
Proceedings of the

OWL Reasoner Evaluation Workshop

(ORE 2012)

Collocated with IJCAR 2012 Conference
July 1st, Manchester,UK

Volume 858 of CEUR-WS.org: http://ceur-ws.org/Vol-858/

Edited by: Ian Horrocks, Mikalai Yatskevich and Ernesto Jiménez-Ruiz

1

http://ceur-ws.org/Vol-858/

Proceedings of the OWL Reasoner Evaluation Workshop (ORE 2012)

Preface

OWL is a logic-based ontology language standard designed to promote interoperability, partic-
ularly in the context of the (Semantic) Web. The standard has encouraged the development
of numerous OWL reasoning systems, and such systems are already key components of many
applications.

The goal of this workshop is to bring together both developers and users of reasoners for
(subsets of) OWL, including systems focusing on both intensional (ontology) and extensional
(data) query answering.

The workshop provided several datasets to evaluate the standard tasks of the reasoning
systems. Furthermore, participants also had the possibility to submit their systems using the
SEALS platform1 in order to obtain standardised evaluations.

There were 16 papers submitted each of which was reviewed by at least three members of
the program committee or additional reviewers. The program committee selected 14 papers
for oral and poster presentation. Four reasoning systems were also submitted to the SEALS
platform for evaluation: HermiT, FaCT++, jcel and WSReasoner. The evaluation results will
be discussed with the authors during the workshop and published online shortly after it.2

Acknowledgements

We thank all members of the program committee, additional reviewers, authors and local
organizers for their efforts. We would also like to acknowledge that the work of the work-
shop organisers was greatly simplified by using the EasyChair conference management system
(www.easychair.org) and the CEUR Workshop Proceedings publication service (http://ceur-
ws.org/). The organisers were partially supported by the the EU FP7 project SEALS and by
the EPSRC projects ConDOR, ExODA and LogMap.

1http://www.seals-project.eu/
2http://www.cs.ox.ac.uk/isg/conferences/ORE2012/

2

http://www.seals-project.eu/
http://www.cs.ox.ac.uk/isg/conferences/ORE2012/

Proceedings of the OWL Reasoner Evaluation Workshop (ORE 2012)

Program Committee

Franz Baader TU Dresden
Jérôme Euzenat INRIA & LIG
Jeff Heflin Lehigh University
Ian Horrocks University of Oxford
Ernesto Jiménez-Ruiz University of Oxford
Pavel Klinov University of Arizona, Clark and Parsia, LLC
Francisco Mart́ın-Recuerda Universidad Politecnica of Madrid
Bijan Parsia University of Manchester
Stefan Schlobach Vrije Universiteit Amsterdam
Kiril Simov Bulgarian Academy of Sciences
Mikalai Yatskevich University of Oxford

Additional Reviewers

Ana Armas University of Oxford
Julian Mendez TU Dresden
Peter Patel-Schneider
Rafael Peñaloza TU Dresden
Giorgio Stefanoni University of Oxford

3

Proceedings of the OWL Reasoner Evaluation Workshop (ORE 2012)

Keyword Index

Benchmark P11
benchmarking P8

classification P8
Consequence-based Reasoning P6

Description Logics P1, P7, P12
DL Reasoning P2
DL-Lite P7

EL+ P12

forward chaining P4

Hybrid Reasoning P6

Inference P4

jcel P12

Large and Complex Ontology Classification P6
Large Ontologies P2
large scale P4
local inference P4
LOD P14

Mapping diagnosis P9
materialization P14
medical ontologies P12
Modularity P2

named graph P4
Non-standard inferences P5

Ontology debugging P9
Ontology generation P11
Ontology integration P9
Ontology-based data access P7
Optimization P4, P13
OWL P4, P13

4

Proceedings of the OWL Reasoner Evaluation Workshop (ORE 2012)

OWL EL P10
OWL reasoning P3, P5, P8
OWLIM semantic repository P14

performance P8
projection problem P1

query answering P7
Query generation P11
query rewrite P4
query rewriting P7

random formula generator P1
RDBMS P4
reasoner P12
reasoner evaluation P10
Reasoning P13
regression P1
Reiter’s basic action theory P1
Relational P4
relational databases P3
rule-based algorithm P12

Semantic Approximation P6
situation calculus P1
SQL views P3
system description P10

Tableau-based Reasoning P6

Ubiquitous Computing P5

Very large aboxes P3

Weakening and Strengthening P6

5

Proceedings of the OWL Reasoner Evaluation Workshop (ORE 2012)

Table of Contents

Solving the Projection Problem with OWL2 Reasoners: Experimental Study. P1

Wael Yehia and Mikhail Soutchanski

Chainsaw: a Metareasoner for Large Ontologies . P2

Dmitry Tsarkov and Ignazio Palmisano

Evaluating DBOWL: A Non-materializing OWL Reasoner based on Relational Database
Technology. P3

Maria Del Mar Roldan-Garcia and Jose F Aldana-Montes

Advancing the Enterprise-class OWL Inference Engine in Oracle Database P4

Zhe Wu, Karl Rieb, George Eadon, Ankesh Khandelwal and Vladimir Kolovski

Mini-ME: the Mini Matchmaking Engine . P5

Michele Ruta, Floriano Scioscia, Eugenio Di Sciascio, Filippo Gramegna and
Giuseppe Loseto

WSReasoner: A Prototype Hybrid Reasoner for ALCHOI Ontology Classification using
a Weakening and Strengthening Approach . P6

