we first identify a subgraph meeting the initial
query configuration from the big KB graph. Within the identified subgraph,
we randomly select one node as the starting node to construct a query pattern
graph (QPG). Begin with the starting node, we randomly select one edge that

Evaluating Reasoners Under Realistic Semantic Web Conditions 7

is starting with the starting node and not contained in QPG and then add
this edge into QPG. If the selected edge is already in QPG, we need to select
another edge that is not selected before. Then, we replace the ending node of
the newly added edge with a new variable in the probability P . Currently, the
default value of P is set 0.5. This process is iterated until the QPG qualifies
the initial query configuration. By this step, we have successfully constructed
one QPG. Then, we need to check if each edge in QPG contains at least one
variable. If not, we randomly replace one node of the edge without variable nodes
with a new variable. Based on the variable-assigned QPG, a SPARQL query can
be generated and returned. Note, if the junction node of QPG is replaced by
a query variable, this variable is counted as a join variable. For more details,
please read our paper [8].

4 Evaluation

In order to demonstrate how our benchmark can be used to evaluate very dif-
ferent semantic reasoners, in this section, we describe two group of experiments.
The first is to use our benchmark to evaluate four representative semantic rea-
soners: Pellet [12], HermiT [10], OWLIM [7] and DLDB3 [11]. The second is to
show the approximation of our synthetic data set to real semantic data under the
control of collected statistics from real world ontologies. For each experiment in
each group, we issued 100 random queries, which are grouped by the number of
QTPs that ranges from one to ten. Each group has ten queries. Each query has
at most twenty query variables. Each QTP of each query satisfies the join condi-
tion with at least one sibling QTP. We denote an experimental configuration as
follows: (nO-nD-Ont), where nO is the number of ontologies, nD is the number
of data sources and Ont is the ontology profile type. In order to eliminate the
outlier results, we applied the probabilistic statement of Chebyshev’s inequality:
Pr(|X − µ| ≥ kσ) ≤ 1

k2 , where X stands for a random variable, µ stands for
the mean, σ stands for the standard deviation and k = 3, which counts at most
10% of each group of metric values as outliers. We applied this inequation to
all metrics and for each system, any value that did not satisfy the inequation
would be thrown out. The reason is that these outliers will greatly distort our
experimental statistics. All our experiments are done on a workstation with a
Xeon 2.93G CPU and 6G memory running UNIX.

4.1 Reasoner Evaluation

In this experiment, we want to evaluate our benchmark in various OWL and
OWL 2 reasoners. In selecting the reasoners, first we decided to consider only
noncommercial systems or free versions of those commercial ones. Moreover, we
did not intend to carry out a comprehensive evaluation of all existing semantic
reasoners and our selected ones should cover OWL and OWL 2. In addition, we
also believe a practical semantic reasoner must be able to read OWL/OWL 2 files
and provide programming APIs for loading data and issuing queries. As a result,

8 Y. Li, Y. Yu and J. Heflin

we have settled on four different reasoners including Pellet 2.2.2, HermiT 1.3.4,
SwiftOWLIM and DLDB3. Except DLDB3, all candidate systems are from the
W3C OWL 2 implementation system website 1. Other candidate systems such as
FaCT++, CEL, ELLY, QuOnto and Quil, we rejected due to difficulties in ob-
taining functions executable for the Unix platform. Our experiments are grouped
by the three W3C recommended OWL 2 profiles: OWL 2 EL, RL and QL because
we wanted to investigate the physical (as opposed to theoretical) consequences of
these profiles. We computed the query response time, the source loading time and
the query completeness respectively for each test system. Since Pellet is complete
for all OWL 2 profiles and able to complete all our experiments, we chose Pellet
results as our completeness ground truth. The query completeness is defined to

be
of answers returned by each test system for all tested queries

of answers returned by Pellet for all tested queries
. All experi-

mental results are shown in Fig.2. Note, in Fig.2 (b), (d) and (f), the HermiT
curve is hiding behind the Pellet because their performances are very close.

OWL 2 EL OWL 2 EL is intended for applications that have ontologies that
contain very large numbers of properties and/or classes. It captures the expres-
sive power used by many such ontologies. Therefore, in this experiment, we
evaluate the target systems by varying the number of ontologies but keeping
the data sources constant at 500. Fig.2(a) and Fig.2(b) show how each system’s
query response time and loading time are affected by increasing the number
of ontologies in OWL 2 EL. From these results, we can see that OWLIM per-
forms best in both query response time and loading time. DLDB3 suffers from
the worst loading time because it uses a persistent database backend, while the
other three systems are in-memory. Pellet has better query response time than
Hermit but performs very close to HermiT in loading time. Pellet and HermiT
are complete, but DLDB3 and OWLIM are incomplete with 21.97% and 40.5%
completeness on average respectively. The reason is that DLDB3 is only a limited
OWL reasoner and does not support OWL 2, while OWLIM is only complete
for OWL 2 RL and QL and incomplete for OWL 2 EL. Of the four systems,
Pellet appears to be the best choice for EL. Although OWLIM is the fastest, it
is significantly lacking in completeness.

