Advancing the Enterprise-class OWL Inference Enginein
Oracle Database

Zhe Wu, Karl Rieb, George Eadon
Oracle Corporation
{alan.wu, karl.rieb, george.eadon}@oracle.com

Ankesh Khandelwal, Vladimir Kolovski
Rensselaer Polytechnic Institute, Novartis Institut es for Bio-
medical Research
ankesh@cs.rpi.edu, vladimir.kolovski@novartis.com

Abstract.

OWL is a standard ontology language defined by W4t is used for
knowledge representation, discovery, and integnatitaving a solid
OWL reasoning engine inside a relational databgses like Oracle
is significant because 1) many relational techrsquecluding query
optimization, compression, partitioning, and pala#ixecution, can be
inherited and applied; and 2) relational databasesstill the primary
place holder for enterprise information and theran increasing use of
OWL for representing such information. Our approacto perform da-
ta intensive reasoning as close as possible taldte Since 2006, we
have been developing an RDBMS-based large scalesHinient for-
ward-chaining inference engine capable of handRiRf(S), OWL 2
RL/RDF, SKOS, and user defined rules. In this paper discuss our
recent implementation and optimization techniques duery-rewrite
based OWL 2 QL reasoning, named graph-based irder@acal infer-
ence), and integration with external OWL reasoners.

1 Introduction

OWL [1] is an important standard ontology languadegéned by W3C and it has a
profound use in knowledge representation, discqvand integration. To support
OWL reasoning over large datasets we have develagedvard-chaining rule-based
inference engine [2] on top of the Oracle Datab&seimplementing the inference
engine as a database application we are able ¢oalg® the database’s capabilities for
handling large scale data. The most recent relefsrir engine, with support for
RDFS, OWL 2 RL/RDF [3], SKOS and user-defined rulissavailable as part of
Oracle Database 11g Release 2 [4, 5, 7].

In our system semantic data is stored in a normdlizpresentation, with one table
namedLEXVALUES providing a mapping between lexical values anegdgat IDs and

another table name®T riPLEs enumerating triples or quads in terms of IDs, Emi

to other systems [8, 9]. Inference engine rulestameslated to SQL and passed to

Oracle’s cost-based optimizer for efficient exeanti For notational convenience,

SQL queries in this paper are written in termslateholdersb(x) and<IVIEW>. In

the implementationD(x) is replaced by the ID for the given lexical vabuewhich

can be found by querying ouexvaLuestable, anckIVIEW> is replaced by an inline
view that unions the relevant triples (or quads)pmrirLEs with the inferred triples

(or quads) computed so far.

Additional features of our inference engine inclu¢®) for built-in OWL con-
structs we manually craft the SQL and algorithna tirive the inference, optimizing
for special cases including transitive propertiesl &quivalence relations such as
owl:sameAs , (2) user-defined rules are translated to SQLraatially, (3) we lever-
age Oracle’s parallel SQL execution capability uthyf utilize multi-CPU hardware,
and (4) we efficiently update the materialized irdd triples after additions to the
underlying data model, using a technique basecdpmi-saive evaluation [7].

Our engine has been used in production system® 2006, and has proven
capable of handling many real-world applicationewldver, challenges remain:

- Despite support for efficient incremental inferentidly materializing inferred
results via forward chaining can be a burden, a@afpedor large frequently-
updated data sets. Therefore we are introducingwed-chaining into our
system with a query-rewrite-based implementatio®WiL 2 QL reasoning [2].

- Some applications need to restrict inference timgles ontology represented by a
named graph. For these applications inference draquply tojust the assertions
in each named graph and a common schema ontol@&pxjT This kind of infer-
ence is therefore local, as opposed to the traditiglobal inference, and it is
called Named Graph based Local Inference (NGLIDbacle.

- Some applications need the full expressivity of OWIDL. To satisfy these
applications, we have further extended our infegegrogine by integrating it with
third-party complete OWL 2 DL reasoners like P&IBL[6].

In this paper we present our recent advances.d®e2tdescribes our query-rewrite
implementation of OWL 2 QL reasoning. Section 3atibgs our implementation of
named graph local inference. Section 4 descriltegyiiation with external third-party
OWL reasoners. Section 5 presents a performandaatia using synthetic Lehigh
University Benchmark (LUBM) datasets. Section 6ciig®s related work. Finally,
Section 7 concludes this paper.

