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Abstract. A number of ontology reasoners have been developed for rea-
soning over highly expressive ontology languages such as OWL DL and
OWL 2 DL. Such languages have, as a consequence of high expressivity,
high worst-case complexity. Therefore, reasoning tasks such as classifica-
tion sometimes take considerable time on large and complex ontologies.
In this paper, we carry out a comprehensive comparative study to ana-
lyze classification performance of four widely-used reasoners, FaCT++,
HermiT, Pellet and TrOWL, using a dataset of over 300 real-world on-
tologies. Our investigation on correlating reasoner performance with on-
tology metrics using machine learning techniques also provides additional
insights into the hardness of individual ontologies.

1 Introduction

Ontology reasoning tasks such as classification and consistency checking are fun-
damental to semantics-enabled applications. Very expressive ontology languages
that can model complex domain knowledge have been designed and are widely
used in a number of domains. Such languages include OWL DL [14] and its
successor, OWL 2 DL [11]. High expressivity, however, incurs high computa-
tional complexity. For the core reasoning tasks of classification and consistency
checking, OWL DL is NExpTime-complete, while OWL 2 DL is 2NExpTime-
complete. Hence, terminological reasoning over such languages is a challenging
task, especially for very large ontologies.

Highly efficient TBox reasoning algorithms such as those based on tableaux [4,
15] and hypertableaux [19] have been proposed to tackle this formidable problem.
Various optimization techniques such as absorption, backtracking and blocking
have been developed [13] to reduce search space, therefore speeding up the pro-
cessing and reducing memory footprint. Based on these algorithms, a number
of efficient ontology reasoners such as FaCT++ [26], HermiT [19], Pellet [23]
and TrOWL [25] have been implemented. These reasoners can handle some very
large ontologies such as GALEN, Gene Ontology and NCI Thesaurus Ontology.
However, it has also been pointed out that further studies are still needed for
improving terminological reasoning [9].

In a lot of situations such as in the mobile context [24], it is very valuable to
obtain a (rough) estimate of reasoning performance before reasoning is actually



carried out. Although theoretical worst-case complexity has been established for
these languages, such complexity is not necessarily a reliable indication of real-
world, typical-case performance. Part of the reason is that different reasoners im-
plement different algorithms and optimization techniques, hence they may have
widely different performance for a same ontology. In other words, the hardness
of reasoning on individual ontologies is a product of the intrinsic characteristics
of the ontologies (i.e., metrics [28]) and that of the reasoner employed.

Therefore, we believe it is of both theoretical and practical importance to
adequately measure, benchmark and characterize performance of different rea-
soners. Many existing works on (TBox) reasoner benchmarking [20, 5, 7, 9, 10]
have used relatively small to medium-sized datasets, which do not provide suffi-
cient grounds for rigorously analysis of performance characteristics. These works
also only focused on comparing and benchmarking performance of different rea-
soners – they did not provide insights into such performance.

In this paper, we attempt to conduct a rigorous and comprehensive study that
characterizes performance of the above four reasoners, for the task of ontology
classification, on a set of over 300 ontologies of varying sizes and hardness. We
also study the relationship of the hardness of individual ontologies and their
intrinsic syntactic and structural metrics [28] by applying a machine learning
approach. Our preliminary results are very encouraging, showing a high accuracy
of correctly predicting (discretized) performance of all the four reasoners.

2 Background and Related Work

Tremendous progress has been made in recent years in designing and implement-
ing highly optimised inference algorithms and reasoners. Tableau- and hypertableau-
based algorithms [3, 6, 19] have dominated DL inference research and many rea-
soners are based on these algorithms, including FaCT++ [26], Pellet [22] and
HermiT [21]. With the introduction of OWL 2 and its profiles, other approaches,
including completion rule-based and consequence-based algorithms have been de-
veloped to tackle inference problems on less expressive DLs such as EL++ (the
OWL 2 EL profile) and DL-Lite (the OWL 2 QL profile), for which polynomial-
time algorithms exist for standard DL inference tasks such as subsumption check-
ing [1, 8]. Reasoners including CEL [2], CB [16] and Snorocket [17] are based
on this approach. TrOWL [25] is an inference infrastructure that takes a hybrid
approach: it applies syntactic and semantic approximation to transform OWL
2 DL ontologies to less expressive profiles (QL and EL) for different reasoning
tasks, and it uses a variety of underlying reasoners for different languages.

