
Evaluating DBOWL: A Non-materializing OWL
Reasoner based on Relational Database

Technology

Maria del Mar Roldan-Garcia, Jose F. Aldana-Montes

University of Malaga, Departamento de Lenguajes y Ciencias de la Computacion
Malaga 29071, Spain,

(mmar,jfam)@lcc.uma.es,
WWW home page: http://khaos.uma.es

Abstract. DBOWL is a scalable reasoner for OWL ontologies with very
large Aboxes (billions of instances). DBOWL supports most of the frag-
ment of OWL covering OWL-DL. DBOWL stores ontologies and clas-
sifies instances using relational database technology and combines rela-
tional algebra expressions and fixed-point iterations for computing the
closure of the ontology, called knowledge base creation. In this paper we
describe and evaluate DBOWL. For the evaluation both the standard
datasets provided in the context of the ORE 2012 workshop and the
UOBM (University Ontology Benchmark) are used. A demo of DBOWL
is available at http://khaos.uma.es/dbowl.

1 Introduction

With the explosion of Linked Data1, some communities are making an effort to
develop formal ontologies for annotating their databases and are publishing these
databases as RDF triples. Examples of this are biopax2 in the field of Life Sci-
ence and LinkedGeoData3 in the field of Geographic Information Systems. This
means that formal ontologies with a large number (billions of) instances are now
available. In order to manage these ontologies, current platforms need a scalable,
high-performance repository offering both light and heavy-weight reasoning ca-
pabilities. The majority of current ontologies are expressed in the well-known
Web Ontology Language (OWL) that is based on a family of logical formalisms
called Description Logic (DL). Managing large amounts of OWL data, includ-
ing query answering and reasoning, is a challenging technical prospect, but one
which is increasingly needed in numerous real-world application domains from
Health Care and Life Sciences to Finance and Government.

In order to solve these problems, we have developed DBOWL, a scalable rea-
soner for very large OWL ontologies. DBOWL supports most of the fragment
of OWL covering OWL 1 DL. DBOWL stores ontologies and classifies instances

1 http://linkeddata.org/
2 http://www.biopax.org/
3 http://linkedgeodata.org/About

2

using relational database technology. The state-of-the-art algorithm for achiev-
ing soundness and completeness in reasoning with expressive DL ontologies is
the so-called Tableau procedure. Current Tableau-based implementations such
as Pellet, Racer and HermiT show very good behavior in practice, but are com-
pletely memory-based and thus cannot cope with ontologies that have a large
ABox. Several alternative approaches using disk-oriented implementations have
been presented. These proposals can be classified into three categories. (1) Those
which combine a DL main-memory based reasoner with a database, (2) Those
which translate the ontology to Datalog and use a deductive database to eval-
uate it, and (3) Those which extend the database with reasoning capabilities.
Our proposal follows a different approach: The state-of-the-art OWL reasoner
Pellet4 is currently used to classify the ontology Tbox. Information returned by
Pellet is stored in a relational database. Class and property instances are also
stored in the relational database as relation tuples. An algorithm which combines
relational algebra expressions with fixed-point iterations is used to compute the
closure of the of the ontology, called knowledge base creation. The use of an OWL
reasoner, like Pellet, to classify the Tbox is crucial in our approach. This allows
the capture of some Tbox inferences that cannot be obtained by other similar
proposals such as those based on disjunctive datalog [1].

This paper presents a description and an evaluation of DBOWL. In order
to evaluate DBOWL we use the standard datasets provided in the context of
the ORE 2012 workshop5 and the UOBM (University Ontology Benchmark) [2],
the extremely well known benchmark for comparing ontology repositories in the
Semantic Web. The rest of the paper is organized as follows. Section 2 introduces
the theoretical concepts on which DBOWL is based. Section 3 describes the
theoretical foundation of DBOWL, presenting the process for computing the
ontology closure. Section 4 discusses the advantages and limitations of DBOWL.
The evaluation of DBOWL is presented in Section 5. Finally Section 6 concludes
the paper.

2 Preliminaries

2.1 The Relational Model

The relational model was first introduced by Ted Codd of IBM Research in 1970
in a classic paper [3]. The relational model is characterized by its simplicity
and mathematical foundation. The relational model represents the database as
a collection of relations.