Weihong Song, Bruce Spencer and Weichang Du

MASTRO: A Reasoner for Effective Ontology-Based Data Access. P7

Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi,
Riccardo Rosati, Marco Ruzzi and Domenico Fabio Savo

A Rigorous Characterization of Classification Performance – A Tale of Four Reasoners. . . . P8

Yong-Bin Kang, Yuan-Fang Li and Shonali Krishnaswamy

On the Feasibility of Using OWL 2 DL Reasoners for Ontology Matching Problems P9

Ernesto Jimenez-Ruiz, Bernardo Cuenca Grau and Ian Horrocks

ELK Reasoner: Architecture and Evaluation . P10

Yevgeny Kazakov, Markus Krötzsch and Frantisek Simancik

Evaluating Reasoners Under Realistic Semantic Web Conditions .P11

Yingjie Li, Yang Yu and Jeff Heflin

jcel: A Modular Rule-based Reasoner . P12

Julian Alfredo Mendez

The HermiT OWL Reasoner . P13

Ian Horrocks, Boris Motik and Zhe Wang

OWLIM Reasoning over FactForge . P14

Barry Bishop, Atanas Kiryakov, Zdravko Tashev, Mariana Damova and Kiril Simov

6

Solving the Projection Problem with OWL2 Reasoners:
Experimental Study

Wael Yehia1 and Mikhail Soutchanski2

1 Department of Computer Science and Engineering York University, 4700 Keele Street,
Toronto, ON, M3J 1P3, Canada
w2yehia@cse.yorku.ca

2 Department of Computer Science, Ryerson University, 245 Church Street, ENG281, Toronto,
ON, M5B 2K3, Canada mes@scs.ryerson.ca

Abstract. We evaluate HERMIT, an OWL2 reasoner, on a set of test cases that
emerge from an unusual but very practical way of using Description Logics
(DLs). In the field of reasoning about actions, the projection problem is an el-
emental problem that deals with answering whether a certain formula holds after
doing a sequence of actions starting from some initial states represented using an
incomplete theory. We consider a fragment of the situation calculus and Reiter’s
basic action theories (BAT) such that the projection problem can be reduced to
the satisfiability problem in an expressive description logic ALCOU . We adapt
an approach called regression where an input query is equivalently transformed
until it can be directly checked against the initial theory supplemented with the
unique name axioms (UNA) without any consideration to the rest of the BAT.
To study regression in practice, we implemented it in C++, defined an XML
SCHEMA to describe a BAT and queries, created 7 domains some of which are
inspired from well-known planning competition domains, and invented genera-
tors that can create random but meaningful instances of the projection problem.
The formula resulting from regressing a projection query, together with the ini-
tial theory and UNA, is fed to an OWL2 reasoner to answer whether the regressed
query holds given the initial theory and UNA. We measure the input formula us-
ing a number of metrics, such as a number of U-role occurrences and a number
of individuals, and evaluate the performance of HERMIT on formulas along each
dimension.

Keywords: random generator, Description Logics, projection problem, situation
calculus, Action Theory

1 Introduction
We study a new class of formulas that arise from using Description Logics to solve one
of the reasoning problems known as the projection problem (PP) which occurs naturally
in the area of reasoning about actions. We consider a sufficiently broad sub-case of PP
that can be formulated in a fragment of the situation calculus (SC) such that PP becomes
decidable. We will explain later what the PP is, but what’s important to note is that it is
a prerequisite to few other important reasoning problems like planning, which makes it
an interesting problem to tackle.

The reasoning about actions community hasn’t made solutions to the problem very
practical to use so far. There are no practical implementations that can solve the PP
in a logical language that is not purely propositional, and when initial knowledge is
incomplete, i.e., in realistic settings without the closed world assumption (CWA) and

without the domain closure assumption (DCA). Using our approach of transforming
the PP into the satisfiability problem in DL is one way we can start the ball rolling (in
the DL direction). Our goal is to provide automatically generated test cases for the DL
community to work on and speed up reasoning time on. These test cases can be used
for stress testing the DL reasoners. Indeed, our testing clearly shows that the majority
of the time spent on solving one instance of the PP is in the DL reasoner.

Our test cases usually originate from a single common setting. There are two formu-
las: a premise formula (translated into a DL concept representing an initial theory) and
a regressed query formula (translated into another DL concept). The goal is to check
if the regressed query holds given the premise. The two formulas are translated into
concepts in a DL called ALCOU that includes nominals (O), the universal role (U),
and constructs from the well-known logicALC. In addition, each test case may contain
a set of individuals that belong to certain concepts, and might be related to each other
using certain roles. We also make the Unique Name Assumption (UNA) for individuals
by stating they are pairwise unequal.

Finally, the test cases are based on some practical domains such as Logistics and
Assembly from the International Planning Competitions [6, 2], and on other domains
invented by us to illustrate the expressivity of our language L. We provide 7 domains
(Logistics, Assembly, Airport, Turing Machine Addition, Turing Machine Successor,
Scheduling World, and Hemophilia from biology) in which projection queries can be
formulated, and provide query and action sequence generators for the first four domains.
A thorough description of the domains can be found in [5].

We have developed the C++ program that transforms a PP instance into an instance
of the ALCOU satisfiability problem. Using all our tools, we are able to generate ran-
dom PP instances, and subsequently transform them into ALCOU concepts given as
input to OWL2 reasoners.