Quite a few works have been done on benchmarking ontology reasoners. Ear-
lier works primarily focused on OWL 1 and DAML+OIL ontologies. Bock et
al. [7] benchmarked the time performance of 5 reasoners, KAON2, OWLIM, Pel-
let, RacerPro and Sesame, over a dataset generated from four small ontologies
by varying the number of ABox assertions. Two reasoning tasks were evalu-
ated: classification and conjunctive query answering. Because of the size of the
ontologies, the majority of reasoners achieve a subsecond response time for clas-



sification on the four ontologies. On the other hand, they exhibit a more varying
behavior for conjunctive query answering. Pan [20] compared three reasoners,
FaCT++, Pellet and RacerPro, on a dataset of 135 (OWL 1) ontologies for the
task of classification, and commented on the relative strengths and weaknesses of
the reasoners. These ontologies are relatively small too: with an average of 43.7
classes and 19.3 relations per ontology. Gardiner [10] et al. also compared four
reasoners, FaCT++, KAON2, Pellet and RacerPro, on 172 (OWL 1) ontologies.
Their experiments showed that different reasoners have different characteristics,
but did not discuss these differences in detail.

A new benchmarking framework based on justifications has recently been
proposed by Bail et al. [5]. Justifications are small minimal subsets of logical
axioms and assertions sufficient for an entailment to hold. The authors argued
that a justification-based, but not classification-based, benchmarking approach
provides better fault isolation capabilities and is useful in reasoner development.

More recently, Dentler et al. [9] conducted a comprehensive comparative
study of three dimensions of eight reasoners, CB, CEL, FaCT++, HermiT, Pellet,
RacerPro, Snorocket and TrOWL, that support the OWL 2 EL profile. A num-
ber of TBox reasoning tasks are performed on three large OWL 2 EL ontologies
(Gene Ontology, NCI Thesaurus and SNOMED CT) and it was observed that
the reasoners exhibit a significant difference in performance, and that further
research is required to better understand this phenomenon.

In the SEALS project1, the Storage and Reasoning Systems Evaluation Cam-
paign 2010 aimed at evaluating DL-based reasoners. In the evaluation, the per-
formance of three reasoners FaCT++, HermiT, and jcel were measured and
compared in terms of a suite of standard inference services such as classification,
class/ontology satisfiability, and logical entailment. This evaluation results in a
framework revealing a good performance comparison of different reasoners. How-
ever, it does not seem to tackle the problem of performance prediction. Hence,
our work presented here is complementary to the SEALS project.

3 Methodology

The principal aims of this paper are (1) to benchmark the performance of rea-
soning tasks of a number of reasoners over a large and diverse dataset, and (2)
to experimentally determine whether a combination of ontology metrics can be
leveraged to effectively predict the response time for specific reasoning tasks.
Thus there are four dimensions which need to be considered:

Reasoning task - For our evaluation, we focus on classification. Classification
is the process of making all class subsumption relations explicit in an ontology
and it is one of fundamental TBox reasoning tasks. Another main reasoning
task, consistency checking, is not chosen because of a pragmatic reason: that
different reasoners perform consistency checking at different times. It is some-
times performed together with ontology loading in some reasoners, while some

1 http://www.seals-project.eu



other reasoners perform consistency checking in a separate step after loading
the ontology.

Ontology features - The evaluation needs to focus on a diverse set of publicly
available ontologies which have different sizes (ranging from a few KB, to sev-
eral MB), vocabulary sizes, structural characteristics and most importantly,
different performance characteristics.