A domain D is a set of atomic values. Atomic means that each value in
the domain is indivisible as far as the relational model is concerned. A common
method of specifying a domain is to specify a data type from which the data
values forming the domain are drawn. It is also useful to specify a name for
the domain, to help in interpreting its values. A relation schema R, denoted

4 http://clarkparsia.com/pellet
5 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/

3

by R(A1, A2, . . . , An) is made up of a relation name R and a list of attributes
A1, A2, . . . , An. Each attribute Ai is the name of a role payed by some do-
main D in the relation schema R. D is called the domain of Ai and is denoted
by dom(Ai). The degree (or arity) of a relation is the number of attributes n
of its relation schema. A relation (or relation state) r of the relation schema
R(A1, A2, . . . , An), also denoted by r(R), is a mathematical relation of degree
n on the domains A1, A2, . . . , An), which is a subset of the cartesian product
of the domains that define R:

r(R) ⊆ (dom(A1)× dom(A2)× . . .× dom(An))

r(R) is defined more informally as a set of n-tuples r = {t1, t2, . . . , tm}. Each
n-tuple t is an ordered list of n values t =< v1, v2, . . . , vn >, where each value vi,
1 ≤ i ≤ n, is an element of dom(Ai), or is a special NULL value. NULL is used
to represent the values of attributes that may be unknown or may not apply to
a tuple. This notation is used in the rest of the paper.

The terms relation intension for the schema R and relation extension
for a relation state r(R) are also commonly used. A relation is defined as a set
of tuples. Mathematically elements of a set have no order among them.

2.2 The Relational Algebra

The basic set of operations for the relational model has an algebraic topology,
and is known as the Relational Algebra. Operands in the Relational Algebra
are Relations. Relational Algebra is closed with respect to the relational model:
Each operation takes one or more relations and returns a relation. Given closure
property, operations can be composed.

Relational Algebra operations enable a user to specify basic retrieval re-
quests. The result of a retrieval is a new relation, which may have been formed
from one or more relations. A sequence of relational algebra operations forms
a relational algebra expression, the result of which will also be a relation
that represents the result of a database query (or retrieval request). Therefore,
it is possible to assign a new relation name to a relational algebra expression, in
order to simplify its use by other relational algebra expressions. Such relations
are called idb (Intensional) relations, unlike the relations in R, which are called
edb (Extensional) relations.

Operations in relational algebra can be divided into two groups: Set opera-
tions from mathematical set theory (UNION (∪), INTERSECTION (∩), SET
DIFFERENCE (\) and CARTESIAN PRODUCT (×)), and operations devel-
oped specifically for relational databases (SELECT (σ), which selects a subset
of the tuples from a relation that satisfied a selection condition, PROJECT
(π), which selects certain attributes from the relation and discard the other at-
tributes, JOIN (◃▹), which combines related tuples from two relations into single
tuples) among others.

4

2.3 DBOWL Ontologies

In order to simplify the implementation of the reasoner, some restrictions are
imposed on the OWL ontologies supported by DBOWL. Even so, the ontolo-
gies supported by DBOWL are expressive enough for real application in the
Semantic Web. DBOWL covers all of OWL 1 DL including inverse, transitive
and symmetric properties, cardinality restrictions, simple XML schema defined
datatypes and instance assertions. Enumerate classes (a.k.a, nominals) are only
partially supported.

Let P and Q be properties, x be an individual and n be a positive number,
class descriptions in DBOWL ontologies are formed according to the following
syntax rule:

C, D → A (NamedClass) | ¬A (complementOf NamedClass) |
C ⊓D (intersectionOf ClassDescriptions) |
C ⊔D (unionOf ClassDescriptions) | ∀P.C (allV aluesFrom) |
∃P.C (someV aluesFrom) | ∃P.{x} (hasV alue) |
{x1, . . . , xn} (oneOf) | >= nP (minCardinality) | <= nP (maxCardinality)