There are at least two directions that can be taken from here in terms of testing.
One is to generate test cases by varying the complexity of the projection problem such
as initial state complexity/size, query size, and length of the action sequence. This will
lead to investigation of the projection problem in terms of reasoning time. Second is
to generate arbitrary but simple PP instances, and study the final transformed formulas
based on their structure. That will provide new test suites for DL reasoners, and shed
light on the areas where they need improvement. We take the second approach in this
paper, because the first was studied in [1] where a comparison between two approaches
to solving the projection problem is carried out. In this paper, we will measure the
reasoning time for HERMIT3, an OWL2 reasoner, on a randomly generated pool of test
cases. We group the test cases based on (a) a number of individuals in the domain, for
similar queries, and (b) a number of U-role occurrences, then study the behavior of
HERMIT on each group.

We will now explain the nature of the problem we are solving, and how it leads us
to using DL reasoners.

3 http://www.hermit-reasoner.com/publications.html

2 Background
In the field of reasoning about actions, an important problem is answering whether a for-
mula holds after executing a sequence of actions starting from some initial state. This
problem is known as the projection problem, and there are many flavors of the problem
that differ by the restrictions on the query, a set of initial states, language at hand, and
other properties. In description logics (DLs) and earlier terminological systems, this
problem was formulated using roles to represent transitions and concept expressions to
represent states. This line of research as well as earlier applications of DLs to planning
and plan recognition are discussed and reviewed in [3]. Reiter showed that the projec-
tion problem in the situation calculus can be solved using a method called regression
[7]. The problem is undecidable in the general SC, but by limiting the expressivity to a
fragment of SC one can get decidability. We propose a fragment P based on a language
L in which we solve the projection problem using regression. Regression (explained be-
low) is a method of transforming the projection problem into a satisfiability problem in
some language. This language is critical, as the fact whether SAT in the language is de-
cidable will lead to the decidability of the projection problem. Our test case generation
and testing is based on P , and the language used to solve the satisfiability problem after
regression can be mapped to the DL ALCOU . This is how we end up using the OWL
reasoners because they can easily handleALCOU concepts. The executability problem
is another common problem where an action’s precondition axioms are checked for
satisfiability in a given state. This problem is important as mechanisms like regression
depend on the assumption that the action sequence in the query is executable starting
from the initial situation.

In this paper, all constants start with upper case, and all variables with lower case
letters. The free variables in formulas are assumed to be ∀-quantified at front. We use
the standard first order logic (FOL) definitions of well-formed formulas and terms.

2.1 Basic Action Theories and Language L
This approach is based on Basic Action Theories in SC. We will be brief in our descrip-
tion of BATs, but the interested readers can find formal definitions in [8]. In general,
a BAT D consists of the pre-condition axioms (PAs) DP , the successor state axioms
(SSAs) DSS , which characterize the effects and non-effects of actions; an incomplete
initial theory DS0 about the initial situation S0; a set of domain independent founda-
tional axioms; and axioms for the unique-name assumption (UNA). It is also possible
to augment the BAT with a TBox [9, 4]. In SC, a situation is a sequence of actions.
The truth values of some of the predicates can vary with respect to the state pointed out
by the sequence of actions. The fluents are the predicates with a situation term as their
last argument. You can think of them as “dynamic” predicates whose truth value can
change based on the situation argument. Other predicates (with no situation argument)
are called “static” predicates, because their truth value does not depend on situation.
We say that a SC formula φ(s) is uniform in s, if s is the only situation term mentioned
in φ(s), and φ(s) has no quantifiers over situation variables.

Subsequently, we consider only BATs with relational fluents, and no other function
symbols except do(a, s) and action functions are allowed. Terms of sort object can only
be constants or variables. Action functions can have any number of object arguments.

The following is a short and informal definition of the language L that is used to
construct formulas that are allowed in our restricted BATs. The precise definition is
provided in [9]. L is a set of FOL formulas that is divided into two symmetric subsets
Lx and Ly . It uses a finite set of auxiliary variables usually denoted by z1, z2, and
so on (whose sole purpose is to be replaced by constants during regression), as well
as the x and y variables. The main restriction is that z-variables cannot be quantified
over, hence they are always free in L formulas, while the x and y variables can be
quantified, but only one of them can be free in a particular L formula. The Lx set
includes all formulas with free x, and Ly includes all formulas with free y. The L
formulas without occurrences of x, y, and the L formulas where all occurrences of x
and y variables are bound belong to both Lx and Ly . Informally, an Lx formula (Ly

formulas are symmetric) has one of these syntactic forms:

1. atomic formulas such as true, false, x = t1, A(t1), and R(t1, t2),
where A and R are unary and binary predicate symbols respectively, t1 and t2 can
be either constants or z-variables, and t1 can also be x.

2. non atomic formulas such as:
(a) A(x)∧B(x),A(x)∨B(x), and ¬A(x), whereA(x) andB(x) are Lx formulas.
(b) ∀t1.D(t1), ∃t1.D(t1), ∀y.R(t2, y)⊃C(y), and ∃y.R(t2, y)∧C(y),

where D(t1) is a Lx or Ly formula depending on whether t1 is x or y, C(y) is
Ly formula, R is a binary predicate symbol, and t2 can be either x, a constant,
or a z-variable.

Note any zi variable other than x and y has to be free in a formula from L. The intuition
behind the definition ofL is thatL formulas with zi variables instantiated with constants
should be ALCOU representable.

Lemma 1. For any formula φ ∈ L with all z-variables instantiated with constants,
there exist a translation to an ALCOU concept with no more than a linear increase in
the size of φ. The inverse also holds, i.e. anyALCOU concept can be translated into an
L formula without z-variables.