Reasoner benchmarking - The evaluation must perform classification on a
number of ontologies using different publicly available reasoners. In this work,
we will compare those reasoners that are actively-maintained, open-source
and are able to support expressive languages such as OWL 2 DL.

Predictive models - The supervized machine learning technique, classifica-
tion,2 is used in the experiments to develop a predictive model to estimate in-
ference time from metric values. Our goal is to be able to predict the member-
ship of an ontology within a number of categories, defined over (discretized)
reasoning time. A number of classifiers will be investigated to achieve the
most effective prediction for different reasoners, since it is well-known that
different classifiers will produce results of differing accuracies for different
datasets.

For our specific problems of reasoner benchmarking and predictive model
construction, we therefore first need to collect reasoning runtime data and met-
rics data. Secondly, we then need to leverage these metrics to develop a predictive
model to determine the reasoning task time given the ontology metric values (for
the subset of metrics that have the capacity to determine reasoning task time)
and the reasoner. There are the following key steps in our approach:

1. Data collection. We need to collect a number of ontologies with a variety of
characteristics, which may include recency, the application domain, file size,
metric values, underlying ontology language, and most importantly, reasoning
time. We also need to compute, for each ontology collected, its metric values,
and an average time for the task of ontology classification. The classification
reasoning task is performed on each ontology and the average reasoning time
is recorded.
Furthermore, since our goal is to learn predictive classifiers, we also need to
discretize the continuous reasoning time in order to assign ontologies into
separate groups based on their reasoning time.

2. Building the predictive model. The third stage of our approach constructs
classifiers that classify ontologies into categories based on discretized reason-
ing time. The classifier typically builds a predictive model in the form of a
Bayesian model, a decision tree, a regression model, or a set of rules. The
prediction model is then evaluated for accuracy based on the widely-used 10-
fold cross-validation. In this validation practice, each dataset is partitioned
into k subsets. Each time, one of the k subsets is used as testing data, and
the remaining (k-1) subsets form training data. The cross-validation process

2 Note that this is an entirely different concept than ontology classification.



is then repeated k times with each of the k subsets used exactly once as the
testing data. All k results from the folds can then be used as performance
statistics. We use k = 10 as 10 is very often used in such validation practice.

4 Experiments and Analysis

Reasoners and reasoning task. We select four widely-used, actively-maintained
and open-source reasoners that support OWL 2 DL, namely FaCT++ [26], Her-
miT [19], Pellet [23] and TrOWL [25] for our analysis of classification time. Note
that TrOWL is incomplete because of the approximation it applies. In our ex-
periment, CEL [2] is the underlying reasoner that TrOWL uses. The other three
reasoners are complete OWL 2 DL reasoners. Table 1 below provides a brief
summary of these reasoners.

Table 1. A brief summary of the four reasoners benchmarked.

FaCT++ HermiT Pellet TrOWL

Version 1.5.3 1.3.5 2.3.0 0.8

Expressivity OWL 2 DL OWL 2 DL OWL 2 DL OWL 2 DL (partial)

Reasoning algorithm Tableaux Hypertableaux Tableaux Completion rules (CEL)

Consistency checking, another TBox reasoning task, is not selected. We ob-
serve that for some reasoners, consistency checking takes very short time on
average (0.29s for HermiT and 0.05s for Pellet). At the same time, there is a
very large discrepancy in consistency checking time between the four reasoners
(mean: 4.02s for FaCT++ and 131.7s for TrOWL). Such a difference may be
attributed to the different ways the reasoners report consistency checking (with
or after ontology loading). Moreover, HermiT, Pellet and TrOWL all have a
relatively normal distribution of consistency checking time. On the other hand,
FaCT++ has quite a skewed distribution, where a single ontology takes more
than 1,020 seconds while no other ontology takes more than 15 seconds. Hence,
we believe it is not a fair comparison and we cannot draw useful conclusions
from it.