Tbox Axiom DL syntax

SubClassOf A ⊑ B
equivalentClasses A ≡ B
SubPropertyOf P ⊑ Q
equivalentProperty P ≡ Q
disjointWith A ⊑ ¬B
inverseOf P ≡ Q−

transitiveProperty P+ ⊑ P
symmetricProperty P ≡ P−

functionalProperty ⊤ ⊑≤ 1P
inverseFunctionalProperty ⊤ ⊑≤ 1P−

domain ≥ 1P ⊑ A
range ⊤ ⊑ ∀P.A
Abox Axiom DL syntax

class instance A(x)
property instance P (x, y)
sameAs x1 ≡ x2

Table 1. DBOWL ontologies axioms

Table 1 shows the Tbox and Abox axioms for DBOWL ontologies. A and
B are used for specifying Named Classes and C and D for specifying Class
Descriptions. DBOWL assumes that all individuals are different unless the on-
tology includes an owl:sameAs assertion or you inferred it. This is important in
real applications with a large number of individuals where usually it is easier
to specify if two individuals represent the same resource than which individuals
are different to others. The following restrictions are imposed on the DBOWL

5

ontologies. These restrictions are related more to the ontology syntax than to
the ontology expressivity:

1. In the Tbox, all OWL constructors are supported. However, class descrip-
tions always appear in the ontology as an equivalence or as a superclass of a
Named Class. In an RDF/XML OWL ontology, class descriptions are always
involved in the definition of a Named Class.

2. In the Abox, only assertions of Named Classes and Property Names are
supported.

3. Only negation of Named Classes is allowed. Nevertheless, a negation of a
class description could be included in the ontology defining a Named Class
as equivalent to a Class Description and negating this Named Class.

4. Properties’ domain and range must be Named Classes. In the same way, for
asserting a complex property’s domain or range we must define a Named
Class as equivalent to a Class Description and use this Named Class as
Property domain or range.

5. Only disjointness of Named Classes is allowed. As in the previous cases, a
disjointness of a class description could be included in the ontology defining a
Named Class as equivalent to a Class Description and disjoining this Named
Class.

3 DBOWL Theoretical Foundations

In this section we present the theoretical foundations of our approach to scal-
able OWL reasoning. Although DBOWL is basically a Description Logic rea-
soner, it has been designed as an OWL reasoner. This implies that not all
the DL inferences are supported. The main objective of DBOWL is to clas-
sify instances in Named Classes and Properties. In order to do this, for each
Named Class and Property in the ontology, a edb relation RA1(id), . . . , RAn(id),
RP1(subject, object), . . . , RPm(subject, object) is defined, being n and m the
number of Named Classes and Properties in the ontology respectively. These
relations contain one tuple for each individual or pair of individual asserted as
member of such Named Class or Property.

3.1 Classification Function

In order to classify instances in Names Classes and Properties, we define a clas-
sification function F (see table 2). This function takes as input a DBOWL
property axiom, a DBOWL domain or range axiom (see table 1), or an axiom
(A ≡ C), where C is a DBOWL class description and A is a Named Class in the
ontology or an auxiliary name. The function define a new idb relation by means
of a relational algebra expression, depending on the input type, or invoke the
function with a new input.

For each Named Class in the ontology, a set of idb relations SAi0
(id), . . . ,

SAik
(id), i : 1 . . . n are defined. In the same way, for each Property in the ontology

6

a set of idb relations SPj0
(subject, object), . . . , SPjl

(subject, object), j : 1 . . .m
are defined. The values of k and l depend on the number of axioms in the ontology
evolving Ci and Pj respectively.

Each SAix
, x : 0 . . . k has the following features (similarly for each SPjx

):

– SAix
= QAix

, where QAix
is a relational algebra expression,

– SAi0
= RAi ,

– SAi(x−1)
always occurs in Qix , for x : 1 . . . k, and

– if SAjr
or SPjs

occur in Qix , they represent the last idb relation defined for
Aj and Pj respectively.

3.2 Knowledge base Creation

In order to create the DBOWL knowledge base, function F is evaluate iteratively,
defining the corresponding idb relations, until no new tuples are generated, i.e.
until a fixed-point is reached. (SAix

= SAi(x−1)
, i : 1, . . . , n, and SPjx

= SPj(x−1)
,

j : 1, . . . ,m).

In order to improve the efficiency of the evaluation, F is expressed as a com-
position of four functions, i.e.