The variables zi are important for our purposes because they serve as arguments of ac-
tions in axioms. Thanks to them, we can consider BATs where actions may have any
number of arguments, thereby increasing expressivity of BATs that can be formulated.
This becomes important when benchmark planning domains (considered as FOL spec-
ifications) have to be represented as our BATs. Notice that L formulas do not always
have equivalent ALCOU concepts; only L formulas without z-variables do have. But
this is exactly what is required for our purposes of regression. The final regressed for-
mula is guaranteed to be z-variable free, since in the projection formula uniform in S
all arguments of actions mentioned in the situation term S must be instantiated with
constants. As a consequence, all z variables become instantiated as well. The Lemma 1
is the reason why we can use the DLALCOU to solve any PP instance in our class P of
BATs. Lemma 1 is proved using the standard translation between DLs and First Order
Logic (FOL); the proof is similar to the proof of Lemma 1 in [4]. Notice that using the
standard translation between FOL and a DL, the formula ∀y.R(t2, y)⊃C(y) translates
as ∀R.C, the formula ∃y.R(t2, y)∧C(y) becomes ∃R.C, and the formulas ∀t1.D(t1),

∃t1.D(t1) can be translated as ∀U.D and ∃U.D, respectively. The latter formulas are
handy for our purposes because in our axioms we need unguarded quantifiers. As an-
other example, a z-free L formula ∃x.(Box(x)∧x 6=B1∧ready(x)), some box distinct
from B1 is ready, can be translated to ALCOU as ∃U.(Box u ¬{B1} u ready), where
B1 is a nominal. Notice that the nominals are handy to translate exceptions.

We proceed to describing how L is used in the BAT, and how it expands the expres-
sivity of the BAT to beyond DLs, while maintaining complexity of deciding the PP in
the range acceptable from a DL perspective. To facilitate understanding of each part of
the BAT, we will use examples from one of our domains, the Logistics domain.

The domain describes objects (boxes or luggage) that can be loaded and unloaded
from vehicles (trucks or airplanes) and transported from one location to another. Trucks
can be driven from one location to another in the same city, while airplanes can fly be-
tween airports (which are locations) in different cities. Let the logical language include:

1. Four action functions: load(obj, vehicle, location), unload(obj, vehicle, location),
drive(truck, locFrom, locTo, city), fly(airplane, locFrom, locTo).

2. Three relational fluents: loaded(obj, vehicle, s), at(x, loc, s), and ready(obj, s)
(where x can be an object or a vehicle).

3. Static unary predicates (i.e. predicates with no situation term) to describe each
type of entity, and one static binary predicate in city(loc, city).

For brevity, let a vector x of object variables denote either x, y, or 〈x, y〉, and let z
denote a vector of place holder variables 〈z1, z2, ...〉.
Action precondition axioms (PAs) DAP : the preconditions that have to hold before an
action can be executed. There is one axiom per action Act(z) of the following form:

(∀z, s). Poss(A(z), s) ≡ ΠA(z, s),

where Poss (derived from ’possible’) is a special binary predicate that occurs on the
left hand side of PAs only, and ΠA is an L formula whose only free variables are the
place holder zi variables. The formula ΠA(z, s) is uniform in s. For example, the PA
for action load(Object, V ehicle, City) is the following:

Poss(load(z1, z2, z1), s) =

(obj(z1) ∧ veh(z2) ∧ loc(z3) ∧ ready(z1, s) ∧ at(z1, z3, s) ∧ at(z2, z3, s))

Definition 1. Let φx and φy be Lx and Ly formulas, respectively, such that they are
uniform in s (φx, φy are called context conditions). Let u be a vector of variables
at most containing z and an optional x variable, v be a vector of variables at most
containing z, and optionally x or y variables. Let Act(u) and Act(v) be action terms,
and a be an action variable. A CC formula has one of the following two forms:

∃z.a = Act(u) ∧ φx(x, z, s) SSA for an unary fluent
∃z.a = Act(v) ∧ φx(x, z, s) ∧ φy(y,z, s) SSA for a binary fluent

Successor state axioms (SSAs) DSS : Define the direct effects and non-effects of ac-
tions. There is one SSA for each fluent F (x, s) of the following syntactic form:

F (x, do(a, s)) ≡ γ+F (x, a, s) ∨ F (x, s) ∧ ¬γ−F (x, a, s), (1)

where each of the γF ’s are disjunctions of CC formulas. For example, the SSA for fluent
loaded is as follows:

loaded(x, y, do(a, s)) =

[∃z1.a = load(x, y, z1) ∧ obj(x) ∧ veh(y) ∧ loc(z1) ∧ ready(x, S) ∧ at(x, z1, s)]
∨ [loaded(x, y, s) ∧ ¬[∃z1.a = unload(x, y, z1)]]

TBox axioms DT :
These are TBox axioms for unary predicates, where the right hand side is an L formula
without z variables. For example:

veh(x) ≡ truck(x) ∨ airplane(x)
loc(x) ≡ street(x) ∨ airport(x)

Initial Theory DS0 : The DS0 is an L sentence without z variables, i.e. it can be trans-
formed into an ALCOU concept. For example:

city(Toronto) ∧ airport(Y Y Z) ∧ in city(Y Y Z, Toronto) ∧ street(Y onge)∧
in city(Y onge, Toronto) ∧ box(B1) ∧ at(B1, Y onge, S0)∧
mail truck(T1) ∧ at(T1, Y onge, S0) ∧ ∀x(obj(x) ⊃ ready(x, S0))∧
box(B2) ∧ (loaded(B2, T1, S0) ∨ ¬∃x(loaded(B2, x, S0) ∧ vehicle(x)))