The dataset. 358 real-world ontologies are collected, a large proportion of
which are collected from the Manchester Tones Ontology Repository and NCBO
BioPortal.3 These ontologies vary significantly in file size, ranging from less than
4KB to almost 300MB. All ontologies collected from BioPortal are large ontolo-
gies with at least 10,000 terms. The expressivity of these ontologies spans simpler
languages such as OWL 2 EL and QL, through OWL DL to OWL 2 DL and
OWL Full, with a large number being in OWL 2 DL. At the same time, this
collection also includes some well-known hard ontologies such as DOLCE, FMA,
Galen, the Gene Ontology, the NCI Thesaurus and the Cell Cycle Ontology.

3 http://owl.cs.manchester.ac.uk/repository/ and http://www.bioontology.

org/



Metrics As stated previously, we are interested in studying ontology metrics [28]
and their capability in predicting classification time. Based on the metrics defined
in [28], we propose a set of 27 metrics that we believe can characterize the
structure and complexity of a given ontology. This set of metrics are derived
from asserted logical axioms in an ontology are are divided into the following
four categories:

– Ontology-level (ONT) metrics measure the size and structural character-
istics of an ontology as a whole. Four ONT metrics are defined in [28]: SOV
(size of vocabulary), ENR (edge node ratio), TIP (tree impurity) and EOG
(entropy of graph). We define two additional metrics: CY C, that measures
the Cyclomatic complexity of the ontology graph, and RCH, that measures
the ratio between the number of anonymous class expressions and the total
number of class expressions.

– Class-level (CLS) metrics measure the characteristics of OWL classes, which
are first-class citizens in an ontology. Four such metrics are defined in [28],
including NOC (number of children), DIT (depth of inheritance), CID (in-
degree) and COD (out-degree).

– Anonymous class expressions (ACE) metrics count the total occurrences
of each kind of anonymous class expressions that are available in OWL 2 DL.
There are altogether 9 metrics: enumeration (ENUM), negation (NEG), con-
junction (CONJ), disjunction (DISJ), universal/existential quantification
(UF/EF ) and min/max/exact cardinality (MNCAR/MXCAR/CAR).

– Properties (PRO) metrics measure the total occurrences of each kind of
property declarations/axioms. The 8 PRO metrics records the number of oc-
currences of property declarations and axioms. There are 8 metrics, one each
for: object/datatype property declaration (OBP/DTP ), functional (FUN),
symmetric (SYM), transitive (TRN), inverse functional (IFUN), property
equivalence (EQV ) and inverse (INV ).

Data collection. For each ontology, values for the 27 metrics are collected. For
each ontology and each reasoner, CPU time on ontology classification (but not
loading) is averaged over 10 independent runs and recorded. All the experiments
are performed on a high-performance server running OS Linux 2.6.18 and Java
1.6 on an Intel (R) Xeon X7560 CPU at 2.27GHz with a maximum of 40GB
allocated (to accommodate potential memory leaks) to the 4 reasoner. OWL
API [12] (version 3.2.4) is used to communicate with all four reasoners. Some
hard ontologies take an extremely long time to classify. Hence, we apply a 50,000-
second cutoff for all the reasoners.

4.1 Reasoner Performance Characteristics

The distributions of the raw reasoning time for the four reasoners can be found
in Figure 1, where reasoning time is plotted in log scale due to its wide range
(0s ≤ R ≤ 50,000s), against ontologies sorted by their reasoning time. Note that
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Fig. 1. Raw classification time of the four reasoners.

all reasoners except TrOWL time out (50,000 seconds) on a number of large and
complex ontologies. As can be seen in the figure below, the distributions are
highly skewed for all four reasoners.

Table 2 below provides some more details about the classification perfor-
mance of the four reasoners, with the lowest value for each measure in boldface
and the highest in italic. It can be seen in the second row that each reasoner fails
to perform classification on a number of ontologies due to parsing or processing
errors or the ontology being inconsistent.