2 Support of OWL 2 QL in the Context of SPARQL

OWL 2 QL is based on the DL-Lite family of Descigt Logics, specifically DL-
Liter [10]. OWL 2 QL is an important profile becausénés been designed so that
data (Abox) can be queried through an ontology KJlv@a a simple rewriting mech-
anism. Queries can be expanded to include the geniaformation in Tbox, using
query-rewrite techniques such as BerfectRef algorithm [10], before executing
them against the Abox. The query expansion coutdiyce many complex queries,
which presents a challenge for scalable QL reagprihere have been several pro-

posals for optimizing and reducing the size of ittem queries; see Section 6 for a
brief discussion. Most of these techniques returnn@mn of conjunctive queries
(UCQ) for an input conjunctive query (CQ). Rosdtak [11] proposed a more so-
phisticated rewriting technique, tiresto algorithm, that produces non-recursive
datalog (nr-datalog), instead of UCQ. OWL 2 QL nefece is supported in the Oracle
OWL inference engine based on the Presto algoritheelaborate on this and other
optimizations for efficient executions of query ré@es in Section 2.1. To meet the
requirements of enterprise data, OWL 2 QL infereangine must handle arbitrary
SPARQL queries. We discuss some subtleties to mandtbitrary SPARQL queries
by query expansion in Section 2.2. We will be ugimg following OWL 2 QL ontol-
ogy to illustrate various concepts. It is descriliedunctional syntax and has been
trimmed down for brevity.
Ont ol ogy (SubDat aPropertyd (: ni ckName : nane)

Subd assOf (: Married Obj ect SoneVal uesFron(: spouseC : Person))

SubObj ect Propert yOf (: spouseXf : friendOr)

Dat aPr opertyAssertion(: name : Mary "Mary")

Cl assAssertion(: Married :John)

Dat aPropertyAssertion(:name : Ui "Ui"))

21 Optimizing Execution of Query Rewrites

As noted in the introduction, Oracle OWL infererazggine implements an approach
that is similar to that of rewriting CQs as nr-datgp We will illustrate our approach
through some examples. Consider the conjunctiveyq@Q),

select ?x ?y ?n where { ?x :friendO ?y . ?y :nane ?n },

and its equivalent datalog quety?x, ?y, ?n) :- friendOf(?x, ?y),

name(?y, ?n) . Note thafriendOf(?x, ?y) and name(?y, ?n) are referred to
as atoms of the query(?x, ?y, ?n) can be translated into following nr-datalog
using thePresto algorithm, and the example Tbox.

q(?x, ?y, ?n) ql(?x, ?y), q2(?y, ?n) .

ql(?x, ?y) c- friendO (?x, ?y) .
ql(?x, ?y) :- spouseOr (?x, ?y) .
q2(?y, ?n) - nane(?y, ?n) .

q2(?y, ?n) ;- nickNane(?y, ?n) .

The nr-datalog can be represented by a single SRAry as shown below.
The heads of the nr-datalogl(?x, ?y) andg2(?y, ?n) for example, define a
view for the atoms of the query, which can be repnéed via UNION operation. The
conjunctions in the body of nr-datalog rules canrdygresented via intersections of
views. We refer to the resulting form of SPARQL guas the Joins of Union (JoU)
form. (UCQs, in contrast, are of the form Uniongoins (UoJ).)

select ?x ?y ?n where { {{?x :friendOf ?y} UNION {?x :spouseO™f ?y}}
{{?y :nane ?n} UNION {?y :nickNane ?n}}}

The JoU form of SPARQL queries generated from quekyrite often contains
many UNION clauses and nested graph patterns @matbecome difficult for the
query optimizer to optimize. To improve the qualitfyquery plans generated by the

query optimizer, our latest inference engine resgrithe UNION clauses using
FILTER clauses. For example, the query above isritimw as follows, using
sT(..) as notational shorthand for the SPARQL operstoreTerm(...) . Recall
thatsameTerm(A, B) is true ifA andB are the same RDF term.

sel ect ?x ?y ?n where
{{?x ?p1l ?y FILTER(sT(?pl, :friendO) || sT(?pl, :spousef))}
{?y ?p2 ?n FILTER(ST(?p2, :nane) || sT(?p2, :nickNane))}}.