Finally, a projection query is an L sentence, without z variables, and there is a
ground situation term S representing the action sequence after which the formula should
hold or not. For example, given the above initial theory, the action sequence represented
by situation do(drive(T1, Y onge, Y Y Z, Toronto), S0) is executable and the follow-
ing query answers true:

at(T1, Y Y Z, do(drive(T1, Y onge, Y Y Z, Toronto), S0))

2.2 Regression for Solving the Projection Problem

In the context of BATs and SC, regression is a recursive transformation converting a
formula uniform in situation do(a, s) into a logically equivalent formula uniform in
s (that is one action shorter down the situation term) by making use of the SSAs. A
modified regression operatorR is defined to guide the regression process in our class P
of BATs, and it is defined recursively on formulas of the underlying language at hand,
L in our case. We do not define the modified operator here due to space limitations,
but interested readers can see [4] for more details about regression in a language that
is similar to L (but that is a proper subset of L). The idea is that all static predicates
are not affected by regression, and hence remain the same after the regression operator
is applied. Fluents (“dynamic” predicates) on the other hand are transformed byR. On
each step, the regression operator R replaces each fluent formula uniform in situation
do(a, s) by the right hand side (RHS) of the SSA for the fluent (recall that the CC
formulas on the RHS are uniform in s). Subsequently, regression continues until all
fluents have S0 as the only situation term. Consider the following example query:

loaded(B1, T1, do(load(B1, T1, Y onge), S0))

Also, let the above DS0
be the initial theory against which this query is checked. First,

replace the fluent (with its constant arguments and situation term) by the right hand side
of the SSA, to get:(

∃z1.load(B1, T1, Y onge) = load(B1, T1, z1) ∧ obj(B1) ∧ veh(T1)
∧ loc(z1) ∧ ready(B1, S0) ∧ at(B1, z1, S0)

)
∨(

loaded(B1, T1, S0) ∧ ¬∃z1.load(B1, T1, Y onge) = unload(B1, T1, z1)
)

By applying UNA – similar action names denote the same action and similar constant
names denote the same object in the world – we get a shorter FOL formula:(

∃z1.B1=B1 ∧ T1=T1 ∧ Y onge=z1 ∧ obj(B1) ∧ veh(T1) ∧ loc(z1)∧
ready(B1, S0) ∧ at(B1, z1, S0)

)
∨
(
loaded(B1, T1, S0) ∧ ¬∃z1.false

)
Further simplifications yield the formula, which is the result of one step of regression:(

obj(B1) ∧ veh(T1) ∧ loc(Y onge) ∧ ready(B1, S0) ∧ at(B1, Y onge, S0)
)
∨

loaded(B1, T1, S0)

It is clear that the first disjunct holds given the above DS0
. Hence, the answer to this

projection problem is true.
Note that the resulting formula is uniform in S0. In general, a query whose situa-

tion term mentions n ground actions, requires n consecutive regression steps to bring it
down to situation S0. The benefit of regression is that the final regressed formula is logi-
cally equivalent to the original query, but now we do not need to consider the whole BAT
to answer the query, justDS0 and UNA. Thereby, the projection problem is transformed
from solving whether BAT |= Query to solving whether UNA ∪ DS0 |= R[Query],
where R[Query] is the formula resulting from regression of the query. Since DS0

,
UNA and R[Query] are z-free L formulas, they can be converted into ALCOU con-
cepts, and the above entailment problem can be transformed into the satisfiability prob-
lem of the ALCOU concept (abusing notation) DS0

u UNA u ¬R[Query].

3 Test Case Generation

As a means of representing a PP instance, we used XML to represent each part of the
BAT and designed an XML SCHEMA to characterize the representation. After perform-
ing regression on the query of the PP instance, the input to the reasoner was represented
in OWL Manchester syntax. A PP test case contains a fixed part consisting of the SSAs,
PAs, and TBox axioms for a particular domain, and a varying part consisting of (1) the
initial theory, (2) the query and (3) the action sequence. We obviously need to gener-
ate the variable part. Due to the non-trivial expressivity of the language at hand, it is
hard to generate useful test cases. We looked in the literature and found no precedence
for such an attempt, i.e. generating random projection problem test cases. Planning do-
mains [2] had some test case generation involved, but still on purely propositional level,
so that inconsistencies in input data can be easily avoided. In contrast, generating ran-
dom ALCOU formulas usually yields meaningless queries or initial theories that are

inconsistent. Building formulas from patterns is one step forward towards generating
good test cases, but it suffers from the fact that generated formulas might be similar
and consequently this approach does not provide the extensive coverage that random
formula generation does. We tried mixing patterns with a bit of randomness.

We have 7 domains in our disposal, and we created query generators and action
sequence generators for 4 of them (lack of time is the only obstacle for the other 3).
For every domain, we created a few patterns to guide in creating the query formula
(6-10 per domain). Some of these patterns can take a human input, or can generate
their random input if none given. A pattern for the Logistics domain might for example
describe the question of whether there are any boxes on a truck X in some city Y, where
X and Y is the input to the pattern. The objective is to have as versatile patterns as
possible but keeping them simple because we make use of them in the next step. Next,
we generate a random propositional DNF formula made up of, say n, unique literals.
Then, use the patterns with random input (or guided input if used with action sequence
generators) to generate n atomic queries, and replace every literal in the DNF formula
with one of those queries (we map each of the n literals to a specific atomic query
to avoid propositional inconsistency). The motivation for this approach is that having
randomness at the propositional level is good, but not at the FOL level.