It can be seen that for each reasoner, its mean is much higher than the
median, indicating that the distribution is heavily skewed towards the right
and that it may be the result of a small number of large values, which can
be seen quite easily in Figure 1. It should also be noted that having a mean
much larger than the median suggests that a distribution may be quite steep.
This observation is confirmed by the high values of the skewness (Equation 1)
and Kurtosis (Equation 2) measures in the table, which measure the (lack of)
symmetry and the peakedness, respectively (s is the standard deviation of the
sample). A skewness close to zero indicates roughly evenly distributed values.
A positive skewness value indicates that the right-side tail of the distribution is
longer than that of the left side, which is the case for all the four reasoners. A
normal distribution has a Kurtosis measure of 0. A high Kurtosis value indicates
that the data has a high peak, which is the case for all the four reasoners.

G1 =
n

(n− 1)(n− 2)

N∑
i=1

(
xi − x

s

)2

(1)

G2 =

(
n(n + 1)

(n− 1)(n− 2)(n− 3)

N∑
i=1

(
xi − x

s

)4
)
− 3(n− 1)2

(n− 2)(n− 3)
(2)

It can also be seen that the reasoners exhibit quite different performance
characteristics. TrOWL and Pellet successfully complete on more ontologies than
FaCT++ and HermiT. FaCT++, HermiT and Pellet all time out on a number



Table 2. Summary of raw classification time of the four reasoners.

FaCT++ HermiT Pellet TrOWL

Number of ontologies re-
sulted in error

89 67 28 21

Number of ontologies
timed out (> 50, 000s)

6 5 8 0

Mean (s) 1,366.4 879 1,400.3 65.41

Standard deviation (s) 7,967.41 6765.28 8,121.11 490.07

Median (s) 0.002 0.037 0.02 0.007

Skewness 3.5 7.46 5.81 9.56

Kurtosis 10.63 49.68 32 95.53

of ontologies, but not TrOWL. As a result of the clipping, the true performance
value distributions for the former three reasoners may be even more skewed and
peaked.

The performance of the four reasoners can be further characterized below.
FaCT++ has the lowest median, its distribution is the least skewed and

also the least steep (lowest skewness and Kurtosis values) among the four. From
Figure 1 it can be seen that FaCT++ performs the best on a large number of
ontologies. However, it also fails on the most number (89) of ontologies (not
due to clipping). HermiT has the highest median. However, its mean is the
second lowest, after TrOWL. It also fails on quite many (67) ontologies. Pellet
times out on the most number (8) of ontologies, indicating that Pellet may have
trouble handling extremely large and difficult ontologies. Moreover, it has the
highest mean and standard deviation, both of which are quite close to those of
FaCT++. TrOWL has the lowest mean and standard deviation, both of which
are much lower than those of the other three reasoners. This is due in part to
the fact that TrOWL does not time out on any ontology. We note that TrOWL
applies syntactic and semantic approximation, and hence is incomplete. Hence,
the better performance may be the result of such incompleteness and requires
further analysis. It is also noteworthy to point out that TrOWL has the most
skewed and the steepest distribution among the four reasoners.

4.2 Predictive Model Construction

As stated previously, being able to predict reasoning performance using ontolo-
gies metrics is highly desirable for ontology engineering and ontology-enabled
applications. In this work, we use classification in machine learning to build
predictive models that accurately estimate reasoning performance of ontology
classification. This section presents a major contribution of the paper. Namely,
for each reasoner, we identify an accurate predictive model for reasoning time for
the classification reasoning task, and a classifier used for determining the model.

As stated in the previous section, discretization is a necessary first step be-
fore classifiers can be trained. After raw run time values are collected, trivially
simple ontologies (with reasoning time ≤ 0.01s) are removed from the dataset.



Experiments on the entire dataset without removal are also performed, where
trained classifiers have even higher accuracy. However, this is due to the fact
that the entire dataset is much more skewed towards simple ontologies. Hence
the high accuracy is not really an improvement.

Reasoning time is then discretized into 4 bins uniformly, with unit interval
width. The interval width is used as exponent of the reasoning time, i.e., 10i is
the cutoff point between bin i and bin i+ 1, for 1 ≤ i ≤ 4. The bins are labelled
‘A’, ‘B’, ‘C’ and ‘D’. A summary of the discretization and the size of the dataset
for each reasoner in each bin is shown in Table 3.