F = F1 ◦ F2 ◦ F3 ◦ F4, where,

– F1 takes as input only axioms such as P ⊑ Q, P ≡ Q, P ≡ Q−, P+ ⊑ P ,
P ≡ P−

– F2 takes as input only axioms such as ≥ 1P ⊑ A, ⊤ ⊑ ∀P.A
– F3 takes as input only axioms such as A ⊑ B, A ≡ B, A ≡ C⊓D, A ≡ C⊔D,

A ⊑ ∀P.C, A ≡ ∃P.C, A ≡ ¬B, A ≡ {v1, . . . , vn}, A ≡ ∃P.{v}
– F4 takes as input only axioms such as A ≡ ∃P.{v}

The algorithm proceeds as follows:

1. F1 is evaluated iteratively, defining the corresponding idb relations, until no
new tuples are generated, i.e. until a fixed-point is reached. (SPjx

= SPj(x−1)
,

j : 1, . . . ,m).

2. F2 is evaluated defining the corresponding idb relations (SAix
, i : 1, . . . , n).

3. F3 is evaluated iteratively defining the corresponding idb relations, until no
new tuples are generated, i.e. until a fixed-point is reached. (SAi(x+1)

= SAix
,

i : 1, . . . , n).

4. F4 is evaluated defining the corresponding idb relations (SPj(x+1)
, j : 1, . . . ,m).

5. Steps from 1 to 4 are repeated until no new tuples are generated by step 4,
i.e. until a fixed-point is reached (SPj(x+1)

= SPjx
, j : 1, . . . ,m).

7

F
(P

⊑
Q
)

A
n
ew

id
b
re
la
ti
o
n
S
Q

i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

Q
(
i
−

1
)
)
∪

π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
j
).

F
(P

≡
Q
)

A
n
ew

id
b
re
la
ti
o
n
S
Q

i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

Q
(
i
−

1
)
)
∪

π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
j
).

F
(P

≡
Q

−
)

A
n
ew

id
b
re
la
ti
o
n
S
P
i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
i
−

1
)
)
∪

π
o
b
j
e
c
t,
s
u
b
j
e
c
t
(S

Q
j
).

F
(P

+
⊑

P
)

If
(x
,y
)
is

a
tu
p
le

in
S
P
(
i
−

1
)
a
n
d
(y
,z
)
is

a
ls
o
a
tu
p
le

in
S
P
(
i
−

1
)
,
th
en

a
n
ew

id
b
re
la
ti
o
n
S
P
i
is

d
efi

n
ed

a
s

π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
i
−

1
)
)
∪

(π
s
u
b
j
e
c
t,
o
b
j
e
c
t
((
S
P
(
i
−

1
)
)
◃▹

o
b
j
e
c
t=

s
u
b
j
e
c
t
(S

P
(
i
−

1
)
))
).

F
(P

≡
P

−
)

A
n
ew

id
b
re
la
ti
o
n
S
P
i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
i
−

1
)
)
∪

π
o
b
j
e
c
t,
s
u
b
j
e
c
t
(S

P
(
i
−

1
)
).

F
(≥

1
P

⊑
A
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
((
S
A

(
i
−

1
)
))

∪
π
s
u
b
j
e
c
t
((
S
P
j
))
.

F
(⊤

⊑
∀P

.A
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
o
b
j
e
c
t
(S

P
j
).

F
(A

⊑
B
)

A
n
ew

id
b
re
la
ti
o
n
S
B

i
is

d
efi

n
ed

a
s
π
id
(S

B
(
i
−

1
)
)
∪

π
id
(A

j
).

F
(A

≡
B
)

A
n
ew

id
b
re
la
ti
o
n
S
B

i
is

d
efi

n
ed

a
s
π
id
(S

B
(
i
−

1
)
)
∪

π
id
(A

j
).

F
(A

≡
C

⊓
D
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

(π
id
(F

(B
≡

C
))

∩
π
id
(F

(B
≡

D
))
).

F
(A

⊑
C

⊓
D
)

F
(A

≡
C
),

F
(A

≡
D
)

F
(A

≡
C

⊔
D
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(F

(B
≡

C
))

∪
π
id
(F

(B
≡

D
))
.

F
(A

≡
B

⊔
C
)

If
I
≡

¬
B
,
a
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
id
(S

A
i
)
∩

π
id
(S

I
j
),

F
(X

≡
C
)

F
(A

⊑
∀P

.C
)

A
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
o
b
j
e
c
t
(S

A
i
◃▹

id
=
s
u
b
j
e
c
t
S
P
j
).

F
(X

≡
C
)

F
(A

≡
∃P

.C
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(F

(X
≡

C
))

◃▹
id

=
o
b
j
e
c
t
S
P
j
).