To generate random but executable action sequences, we used patterns again. But
now a pattern is a generic description of a sequence of actions necessary to satisfy a
goal. The pattern is represented by an algorithm that computes an executable sequence
of actions based on the provided pattern. For instance, one action sequence in the Lo-
gistics domain describes the process of gathering all known boxes in a particular city
and transporting them to another city. The choice of the cities is random, and pick-
ing the transportation vehicle is random as well. Basically, the generator extract all the
information it can from the given initial theory, and picks its random input from the
gathered information. Of course, we could have tried picking random actions with ran-
dom ground arguments and check the executability of these actions, but most likely
they would fail to be executable. In fact, picking an executable ground action is related
to conjunctive query answering which is a totally different and nontrivial problem. Be-
sides that, solving the executability problem will incur an expensive running time for
test case generation.

It is important to note that the query and action sequence generators use the initial
theory as input, so that they can generate meaningful queries and executable actions.
One limitation is that only literals are used from the initial theory, assuming the initial
theory is a conjunction containing some literals. This assumption simplifies signifi-
cantly solving the executability problem, because the preconditions of an action can be
easily verified using these literals (again, assuming the preconditions are simple enough
to be verified with the information from the literals, which is true in our case).

Finally, the initial theory (IT) contains both static and dynamic incomplete knowl-
edge. Due to lack of time and the nature of some of our metrics, we decided to manually
create ITs, and did that for only one domain: Logistics. Hence, we did not make use of
the generators for the other 3 domains. We created 55 unique ITs, with number of in-
dividuals per IT varying between 5 and 60 individuals. We built them starting from a
small IT of size 5, and incrementally added an individual to the IT to create the next

bigger IT. This way we have a monotonically ascending order of IT size. This is im-
portant because the projection queries generated from a smaller initial theory can then
be run against a bigger initial theory simply because the preconditions of an action are
satisfied in the bigger IT if they are satisfied in the smaller IT. This way we can better
measure the effect of varying the number of individuals on the same query.

Using the ITs, and the two generators, we were able to generate at least 10 unique
combinations of query + action sequence (QAS) for each IT. And by reusing QASs
from smaller initial theories, we generated a pool of around 12000 test cases.

The next step is to classify the pool of test cases based on several metrics.

3.1 Classification

We use 2 metrics to classify our generated formulas, in an effort to show how the vari-
ation of values in each metric affects the reasoning time in HERMIT. The metrics are:
(a) number of constants in the initial theory, and (b) number of U-role occurrences.
Metric (b) is measured using the initial theory and the regressed query formula com-
bined, while metric (a) can be measured using the initial theory DS0 only because DS0

(together with UNA) defines all the individuals allowed in a PP instance. Neither the
query nor regression can add new individuals to the domain, and the query and action
sequence would use individuals mentioned in the initial theory.

The number of individuals in the domain is an interesting factor because in practice
it would be useful to know the effect of adding more individuals on the run time of
answering a projection query. Note that the regression of a QAS is the same regardless
of the IT, but the ITs are increasing in size in each test case, which enables us to see the
direct affect of having more individuals in a domain. For this metric, we create groups
of test cases, such that each group has a single query common to all test cases, and the
number of individuals in the initial theory of each test case increases monotonically.

We picked the second metric, number of U-role occurrences, because we noticed
that even test cases that have few occurrences of U-roles slow down solving SAT for
a concept. Out of curiosity, we also tried to replace all occurrences of U-roles with
some ordinary role R (we know semantics drastically change), and the reasoning time
dropped by a factor of 10 or more.

There could be other possible metrics, such as the number of disjunctions, or the
depth of propositional connectives, or the depth of quantifiers in the formula, but we
didn’t use them due to lack of time.

One last observation we made, is that the initial theory in L usually contains a
lot of assertive formulas, i.e. of the form A(c) and R(c, b) for some unary predicate
A, binary predicate R, and constants/individuals c and b. For instance, in the Logistics
example above, we have formulas such as city(Toronto) and at(Mt1,Main, S0), and
they appear as conjuncts in the initial theory DS0 . Note that these assertive formulas
can be fluents, not just static predicates. Instead of representing these formulas from
the initial theory as an ALCOU concept, we may represent them as concept and role
assertions in the test case. While doing this, we may expect speed-up in reasoning time
as this is the more natural way of representing this sort of information in OWL. For
this reason, we created yet another set of test cases which are ABox’ed versions of the
original set of test cases. We call a test case ABoxed if it represents its initial theory as

OWL assertions. Note that this representation does not leave the initial theory empty,
but only shortens it by removing those assertive formulas from it, and keeping the other
formulas untouched. In the next section, we deal with these two sets of test cases, where
SAT test cases are the regular test cases where the initial theory is represented as a
complex ALCOU concept with all assertive formulas included. Finally, to get UNA in
OWL2 we declare all individuals to be pairwise different (using the OWL2 construct
differentIndividuals).

4 Results

For all testing we used a machine with the following specs: Intel R©CoreTM 2 Duo E8400
CPU with a clock frequency of 3.00 GHz, and 4 GB of RAM. We used JVM version
1.7.0 and HermiT 1.3.6. We used a cutoff time of 30 sec. All results and test-cases can
be found at: http://www.cse.yorku.ca/˜w2yehia/ORE_results.html

4.1 Number of Constants

We already explained how we measure this metric, and how our choice and construction
of ITs is suitable for the purpose of testing this metric. In the two graphs below, we show
the reasoning time taken by HERMIT as a function of the number of individuals in the
initial theory.

Fig. 1.