As mentioned earlier, UNION clauses correspondieavs for atoms in the query.
Rules in the nr-datalog that define view for amatof the query contain single atom
in their body [11]. The former atom is entailed thg latter atoms. For example, the
(SPARQL) CQ atom{?x p ?y} can be entailed from atoms of types q ?y}

(by sub-property relationships) af®y q ?x} (by inverse relationships), and also
of type {?x rdfitype c} (by existential class definition) ify is a non-
distinguished non-shared variabkhere may be more than one atom for each type. In
that case, the view corresponding to af@mp ?y} can be defined via filter claus-
es as follows. (Any of2, n3 may be zero in which case corresponding pattern is
omitted;q1, equaly.)

{{?x ?2q ?y FILTER(sT(?g, qli) || ... sT(?q9, ql.))} UNION
{?y ?q ?x FILTER(sT(?g, 921) || ... sT(?9, g2.2))} UNION
{?x rdf:type ?c FILTER(sT(?c, cly) || ... sT(?c, clns))}}

Note that the unions above can be further collapsiclg more general filter ex-
pressions and the result of query-rewrite is araagpd query (that is no rules are
generated). A key benefit of treating UCQ as Jotha the SQL translation of a JoU
query is typically more amenable to RDBMS queryiropations because it uses
fewer relational operators, which reduces the dpgBn’s combinatorial search space;
and the JoU, together with the filter clause optation, will typically execute more
efficiently in an RDBMS because the optimizer cendfa better plan involving fewer
operators, which reduces runtime initialization aedtruction costs. Take the Lehigh
Benchmark (LUBM) Query 5 and 6 for example. The Jpproach takes both less
time and fewer database I/O requests, as showeifotlowing table, to complete the
query executions against the 1.1 billion-assertioi8M 8000 data set. The machine
used was a Sun M8000 server described in Section 5.

L UBM 8000 (1.1B+ JoU with FILTER Optimization | No Optimization
asserted facts) Time #of DB 1/0 Time #of DB 1/0
Q5 (719 matches) 98.9¢ 73K 171.1 271K

Q6 (63M + matches) 25.68s 48K 28.7s 73K

Table 1 Effectiveness of JoU with FILTER optimization

22 SPARQLing OWL 2 QL Aboxes

The main mechanism for computing query resulthédurrent SPARQL standard is
subgraph matching, that is, simple RDF entailmé&g2].[Additional RDF statements

can be inferred from the explicit RDF statementarbntology using semantic inter-
pretations of ontology languages such as OWL 2 Qe next version of SPARQL

(SPARQL 1.1) is in preparation and various entailtmegimes have been specified
that define basic graph pattern matching in terfnsemnantic entailment relations
[13]. One such entailment regime is the OWL 2 Ctif®emantics Entailment Regime
(ER), which is relevant for querying OWL 2 QL Abax€eThe ER specifies how the
entailment is used.

The entailed graphs may contain new blank noded éte not used in the explicit
RDF statements). ER, however, restricts semantiailerents to just those graphs
which contain no new blank nodes. In other wordistha variables of the query are
treated as distinguished variables irrespectivavbéther they are projected. This
limits the range of CQs that can be expressed BPQRQL 1.1 ER. For example,
consider following two queries that differ onlypnojected variables.

select ?s ?x { ?s :friendOF ?x .}
sel ect ?s { ?s :friendOr ?x .}

Per ER, both queries have empty results. Howeflgiewed as CQs?x is a non-
distinguished variable in the second query @ - :John] is a valid result.
Therefore, the second CQ cannot be expressed iRQRA.1 ER.

For practical reasons, we would like to be ablexpress all types of CQs to
OWL-2 QL Aboxes using SPARQL, especially when thare well-defined algo-
rithms such aferfectRef for computing sound and complete answers for QQs.
thereby adopt, in addition to ER, another entailtmegime for Abox queries to OWL
2 QL ontologies, namel®WL 2 QL Entailment Regime (QLER). QLER is similar to
ER except that non-projected variables can be nthfipaew blank nodes (not speci-
fied in the explicit triples of the Abox or ThoxXrojected variables cannot be mapped
to new blank nodes under both ER and QLER. QLERkefER, is defined only for
Abox queries, and property and class expressiansair allowed (that is, only con-
cept and property IRIs may be used). Note thatrékelts obtained under ER are al-
ways a subset of the results obtained under QLER.