Table 3. Discretization of reasoning time and number of ontologies in each bin.

Discretized label Classification time Fact++ HermiT Pellet TrOWL

A A < 1s 75 154 126 105

B 1s ≤ B <10s 16 35 38 17

C 10s ≤ C < 100s 6 12 12 13

D 100s ≤ D 11 13 16 14

Total discretized 108 214 192 149

Trivial ontologies 161 77 138 188

Ontologies in error 89 67 28 21

It is well-known that reasoning performance is affected by the intrinsic char-
acteristics of individual ontologies and that of the reasoner applied (underlying
algorithms and optimization techniques). Hence, a single classifier may not be
able to accurately model classification performance for all four reasoners. Hence,
we employ a number of classifiers and identify the most effective one to build a
predictive model for a given reasoner.

We use classification accuracy (simply accuracy) [18] to evaluate the effec-
tive of a classifier. Classification accuracy measures the percentage of correctly
classified ontologies over all ontologies, and it is often considered to be the best
performance indicator for evaluating classifiers in test data. As mentioned be-
fore, 10-fold cross validation is used to evaluate the classifiers and measure their
performance in accuracy.

In total, we choose ten well-known classifiers available in Weka [27], with the
aim of finding the best predictive models within an extensive spectrum. These
classifiers are representative of six categories of classifiers: Bayesian classifiers
(BayesNet and NäıveBayes), decision tree-based classifiers (J48 and Random-
Forest), rule-based classifiers (DecisionTable and OneR), a Support Vector Ma-
chine algorithm (SMO), a logistic regression-based classifier (SimpleLogistic),
and instance-based classifiers (kNN, 1 ≤ k ≤ 10, and K*).

Fig. 2 shows the accuracy of all ten classifiers for the four reasoners, using
all 27 metrics as features. A number of important observation can be made.

– Three classifiers produce the best accuracy results for the four reasoners, with
RandomForest performing the best for two reasoners, HermiT and Pellet.
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– All the best classifiers for each reasoner achieve high accuracy, ranging from
80.56% for FaCT++ to 88.85% for TrOWL. Hence, it suggests that we can use
such classifiers to predict classification performance with even higher accuracy.

– Overall, all classifiers produce consistently high accuracy, all higher than 70%
with an average of 79.08%. This provides further evidence that (1) the pre-
dictive models found using our proposed approach can be effectively used for
predicting classification performance; and (2) that ontology metrics can be
used to learn predictive models for the classification task.

5 Conclusion

Our contributions in this paper are summarised are two-fold. Firstly, we study
the classification performance of four widely-use, state-of-the-art OWL 2 DL
reasoners, FaCT++, HermiT, Pellet and TrOWL (incomplete), comparatively.
To the best of our knowledge, this is the most comprehensive of such studies in
terms of the size and variability of the dataset (more than 300 ontologies with
reasoning time ranging from subseconds to over 50,000 seconds). Some unique
characteristics are discovered through our detailed study. Such charatceristics
can be used in comparing and selecting reasoners for a given set of performance
criteria.

Secondly, we further investigate the hardness of classification performance as
a product of individual ontologies and reasoners. By applying machine learning
techniques, we construct a model that can accurately predict performance with
ontology metrics as features. Again, to the best of our knowledge, this is the



first known study to apply machine learning techniques to predicting reasoning
time for inference tasks. Experimental results confirm the effectiveness of our
approach as the classifiers that are learned produce high (> 80%) accuracy for
all the four reasoners.

Our future work will focus on further understanding the role individual met-
rics play in the predictive models and investigating their relative strength in
predicting classification performance. We also plan to study a wider set of met-
rics in predicting reasoning performance. Though classification result is not the
focus of this paper, we will compare that across reasoners to investigate their
correctness. Moreover, we will investigate the feasibility of using metrics as a
guide to generate synthetic ontologies that possess certain performance charac-
teristics.
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