The left graph shows the running time of ABoxed test cases, and the right graph
shows the regular non-ABoxed test cases. We chose to graph the part of our testing
results where all test cases in a group finished in under the 30 seconds cutoff time.
The groups of test cases shown below are labeled with the prefix ’ABoxed’ and ’SAT’,
followed by the individual count in the initial theory that spawned the QAS for that
particular group, and the last number is just an index of the QAS for the particular
individual count.

4.2 Number of U -role Occurrences

For this metric, we counted the number of U-role occurrences in a test case (tc). Then,
we grouped the test cases into sets, with a range of allowed number of U-role occur-
rences per set. For better granularity, the ranges are narrow for small number of U-roles,
and widen as the number grows. Table 1 shows the ranges that we used in the first col-
umn, the number of test cases tested for that range (some ranges had > 1000 test cases,
so we picked the first 100 for each range) in the second column, and the number of test
cases that was answered in under 30 sec in the third. The fourth column simply shows
the success rate for that range. The next three columns show the same as the previous
three but for ABoxed test cases.

Table 1. Testing Results based on U-role number of occurrences

of # of # of success # of # of success
U-role SAT tcs successful rate ABoxed tcs successful rate
occur. tested SAT tcs (%) tested ABoxed tcs (%)

0-5 0 0 - 100 98 98
6-10 0 0 - 100 89 89
11-15 10 10 100 100 60 60
16-20 25 25 100 100 67 67
21-25 57 57 100 100 13 13
26-30 100 100 100 100 33 33
31-35 100 100 100 80 31 39
36-40 100 100 100 100 82 82
41-50 100 99 99 100 44 44

It is important to note that for all test cases, doing regression alone takes in most
cases 1 second or less, and at most 2 seconds. Thus, most of the time spent on solving
a PP is in HERMIT.

5 Discussion and Future Work

For the number of constants in the initial theory, it is clear that ABoxed test cases are
less affected by the increase in individual count as compared to the non-ABoxed test
cases. This shows that ABox-ing an initial theory is the more efficient way of represen-
tation when it comes to HERMIT.

For the number of U-role occurrences, we believe that the reason why ABoxed test-
cases seem to run much slower on average (lower success rate), is because of the way
we translate an assertion into a concept - we use U-roles. So, the ABoxed version will
contain less U-roles coming from the initial theory, than the regular version, simply
because the assertions turned into concepts using U-roles in the regular version, be-
come OWL assertions in the ABoxed version. As a consequence, the remaining U-roles
come from the regressed formula so that the total number of U-roles is same (recall the
number of U-role occurrences is counted both in the initial theory and in the regressed
formula). For example, if a test-case had 10 U-roles coming from the initial theory and
5 U-roles from the regressed formula, then the ABoxed version will contain 5 U-roles
only, because the initial theory U-roles disappear as a result of ABoxing, but SAT (non-
ABoxed) version will contain 15 (5+10) U-roles. This means that you cannot compare
directly a SAT test-case with n occurrences of U-roles to an ABoxed test-case with n
occurrences of U-roles because they represent different test-cases. You should expect
that the ABoxed one will run slower because it has a bigger regressed formula to handle
(this is where the extra U-roles come from).

Finally, the long reasoning time in HERMIT can be attributed to either (a) inefficient
representation of the regression formula when outputted by our regression program, or
(b) slow performance of HERMIT when it comes to dealing with U-roles.

Future work: We started with 7 domains, and wrote generators for 4 of them, and
manually created initial theories for one domain. So there is some work left to be done,
at least to make use of the generators for the 3 domains. We only managed to measure
the performance of HERMIT, but the generated test cases are in Manchester syntax, and
any reasoner using OWL API can run those test cases. We mentioned already that more
metrics can be measured, and the effects of ABox’ing can be studied in more details.

References

1. Baader, F., Lippmann, M., Liu, H., Soutchanski, M., Yehia, W.: Experimental Results on
Solving the Projection Problem in Action Formalisms Based on Description Logics. In: De-
scription Logics W/sh DL-2012 (Accepted). (2012)

2. Bacchus, F.: The AIPS ’00 planning competition. AI Magazine 22(3) (2001) 47–56
3. Devanbu, P.T., Litman, D.J.: Taxonomic plan reasoning. Artif. Intell. 84(1-2) (1996) 1–35
4. Gu, Y., Soutchanski, M.: A Description Logic Based Situation Calculus. Ann. Math. Artif.

Intell. 58(1-2) (2010) 3–83
5. Kudashkina, E.: An Empirical Evaluation of the Practical Logical Action Theory (Undergrad-

uate Thesis CPS40A/B, Fall 2010 - Winter 2011). Department of Computer Science, Ryerson
University, Toronto, Ontario, Canada (2011)

6. McDermott, D.V.: The 1998 AI Planning Systems Competition. AI Magazine 21(2) (2000)
35–55

7. Reiter, R.: The projection problem in the situation calculus: A soundness and completeness
result, with an application to database updates. In: In Proceedings First International Confer-
ence on AI Planning Systems, Morgan Kaufmann (1992) 198–203

8. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Implementing Dy-
namical Systems. The MIT Press (2001)

9. Yehia, W., Soutchanski, M.: Towards an Expressive Logical Action Theory. In: Proc. of the
25th Intern. Workshop on Description Logics (DL-2012), Rome, Italy (2012) to appear

Chainsaw: A Metareasoner for Large Ontologies

Dmitry Tsarkov and Ignazio Palmisano

University of Manchester,
School of Computer Science,

Manchester, UK
{tsarkov, palmisai}@cs.man.ac.uk

Abstract. In this paper we present the results of running the ORE test
suite and its reasoning tasks with three reasoners: Chainsaw, JFact
and FaCT++. We describe the newest of these reasoners, Chainsaw, in
detail, and we compare and contrast its advantages and disadvantages
with the other two reasoners. We show the results obtained and how they
compare to each other, and we list the cases in which the reasoners fail
to complete a task in the assigned time.