Now, any CQ can be expressed as BGP SPARQL quelsr @LER (unlike ER).
The BGP query can be expanded, as discussed ioi®séct, such that the query
results can be obtained from the expanded quergtéydard subgraph matching.
SPARQL, however, supports more complex queries B@mRs and union of BGPs
such as accessing graph names, filter clausespptimhal graph patterns. Thus, a
query-rewrite technique for complex SPARQL quergeslso required.

Under ER, since all variables are treated as djsti#hed variables, individual
BGPs of a complex query can be expanded sepamatelyeplaced in place. For ex-
ample, SPARQL querygelect ?s ?n {?s :friendOf ?x} OPTIONAL {?x :narin}can be
expanded as,

select ?s ?2n {{ {?s :friendO> ?x} UNION {?s :spouseOf ?x} }
OPTIONAL {{ ?x :name ?n } UNION {?x :nicknanme ?n}}}.

This expansion strategy is, however, not valid un@LER. ?x is a non-

distinguished variable under QLER, and the exparfidied by that strategy will be,
select ?s ?2n {{{?s :friendOF ?x}

UNION {?s :spouseCf ?x} UNION {?s rdf:type :Married} }
OPTIONAL { { ?x :nane ?n } UNION {?x :nickname ?n}}.

The query above produces two incorrect answgrs, -> :John; ?n >
‘Uil and[?s = :John; ?n > “Mary”], and the source of the incorrect an-
swers is that bindinfps - :John] is obtained from the patteffs rdf:type
:Married} , and therPx, which is implicitly bound to some new blank nods, ex-
plicitly bound to nothing (that i®x is null). A left outer join with bindings from
{?x :name ?n } produces erroneous results because null valueheminy value
of ?x from the optional pattern.

The way around that problem is to biddto a new blank node using SPARQL 1.1
assignment expression [14IND(BNODE(STR(?s)) AS ?x) as shown below. The
BGP{ ?s :friendOf ?x } is expanded into

{{ ?s :friendO ?x } UNION { ?s :hasSpouce ?x } UNI ON
{ ?s rdf:type :Married . BI ND(BNODE(STR(?s)) AS ?x). }}.

The bindings for a non-distinguished variable dse st when two similar atoms
of a CQ are replaced by their most general unifidt; reduction step of the
PerfectRef algorithm. Let?x be a non-distinguished variable that is unifiedhwi
termt of other atom, which may be a variable or a cortsthen the binding foPx
can be retained by using SPARQL 1.1 assignmentess@mnBIND(t as ?x) , in a
manner similar to that used in the above example.

So, the query-rewrite technique for complex SPAR§ieries under QLER con-
sists of the following steps: 1) identify distingbed variables for all BGPs of the
query, 2) expand BGPs separately using the starglaedy-rewrite techniques (for
CQs), including the one described in Section 2)1make the bindings for non-
distinguished variables explicit whenever theymoeusing SPARQL 1.1 assignment
expressions as discussed above, and 4) replaexplaeded BGPs in place. Steps 2)
and 3), even though presented sequentially, aemdetd to be performed concurrent-
ly. That is the bindings may be made explicit ia #xpansion phase for BGPs.

3 Named-Graph based Local inference

Inference is typically performed against a complatéology together with all the
ontologies imported viawl:imports . In this case inference engines consolidate all
of the information and then perform tasks like sifisation, consistency checking,
and query answering, thereby maximizing the disgpwéimplicit relationships.

However, some applications need to restrict infegeto a single ontology repre-
sented by a named graph. For example, a healttapatieation may create a separate
named graph for each patient in its system. Indhge, inference is required to apply
tojust the assertions about each patient and a commemschntology (TBox). This
kind of inference is therefore local, as opposethéotraditional global inference, and
it is called Named Graph based Local Inference (N®ly Oracle. NGLI together
with the use of named graphs for asserted factsutandes and improves the man-
ageability of the data. For example, one patieasserted and inferred information
can be updated or removed without affecting thdsetloer patients. In addition, a

modeling mistake in one patient's named graph mall be propagated throughout the
rest of the dataset.