OWL 2 QL OWL 2 QL focuses on applications that use very large volumes
of instance data, and where query answering is the most important reasoning
task. In this experiment, we evaluate the target systems by varying the number
of data sources with the constant number of 5 ontologies. Fig.2(c) and Fig.2(d)
show how each system’s query response time and loading time are affected by
increasing the number of data sources in OWL 2 QL. In both query response time
and loading time, OWLIM performs best, while HermiT is worst. In particular,
HermiT cannot scale to points of 5-5000-QL and 5-10000-QL because of an out
of memory error but OWLIM, Pellet and DLDB3 can. Starting from point of
5-5000-QL, the loading time of Pellet performs worse than DLDB3 even though

1 http://www.w3.org/2007/OWL/wiki/Implementations

Evaluating Reasoners Under Realistic Semantic Web Conditions 9

DLDB3 uses secondary storage. We think the reason is that Pellet is in-memory
and when the number of loaded data sources increases to some number (5000 in
our experiment), it requires more memory to do the consistency checking during
its loading period than the memory we have provided (6GB). OWLIM, Pellet
and HermiT (in the first three points) are complete. DLDB3 is incomplete with
68.81% completeness on average, but it is better than it did on OWL 2 EL. In
summary, of the four systems, OWLIM appears to be the best choice for OWL
2 QL. DLDB3 is an alternative for large scales where some incompleteness is
tolerable.

OWL 2 RL OWL 2 RL is aimed at applications that require scalable reasoning
without sacrificing too much expressive power. It is designed to accommodate
OWL 2 applications that can trade the full expressivity of the language for effi-
ciency. Therefore, in this experiment, we evaluate the target systems by varying
both the number of ontologies and the number of data sources. Fig.2(e) and
Fig.2(f) show how each system’s query response time and loading time are af-
fected by increasing the number of ontologies and the number of data sources.
As shown by the results, OWLIM still performs best in the query response time
and loading time. HermiT suffers from the worst performance and cannot scale
to points of 10-2000-RL and 15-3000-RL. As was the case to OWL 2 QL, Pellet
starts to have worse loading time than DLDB3 from the point of 10-2000-RL
because it requires more memory. OWLIM, Pellet and HermiT are complete, but
DLDB3 is still incomplete with 44.96% completeness on average. In summary,
OWLIM appears to be the clear winner for OWL 2 RL.

4.2 Approximation Evaluation

Constructors Percentage Constructors Percentage

rdfs:subClassOf 8.13% complementOf 8.98%

TransitiveProperty 0.17% intersectionOf 8.98%

rdfs:domain 1.93% unionOf 8.98%

rdfs:range 1.85% namedClass 1.51%

oneOf 1.09% allValuesFromRestriction 57.71%

inverseOf 0.67%

Table 2. SWRC ontology constructor statistics.

In this experiment, we evaluate how approximate our synthetic data set is
to real semantic data. We have chosen Semantic Web Dog Food (SWRC) cor-
pus 2 as our real semantic data set. Since the downloaded SWRC data is in

2 http://data.semanticweb.org/dumps/

10 Y. Li, Y. Yu and J. Heflin

(a)

(b)

1

10

100

1000

10000

100000

Lo
a

d
in

g
 t

im
e

 i
n

 l
o

g
a

ri
th

m
ic

(m
s)

Configurations

HermiT

Pellet

DLDB3

OWLIM

0

5

10

15

20

25

30

35

40

5-500-EL 10-500-EL 15-500-EL

Lo
a

d
in

g
 t

im
e

(m
s)

Configurations

HermiT

Pellet

DLDB3

OWLIM

1

10

100

1000

10000

100000

5-500-EL 10-500-EL 15-500-EL

Q
u

e
ry

 r
e

sp
o

n
se

 t
im

e
 i

n

lo
g

a
ri

th
m

ic
(m

s)

Configurations

(c)

(e)

1

10

100

1000

10000

100000

Q
u

e
ry

 r
e

sp
o

n
se

t
ti

m
e

 i
n

lo
g

a
ri

th
m

ic
(m

s)

Configurations

(d)

(b)

(f)

1

10

100

1000

10000

100000

Q
u

e
ry

 r
e

sp
o

n
se

 t
im

e
 i

n

lo
g

a
ri

th
m

ic
(m

s)

Configurations

0

100

200

300

400

500

Lo
a

d
in

g
 t

im
e

(m
s)

Configurations

HermiT

Pellet

DLDB3

OWLIM

Fig. 2. Query response time and loading time of OWL 2 EL, QL and RL.