F
(A

⊑
∃P

.C
)

If
P

is
a
fu
n
ct
io
n
a
l
p
ro
p
er
ty
,
a
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
s
u
b
j
e
c
t
(S

A
i
◃▹

id
=
s
u
b
j
e
c
t
S
P
j
).

F
(X

≡
C
)

F
(A

≡
¬
B
)

If
B

≡
¬
I
,
a
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(S

I
j
)

F
(A

≡
¬
B
)

If
I
≡

B
⊔
C
),

a
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
id
(S

A
i
)
∩

π
id
(S

I
j
),

F
(X

≡
C
)

F
(A

≡
¬
B
)

If
I
≡

¬
A
,
a
n
ew

id
b
re
la
ti
o
n
S
B

i
is

d
efi

n
ed

a
s
π
id
(S

B
(
i
−

1
)
)
∪

π
id
(S

I
j
)

F
(A

≡
{v

1
,.
..
,v

n
})

A
n
ew

ed
b
re
la
ti
o
n
T
(i
d
)
is

d
efi

n
ed

w
h
er
e
r(
T
)
=

{t
1
,.
..
,t
n
}
a
n
d
t i

=
v i
,
i
:
1
..
.n

.
T
h
en

a
n
ew

id
b
re
la
ti
o
n

S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(T

).
F
(A

≡
≤

n
P
)

if
(x
,y

i
),

i
:
1
..
n

a
re

in
st
a
n
ce
s
o
f
P
,
a
n
d
th
e
y
i
a
re

a
ll
d
iff
er
en

t,
a
n
ew

ed
b
re
la
ti
o
n
T
(i
d
)
is

d
efi

n
ed

w
h
er
e

r(
T
)
=

{t
}
a
n
d
t
=

x
.
T
h
en

a
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(T

).
F
(A

≡
∃P

.{
v
})

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
s
u
b
j
e
c
t
(σ

o
b
j
e
c
t=

v
(S

P
j
))
.

F
(A

≡
∃P

.{
v
})

A
n
ew

id
b
re
la
ti
o
n
S
P
j
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
j
−

1
)
)
∪

π
id

,v
(π

id
(S

A
j
))
.

T
a
b
le

2
.
D
B
O
W

L
C
la
ss
ifi
ca
ti
o
n
F
u
n
ct
io
n

8

4 DBOWL Advantages and Limitations

DBOWL is implemented using Oracle 10g as Relational Database Management
Systems. edb relations are tables in the database while idb relations are SQL
views. A view in SQL terminology is a single table that is derived from other
tables [4]. A view does not necessarily exists in physical form; it is considered a
virtual table (non-materialized). The query defining the view is evaluated when
needed. Then, once the knowledge base is created, for each Named Class and
Property in the ontology there is a SQL view which defines the set of tuples
(asserted and inferred) belonging to such Named Class or Property.

In order to query the knowledge base, SPARQL queries are re-written in
terms of the SQL views and evaluated on the database. The names of the Named
Classes and Properties involved in the query are changed by the corresponding
SQL view name. Note that the queries defining the views are evaluated when
the SPARQL query is evaluated. Thus, the inferred instances are not material-
ized in the database. Only some intermediate results are physically stored in the
database, like the results of the transitive function. This non-materialized ap-
proach allows us to deal with billions of instances without the need of very large
storage repositories. However, the main advantage of this approach is regarding
updates. The non-materialization of the inferred instances permits the support
of low-cost updates, as well as the possibility of implementing incremental rea-
soning algorithms.

Another important feature of DBOWL is the management of the owl:sameAs
statement. At the end of each loop of the algorithm for the knowledge base
creation, those individuals related by the owl:sameAs statement are included
in the SQL views. DBOWL obtains the individuals related by the owl:sameAs
statement as: (1) Those individuals explicitly asserted as (x sameAs y); (2)
By means of functional and inverse functional properties; (3) By means of the
maxCardinality to 1 restriction.

DBOWL is complete with respect to the DBOWL knowledge base and the
implemented functions, classifying all instances in Named Classes and Properties
correctly. However, it presents some limitations:

As DBOWL separates Tbox and Abox reasoning, some inferences with nom-
inals are lost. Fortunately, this information is not relevant for DBOWL because
the objective of DBOWL is to classify instances in Named Classes and these
inferences do not generate additional information for classification of instances.