One naive implementation is to run the regularbgloinference against each and
every named graph separately. Such an approadmeisvhen the number of named
graphs is small. The challenge is to efficientlaldeith thousands, or tens of thou-
sands of named graphs. In the existing forwardrghgibased implementation, Ora-
cle database uses SQL statements to implementiltnseat defined in the OWL 2 RL
specification. To add the local inference featwe,have considered two approaches.
The first approach re-implements each rule by minaading SQL constructs to
limit joins to triples coming from the same namedphs. Take for example a length
2 property chain rule defined as follows:

?ul :pl ?u2, ?u2 :p2 ?u3 > ?ul :p ?u3

This rule can be implemented using the followingLSsatement. Obviously this
rule applies to all assertions in the given data<BélEW>, irrespective of the origins
of the assertions involved.

sel ect distinct ml.sid, I1D(p), nR.oid from<IVIEW nil, <IVIEW n?
where nil. pi d=I D(pl) and nil.oi d=nR2.sid and nR. pi d=I D(p2)

To extend the above SQL with local inference cdjgpthe following additional
SQL constructs (intalic font) are added. The assumption here is that <|\Evss
an additional columngid , which stores the integer hash ID values of grapimes.
Also, as a convention, the common schema ontolegyored with a NULL gid value
in the same <IVIEW>. This allows an easy separatiothe common schema ontolo-
gy axioms from those assertions made and storedrired graphs.

select distinct nml.sid, 1D(p), nR.oid, nvl(nl.gid, n2.gid) AS gid

from<IVIEW ml, <IVIEW nP
where mil. pi d=I D(pl) and ni. oi d=nR. sid and nR. pi d=I D(p2)
and (nl.gid = nR2.gid or nlL.gid is null or nR.gid is null)

In the above SQL statement, a new projection ofcgidmn is added to tag each
inferred triple with its origin. This is very uséforovenance information. Also, a new
Boolean expression is added to the end of the S&@ereent. This new expression
enforces that the two participating triples mustneofrom the same named graph or
one of them must come from the common schema aytoldote that when dealing
with more complex OWL 2 RL rules, the number ohpincreases and this addition-
al Boolean expression becomes more complicate@ @&msequence, it is error prone
to manually modify all existing SQL implementatiottssupport the local inference.
This motivated an annotation-based approach, wbaca existing SQL statement is
annotated using SQL comments. Using the above dgartigg annotation (in Italic
font) together with the original SQL statement Isdike:

sel ect distinct ml.sid, ID(p), nR.oid /* ANNOTATI ON: PRQJECTI ON */

from<IVIEW nl, <IVIEW n2 where ml. pid=ID(pl) and nil.oi d=n2. sid
and ne2. pi d=1 D(p2) /* ANNCTATI ON: ADDI TI ONAL_PREDI CATE */

At runtime, the above dummy annotation texts wél deplaced with proper SQL
constructs, similar to those described before. s€hautomatically-generated SQL
constructs are based on the number of joins ineinplementation, and the set of

view aliases used in the SQL statement. Comparéidetdirst approach, this annota-
tion based approach is easier to implement and muoate robust because all the
actual SQL changes are centralized in a singletiomc

4 Extensible Inference

We realize in practice that, to be enterprise readyinference engine has to be ex-
tensible. Our engine natively supports RDFS, SKO®/LPrime [3], OWL 2 RL
which is a rich subset of the OWL 2 semantics, acdre subset of OWL 2 EL that is
sufficient to classify the well-known SNOMED ontglg in addition to user-defined
positive Datalog-like forward-chaining rules to extl the semantics and reasoning
capabilities beyond OWL. This is sufficient toist the requirements of many real-
world applications. However, some application damaieed the full expressivity of
OWL 2 DL. To satisfy these applications, we haveHer extended our inference
engine by integrating it with third-party complé®VL 2 DL reasoners like PelletDB
[6]. A key observation has been that even wheninigakith a large-scale dataset
which does not fit into main memory, the schemaipor or the TBox, tends to be
small enough to fit into physical memory. So thedds to extract the TBox from
Oracle database via a set of Java APIs providéldeidena Adapter [5], perform clas-
sification using the in memory DL reasoner and mialiee the class and property
hierarchies, save them back into Oracle, and firialoke Oracle’s native inference
API to perform reasoning against the instance datthe ABox.