Evaluating Reasoners Under Realistic Semantic Web Conditions 11

dump, in order to make it meet our experimental setup, we partitioned it into
different subsets using the number of triples of each test configuration (50 ×
nD in each configuration). In addition, we collected the statistics of the num-
ber of each type of ontological axiom shown in Table 1 in the SWRC ontology
and used them to parameterize the benchmark to produce realistic synthetic on-
tologies. For each test configuration, we use the learned SWRC ontology profile
to generate five SWRC-like domain ontologies together with their corresponding
ontology mappings. The SWRC ontology constructor statistics is shown in Table
2. We evaluate Pellet and OWLIM because both systems are memory-based and
two representatives of applying two different well-known reasoning algorithms:
tableau and rule-based. We compute the average query response time for each
configuration. As shown in Fig. 3, although Pellet is slightly faster on benchmark
data than on real data, and OWLIM is slightly slower on the benchmark data,
each maintains the same trend on the benchmark that it had with the original
data. Although more experiments are needed to draw significant conclusions,
this suggests that our benchmark may be able to generate synthetic datasets
that are representative enough for users to evaluate their systems or reasoners
instead of using the real semantic data, which cannot be easily customized and
has little ontology integration.

400

450

500

550

600

650

700

750

800

850

1 2 3 4 5 6 7 8

Q
u

e
ry

 r
e

sp
o

n
se

 t
im

e
 (

m
s)

Configurations
SWRC (Pellet) Benchmark (Pellet) SWRC (OWLIM) Benchmark (OWLIM)

5-500-swrc 5-1000-swrc 5-2000-swrc 5-4000-swrc

Fig. 3. Query response time of Benchmark and SWRC.

5 Conclusions and Future Work

We extend our early work [8] on creating a benchmark that can generate user-
customized ontologies together with related mappings and data sources. It sup-
ports both OWL and OWL 2. It can also generate diverse conjunctive queries
with at least one answer. Our experiments have demonstrated that this bench-
mark can effectively evaluate semantic reasoners by generating realistic synthetic
semantic data. In particular, we have collected statistics from real world ontolo-
gies and used these to parameterize the benchmark to produce more realistic

12 Y. Li, Y. Yu and J. Heflin

synthetic ontologies under controlled conditions. According to our evaluation,
OWLIM has the best performance and is complete for OWL 2 QL, RL and
SWRC. Pellet has better performance than HermiT in all experimental settings.
HermiT has the worst scalability in OWL 2 QL and RL because of high memory
consumption. DLDB3 is incomplete in all OWL 2 profiles because it is designed
for an OWL fragment reasoner, but it shows better performance in query re-
sponse time than Pellet and HermiT.

However, there is still significant room for improvement. First, we need to
consider to collect statistics of semantic data besides the ontology schemas. One
way to do so is to find the different RDF graph patterns implied by the real
semantic data and use these to guide our data generation. Second, in the ap-
proximation evaluation, we need to evaluate our benchmark using more data
sets with different characteristics from SWRC. It should be also pointed out
that we believe that the performance of any given system will vary depend on
the structure of the ontology and data used to evaluate it. Thus our benchmark
does not provide the final say on each system’s characteristics. However, it allows
developers to automate a series of experiments that give a good picture of how
system performs under the general parameters of a given scenario.

References

1. S. Bail, B. Parsia, and U. Sattler. JustBench: A framework for owl benchmarking.
In International Semantic Web Conference (1), pages 32–47, 2010.

2. C. Bizer and A. Schultz. The berlin SPARQL benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1–24, 2009.

3. A. Chitnis, A. Qasem, and J. Heflin. Benchmarking reasoners for multi-ontology
applications. In EON, pages 21–30, 2007.

4. Z. P. et al. Hawkeye: A practical large scale demonstration of semantic web inte-
gration. Technical Report LU-CSE-07-006, Lehigh University, 2007.

5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for owl knowledge base
systems. J. Web Sem., 3(2-3):158–182, 2005.

6. I. Horrocks and P. F. Patel-Schneider. Dl systems comparison (summary relation).
In Description Logics, 1998.

7. A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM - a pragmatic semantic repos-
itory for owl. In WISE Workshops, pages 182–192, 2005.

8. Y. Li, Y. Yu, and J. Heflin. A multi-ontology synthetic benchmark for the semantic
web. In In Proc. of the 1st International Workshop on Evaluation of Semantic
Technologies, 2010.

9. L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a complete owl
ontology benchmark. In ESWC, pages 125–139, 2006.

10. B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning in description logics
using hypertableaux. In CADE, pages 67–83, 2007.

11. Z. Pan, Y. Li, and J. Heflin. A semantic web knowledge base system that supports
large scale data integration. In In Proc. of the 5th International Workshop on
Scalable Semantic Web Knowledge Base Systems, pages 125–140, 2010.

12. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