DBOWL presents a problem regarding the open-world semantics of a DL
Abox, which implies that an Abox has several models. The problem of exploring
all the possible models in DBOWL is not trivial, even so, as DBOWL supports
a large number of instances, it is logical to think that it could be very inefficient.
Nevertheless, we plan to study how to provide a (partial) solution to this problem
in the future.

Currently updates are not efficiently supported in DBOWL.
Finally, consistency checking of the knowledge base is not completely sup-

ported. Currently only the inconsistency caused by the classification of the same
instance into (or the assertion of the same instance as member of) two disjoint

9

Fig. 1. Number of instances for each UOBM query

classes, and by the classification of one instance in a unsatisfiable class are im-
plemented.

5 DBOWL Evaluation

In order to demonstrate practically the completeness of DBOWL we use the
UOBM (University Ontology Benchmark) [2], a well known benchmark to com-
pare repositories in the Semantic Web. This benchmark is intended to evaluate
the performance of OWL repositories with respect to extensional queries over
a large data set that commits to a single realistic ontology. Furthermore, the
benchmark evaluates the system completeness and soundness with respect to
the queries defined. This benchmark provides three OWL-DL ontologies, i.e. a
20, 100 and 200 Megabytes ontologies and the query results for each one. This
experiment is conducted on a VMWARE virtual machine (one for each tool)
with 8192 MB memory, running on a Windows XP 64 bits professional and java
runtime environment build 1.6.0 14− b08.

We evaluated the UOBM-DL queries for the 20, 100 and 200 Megabytes
ontologies in DBOWL and obtained the correct results for all queries. Figure
1 presents the results for each ontology and for each query. As we can see,
some DBOWL results are marked in a different color. This is because DBOWL
and UOBM return different results for queries 11, 13 and 15. We checked the
UOBM results for these queries and we believe that they are incorrect. For
query 11 DBOWL returns more results than UOBM. In the case of queries 11
and 15, it is because several owl:sameAs relationships between some UOBM
individuals can be inferred. Therefore, these individuals should be in the result.
In the case of query 13, it is because the UOBM result includes instances of
all departments, but query 13 asks only for instances in department0. Figure 2
presents the response times for the UOBM-DL 200 Megabytes ontology.

We have also evaluated DBOWL using the standard datasets provided in
the context of the ORE 2012 workshop. These datasets include a set of state

10

Fig. 2. Response times for UOBM-DL 200M ontology

of the art ontologies in OWL 2 language, both in RDF/XML and Functional
syntax. and they are organised by reasoning services, i.e. Classification, Class
satisfiability, Ontology satisfiability, Logical entailment and non entailment and
Instance retrieval. DBOWL uses Pellet in order to classify the ontology Tbox
and to check the class satisfiability. Therefore, datasets corresponding to these
reasoning services are not included in our evaluation. As the main objective of
DBOWL is to classify instances in Named Classes and Properties, we evalu-
ate DBOWL using the Instance Retrieval test cases. Some of the ontologies in
these datasets present unsatisfiable classes. We use these ontologies to test the
behavior of DBOWL in such cases. However, the total time taken to load and
test the satisfiability of one ontology and the satisfiability result is reported by
Pellet. DBOWL only stores in the database the classes that Pellet returns as
unsatisfiable. When DBOWL classifies an instance in a unsatisfiable class, it re-
turns that the ontology is inconsistent, via a simple SQL query to the relational
database. Thus, the performance of the ontology classification reasoning service
falls on Pellet. Finally, as DBOWL is an OWL-DL reasoner, we use the OWL-DL
Instance Retrieval test case for the evaluation.

This experiment has been carried out in two phases. In the first step, we
loaded the nine ontologies in DBOWL. Most of the ontologies could not be
loaded due to different problems: (1) Some ontologies are not valid DBOWL
ontologies (see section 2.3). Information 397.owl, minswap.owl, and people.owl
define complex property’s domains or range (different from named Classes). In-
formation 397.owl and people2.owl contain complex Abox assertions (different
from Named Classes assertions). Finally, obi.owl cannot be classified by Pellet
because of memory problems. (2) DBOWL presented some problems dealing with
unsatisfiable classes, because the storage and management of the class Nothing
was not completely implemented. (3) DBOWL presented some problems regard-
ing the management of the namespaces.