This approach combines the full expressivity supgwovided by an external
OWL 2 DL reasoner and the scalability of Oracleatdase. Such an approach is gen-
eral enough and can be applied to other well-knd@®WL reasoners including
Fact++, HermiT, and TrOWL. It is worth pointing dtltat such an extension to Ora-
cle's inference capability is sound, but complegsria terms of query results cannot
be guaranteed. Nonetheless, users welcome suckterrsien because 1) in-memory
solutions simply cannot handle a very large datdz&t exceeds the memory con-
straint, 2) more implicit relationships are madeaitable using additional semantics
provided by external reasoners.

5 Perfor mance Evaluation

In this section, we evaluate the performance ofcl@ts native inference engine.
Most tests were performed on a SPARC Enterprise0d&@rver with 16 SPARC 64
VIl+ 3.0GHz CPUs providing a total of 64 cores at#B parallel threads. There is
512 GB RAM and two 1-TB F5100 flash arrays incogiiorg 160 storage devices.
Note that the performance evaluation is focusedooal inference performance. A
systematic evaluation of SPARQL query answeringeui@@l. semantics is ongoing.

Benchmark Data Generation. We are using the well-known, synthetic Lehigh
University Benchmark (LUBM) to test the performarmecause 1) a LUBM dataset
can be arbitrarily large; and 2) it is quite natucaextend a LUBM dataset from tri-

ples to quads. The existing LUBM data generatordpces data in triple format.
However, the triples are produced on a per uniielssis, so it is straightforward to
append university information to the triples tolgiquad data.

Local Inference Performance. In the following table, we compare the perfor-
mance of named-graph based local inference agiasbf the regular, global infer-
ence. Three benchmark datasets are used and dsedaize is between 133 million
and 3.45+ billion asserted facts. Such a scalafficent for many enterprise-class
applications. The second and third columns list nbenber of inferred triples and
elapsed time for global inference. The last twauouis list the number of inferred
new quads and elapsed time for local inferencee Kwit a parallel inference [7] with
a degree of 128 was used for both the global acal inferences. In addition, at the
end of both global and local inference process,uftittolumn B-Tree index is built
so that the inferred data is ready for query. Thiy éactor that stopped us from test-
ing even bigger ontologies was the 2-TB disk sparestraint.

Benchmark/I nference Global Inference L ocal I nference

Type New triples Elapsed time New quads Elapsed time
L UBM 1000 108M 12m 15s 111M 13m Os

L UBM 8000 869M 33m 17s 892M 40m 3s

L UBM 25000 2.71B 1h 44m 2.78B 2h 1m

Table 2 Performance comparison between global and local inference

The performance of local inference is a bit slottan but still quite comparable to
that of the global inference. The performance d#fifee comes from two places: 1)
local inference deals with quads instead of trigled a quad dataset is larger in size
than its triple counterpart because of the addiigraph names, 2) the SQL state-
ment is more complex due to the additional expoessi

It may be counter intuitive that local inferenceogmced more inferred relation-
ships than global inference. An examination of ihierence results suggests that
there are inferred triples showing multiple times different named graphs even
though any named graph contains only a uniquefdeptes.

With help from a customer, we conducted a perfoeagvaluation of local infer-
ence using OWL 2 RL profile against large-scedal-world dat from the medi-
cal/hospital domain. The machine used was a queatdr Exadata x2-2. It is a 2-node
cluster and each node has 96 GB RAM and 24 CPscbretailed hardware specifi-
cations can be found hérét took around 100 minutes to complete the laakgrence
using a parallel degree of 48. Inference generatedal of 574 million new quads.

Local Inference
New quads Elapsed time
Real-world Medical/Hospital Dataset 574M 100m 28s
Table 3 Local inference performance against real-world quad dataset

Benchmark/I nference Type

1 LUBM1000, LUBMS8000, and LUBM25000 datasets hav8ii3, 1.1B+, and 3.45B+ facts
asserted, respectively.

2 private data. It has 1.163B+ quads asserted.

3 http://www.oracle.com/technetwork/database/exadhtaachine-x2-2-datasheet-175280. pdf

Parallel Inference. Oracle’s inference engine has benefited greatiynftioe paral-
lel execution capabilities provided by the databdde same kind of parallel infer-
ence optimization, explained in [7], applies bathttie regular, global inference and
the local inference. Figure 1 shows the local erfiee performance improvement as
the degree of parallelism goes higher. LUBM 25K dienark was used for this ex-
periment. Note that most improvement was achievhdnathe parallel degree went
up from 24 to 64. After that, only marginal improvent was observed. This is due to
the fact that the Sun M8000 has 64 cores.

400

350 345
g 300 \
=
2250 21
E 200 130
£ e is0 145
150 g
2 T 121
£ 100
50

0
0 50 100 150

Parallel Degree (DOP)

Figure 1 Local inference elapsed time ver sus degr ee of parallelism

6 Related Work

We will discuss works related to query rewritingraquired for OWL 2 QL infer-
ence, implementations for OWL 2 QL reasoning. (Wk lve focusing on theory and
techniques and not so much on relative performances

Several techniques for query-rewriting have beernveldped since the
PerfectRef algorithm was introduced in [10]; see [15] for @ensummary. The
given CQ is reformulated as a UCQ by means of &ward-chaining resolution pro-
cedure in thePerfectRef algorithm. The size of the computed rewriting &ases
exponentially with respect to the number of atomghie given query, in the worst
case. But as observed by others, many of the nesieguthat were generated were
superfluous, for example some of the CQs in a UGy be subsumed by others in
the UCQ. An alternative resolution-based rewritteghnique was proposed in [16]
which avoids many useless unifications and thus U&®smaller even though they
are still exponential in the number of atoms of tjuery. This alternative rewriting
technique is implemented in the Requiem syéteRosati et al. [11] argued that
UCQs are reasons for exponential blow up, and Ipgeposed a very sophisticated
rewriting technique, the Presto algorithm, whiclodarces a non-recursive Datalog
program as a rewriting, instead of a UCQ. As ndtefbre, we deploy the Presto al-
gorithm for optimal performance.

The W3C's OWL implementations pagéists four systems that support OWL 2
QL reasoning: QuOnfoOwlgreg, OWLIME, Quill°.

* http://www.cs.ox.ac.uk/isg/tools/Requiem/
® http://www.w3.0rg/2007/OWL/wiki/Implementations
5 http://www.dis.uniromal.it'~quonto/

QuOnto, Quill and Owlgres implement tRerfectRef query-rewrite technique,
but Quonto implements an optimizeBerfectRef query-rewrite technique,
QPerfRef [10], and Quill in addition to query-rewrite, transformstology into a
semantically approximate ontology [17].

Owlgres is an RDBMS-based implementation [18]. dpldys PerfectRef query-
rewrite technique, with some optimizations sucfTlex terms with zero occurrences
in Abox are identified in a preprocessing step @@k of a UCQ that contain such
Thox terms are discarded, in contrast to the Pragirithm. Furthermore, the UCQs
are translated into a single SQL query that isiarunf SQL queries, which is remi-
niscent of UoJ form. In contrast, we translate U@@®s more efficient JoU form, and
the unions are collapsed into compact FILTER clause

OWLIM supports forward-chaining style rule-basedsening, wherein blank
nodes can be inferred during rule evaluation. OWQI2 reasoning is supported in
OWLIM by defining new ruleset that captures OWL P €mantics [19], and using
the same forward chaining mechanism.

7 Conclusions

This paper described the recent advances in our @\férence engine, which is
implemented on top of the Oracle Database. We testioptimizations for rewrite-
based backward-chaining implementation of OWL 2 @le showed that conjunctive
queries for OWL 2 QL knowledge bases cannot beesgad in SPARQL 1.1 using
its entailment regimes because the regimes are restyictive towards bindings to
new blank nodes. We introduced a new regime tocawvee that and described a que-
ry-rewrite technigue for general SPARQL queriesi@ltmay contain constructs such
as optional graph patterns). We introduced the gpinof “named-graph based local
inference” and described our implementation. Wecidlesd the motivation for inte-
grating a third-party OWL reasoner in our systemd described our implementation.
Finally, we evaluated the performance of named{ytagsed local inference as com-
pared to traditional global inference on synthdtta sets.

Acknowledgement. We thank Jay Banerjee for his support. We thaick Rleth-
erington and Brian Whitney for providing accessatm guiding us on the use of the
Oracle Sun M8000 server machine. We thank Chrigoptecht and Kathleen Li for
their assistance in using the Exadata platform.