11

Fig. 3. Results for OWL-DL Instance Retrieval dataset

In the second step, we solved the aforementioned problems and we loaded
eight of the nine ontologies in DBOWL (obi.owl could not be loaded because
it presented a problem with Pellet) and we obtained the corrected result for all
of them. We followed the guidelines outlined in Section 2.3 in order to convert
the ontologies into DBOWL ontologies. Figure 3 summarizes the results of the
evaluation. Load time includes Tbox classification (Pellet), database creation,
ontology storage and knowledge base creation (instances classification).

6 Conclusions

From the evaluation we extract some general conclusions. To the best of our
knowledge, DBOWL is the only OWL reasoner able to deal with the three
UOBM-DL ontologies obtaining the correct results for all queries in all cases.
Furthermore, this allows us to check the UOBM results for queries 11, 13 and
15 and to conclude that they are incorrect. Finally, DBOWL response times are
very good the highest one being 0.328 seconds for the UOBM 200MB ontol-
ogy. The results obtained with both evaluations suggest that DBOWL is a real
complement to current OWL reasoners. Currently, DBOWL supports ontologies
with much bigger Aboxes than traditional systems based on description logic
and satisfiability. This is especially important for some applications such as life
sciences, where particularly large ontologies are used. The datasets provided in
the context of the ORE 2012 workshops have allowed us to improve DBOWL
in several ways. Thus, the latest version of DBOWL is able to deal with all
types of namespaces, to control when a class is non-satisfiable and to check the
ontology consistency in such a case. Furthermore, we empirically test that the
restrictions imposed on the DBOWL ontologies are not a problem for developing
real ontologies, because any ontology can be converted to a DBOWL ontology,
keeping the ontology expressivity. With respect to instance retrieval, DBOWL is

12

able to obtain the same results as the expected result provided by the OWL-DL
Instance Retrieval dataset, suggesting that the DBOWL classification functions
and the algorithm for creating the knowledge base work well.

The use of a relational database to store the ontologies implies that the time
for loading an ontology in DBOWL can be longer than the load time in main-
memory reasoners. The advantage of our approach is that, once the knowledge
base is created, the query time is really small. Furthermore, as the knowledge
base is persistent, you can query it at any moment without creating it again.
Although other approaches also provide solutions for instance retrieval, they
present some problems regarding reasoning expressivity or response query times.
SHER 6, is a platform developed by IBM which supports sound and complete
reasoning for the fragment of OWL 1 DL without nominals. SHER adopts a
modularisation-based approach in which the ontology breaks into small parts
and is reasoned with a DL reasoner in the main memory. After the reasoning
procedure is finished, the corresponding axioms are stored in the database. Rea-
soning with instances is performed at query time. Oracle 11g 7 is the laster
version of the extremely well known RDMS Oracle. Oracle 11g includes a native
inference engine able to handle a subset of OWL called OWLPrime which covers
part of OWL Lite and a little part of OWL 1 DL. It also supports querying of
RDF/OWL data using SPARQL-like graph patterns embedded in SQL.

As for future work, we are studying some optimisation techniques (such as
database indexes, parallel computation and incremental reasoning) in order to
improve the response times of the queries. We also are studying the possibility
of incorporating other OWL reasoners different from Pellet, in DBOWL. The
idea is to select the most convenient OWL reasoner depending on the ontology
expressivity and size.

7 Acknowledgements

This work is supported by the Project Grant TIN2011-25840 (Spanish Ministry
of Education and Science) and P11-TIC-7529 (Innovation, Science and Enter-
prise Ministry of the regional government of the Junta de Andalućıa).

References

1. Ullrich Hustadt , Boris Motik , Ulrike Sattler. Reasoning in Description Logics by
a Reduction to Disjunctive Datalog. Journal of Automated Reasoning, v.39 n.3,
p.351-384, October 2007.

2. Ma, L; Yang, Y; Qiu, Z; Xie, G; Pan, Y. Towards A Complete OWL Ontology
Benchmark. In. Proc. of the 3rd European Semantic Web Conference (ESWC 2006).

3. Codd, E. A relational Model for Large Shared Data Banks, CACM, 13:6, june 1970.
4. Abiteboul, S., Hull, R., Vianu, V. Foundations of Databases. Addison-Wesley Pub-

lishing Company. 1995.

6 http://domino.research.ibm.com/comm/research projects.nsf/pages/iaa.index.html
7 http://www.oracle.com