Reference

1. OWL 2 Web Ontology Language Direct Semantics. Httpvw.w3.0org/TR/owl2-direct-semantics/
2. Oracle Database Semantic Technologies.
http://www.oracle.com/technetwork/database/optmersiantic-tech/index.html

7 http://pellet.owldl.com/owlgres
8 http://www.ontotext.com/owlim/
9 http://kt.abdn.ac.uk/wiki/Projects/Quill

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. OWL 2 Web Ontology Language Profiles. http://www.ar8)/TR/owl2-profiles/
. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, Annamalai, M., Srinivasan, J.: “Implementing

and Inference Engine for RDFS/OWL Constructs andrilefined Rules in Oracle” IEEE 94ntl.
Conf. On Data Engineering (ICDE) 2008

. Oracle Database Semantic Technologies DevelopersideG 11g Release 2 (11.2)

http://docs.oracle.com/cd/E11882_01/appdev.112/28/1@&.htm

. Introducing PelletDb: Expressive, Scalable SemanfReasoning for the Enterprise

http://clarkparsia.com/files/pdf/pelletdb-whitepajpelf

. Kolovski, V., Wu, Z., Eadon, G.: Optimizing Enteigg-Scale OWL 2 RL Reasoning in a Relational

Database System. International Semantic Web Carder€l) 2010: 436-452

. J. Broekstra, F. van Harmelen, and A. Kampman, $8ea A Generic Architecture for Storing and

Querying RDF and RDF Schema”. International SernamMeb Conference (ISWC) 2002.

. L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, “RStAn RDF Storage and Querying System for Enter-

prise Resource Management”. CIKM 2004.

Calvanese, G. deD., Giacomo, D.G., Lembo, M.DnZegini, R.M., Rosati “, R.: Tractable Reason-
ing and Efficient Query Answering in Descriptiondios: The DL-Lite Family” In J.. Journal of Au-
tomated Reasoning 39(3):) (October 2007) 385---2P97.

Rosati, R., Almatelli, A.: Improving Query Answegrover DL-Lite Ontologies. In Proceedings of the
12th International Conference on Principles of Kiemlge Representation and Reasoning. KR, AAAI
Press (2010).

SPARQL Query Language for RDF. W3C Recommendatid® January 2008.
http:/iwww.w3.org/TR/rdf-spargl-query/ Last accebd8-April-2012.

SPARQL 1.1 Entailment Regimes. W3C Working Draft5 0 January 2012,
http://lwww.w3.0rg/TR/spargl11-entailment/ Last assmed 18-April-2012.

SPARQL 1.1 Query Language. W3C Working Draft 05 nuimy 2012.
http://www.w3.0rg/TR/sparql11-query/ Last access8eApril-2012.

Gottlob, G., Schwentick, T.: Rewriting Ontologic@ueries into Small Nonrecursive Datalog Pro-
grams. In Proceedings of the 24th International i&toop on Description Logics (DL 2011), Barcelo-
na, Spain, July 13-16, 2011.

Pe'rez-Urbina, H., Motik, B., Horrocks, I.: Tralola Query Answering and Rewriting under Descrip-
tion Logic Constraints. Journal of Applied Logi23(2010) 186—209.

Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontis. In: Proceedings of the 22nd National
Conference on Artificial Intelligence - Volume 2AAI'07, AAAI Press (2007) 1434—1439.

Stocker, M., Smith, M.: Owlgres: A Scalable OWL&Rener. In Proceedings of the Fifth OWLED
Workshop on OWL: Experiences and Directions, Katis;, Germany, October 26-27, 2008.

Bishop, B., Bojanov, S.: Implementing OWL 2 RL a@@VL 2 QL. In Proceedings of the 8th Inter-
national Workshop on OWL: Experiences and Direci(@WLED 2011), San Francisco, California,
USA, June 5-6, 2011.

Narayanan, S., Catalyurek, U., Kurc, T., SaltzParallel Materialization of Large ABoxes. In: Pro
ceedings of the 2009 ACM symposium on Applied Cotimgu SAC'09, New York, NY, USA, ACM
(2009) 1257—1261.

Urbani, J., Kotoulas, S., Massen, J., van HarmdfenBal, H.: Webpie: A web-scale parallel infer-
ence engine using mapreduce. Web Semantics: Sciangces and Agents on the World Wide Web
10 (2012).

Hogan, A., Pan, J., Polleres, A., Decker, S.: SAOBmplate Rule Optimisations for Distributed
Reasoning over 1 Billion Linked Data Triples. Inth9international Semantic Web Conference
(ISWC). (November 2010).