1 Introduction

As it is well known to ontology engineers, ontologies become harder to manage,
in terms of understanding them and reasoning with them, in a way which is,
unfortunately, not proportional to the increase of their size. It is often the case
that a small number of changes makes an ontology much harder for a reasoner
to process. However, keeping ontologies small and simple is not always possible,
because they might fail to satisfy the application requirements. On the other
hand, it is possible for a small ontology to be hard to reason about.

How to best divide an ontology into smaller portions according to the needs
of the task at hand is still an open problem; the rule of thumb that many
approaches follow is that, when in doubt, one should try to keep the ontology
as small as possible.

This is the main intuitive reason for modularisation, i.e., a set of techniques
for splitting ontologies into fragments without loss of entailments for a given set
of terms. To date, however, not many tools provide either user support for these
techniques, nor leverage them for reasoning tasks.

Chainsaw [10], our metareasoner implementation prototype, exploits the
idea in the following way. For every inference query it creates a module of the
ontology that is then used to answer the query. The module is created in a way
that guarantees the result of the query should be the same as for the whole
ontology, i.e., there is no loss of entailments.

Chainsaw is designed as a wrapper for other reasoners. It can use reasoner
factories to build reasoners on modules of its root ontology, and will integrate
the ability to choose the reasoner best suited to each reasoning task on the basis
of the module characteristics, such as size and/or expressivity. The most obvious
characteristic is an OWL 2 profile of the module. E.g., if the profile is OWL 2

EL then some efficient EL reasoner, like ELK [4], could be used to achieve the
best performance.

The advantages of using modules instead of whole ontologies inside a reasoner
reside in the simplification of reasoning. The complexity of reasoning in OWL 2
DL is N2EXPTIME-hard on the size of the input, therefore being able to divide
the ontology is likely to produce performance improvements orders of magnitude
larger than the relative reduction in size.

Moreover, using modules inside the reasoner can help the knowledge engineer
to concentrate on modelling the knowledge instead of worrying about the lan-
guage pitfalls, since the extra complexity can be tackled in a transparent way.
This, however, does not mean that complexity is no longer an issue. Modulari-
sation is not a silver bullet for reasoning, as in some cases the module needed to
answer a query might still include most of the ontology.

Another advantage of Chainsaw architecture is that it is able to use different
OWL reasoners for each query and module; this allows for choosing the reasoner
best suited for the OWL 2 profile of a specific module. In those cases where it
is not clear which reasoner is best, it is possible to start more than one reasoner
and simply wait for the first one to finish the task - this might require more
resources, but statistical records can be kept to improve future choices. This
functionality, however, is not yet implemented.

The reverse of the medal is that, for simple ontologies, Chainsaw is likely
to be slower than most of the reasoners it uses; this derives from the overhead
needed to manage multiple reasoners and modularisation of the ontology itself.
Our objective, in this paper, is to illustrate an approach that can squeeze some
answers out of ontologies that are too troublesome for a single traditional rea-
soner to handle.

In Section 2, we describe briefly the theory behind Atomic Decomposition
and Modularisation, which are the building blocks of this approach; in Section 3
we describe the implementation details, tradeoffs and strategies adopted, and in
Section 5 we present the results on the effectiveness of Chainsaw comparing to
JFact and FaCT++ on the ORE test suite.

2 Atomic Decomposition and Modularisation

We assume that the reader is familiar with the notion of OWL 2 axiom, ontology
and entailments. An entity is a named element of the signature of an ontology.
For an axiom α we denote α̃ the signature of that axiom, i.e. the set of all entities
in α. The same notation is also used for the set of axioms.

Definition 1 (Query). Let O be an ontology. An axiom α is called an entail-
ment in O if O |= α. A check whether an axiom α is an entailment in O is an
entailment query. A subclass (superclass, sameclass) query for a class C in an

ontology O is to determine the set of classes D ∈ Õ such that O |= C v D (resp.
O |= D v C,O |= C ≡ D). A hierarchical query is either subclass, superclass,
or sameclass query.

Definition 2 (Module). Let O be an ontology and Σ be a signature. A subset
M of the ontology is called module of O w.r.t. Σ if for every axiom α such that
α̃ ⊆ Σ, M |= α ⇐⇒ O |= α.

One way to build modules is through the use of axiom locality. An axiom is
called (⊥-) local w.r.t a signatureΣ if replacing all entities not inΣ with⊥makes
the axiom a tautology. This syntactic approximation of locality was proposed
in [1] and provides a basis for most of the modern modularity algorithms [3].

This modularisation algorithm is used to create an atomic decomposition of
an ontology, which can then be viewed as a compact representation of all the
modules in it [12].

Definition 3 (Atomic Decomposition). A set of axioms A is an atom of the
ontology O, if for every module M of O, either A ⊆M or A∩M = ∅. An atom
A is dependent on B (written B 4 A) if for every module M if A ⊆ M then
B ⊆ M . An Atomic Decomposition of an ontology O is a graph G = 〈S,4〉,
where S is the set of all atoms of O.

The dependency closure of an atom, computed by following its dependencies,
constitutes a module; this module can then be used to answer queries about the
terms contained in this closure.

However, for a hierarchical query the signature would contain a single entity,
but the answer set would contain entities that might not be in the module built
for that signature.

In order to address this problem, we use Labelled Atomic Decomposition
(LAD), as described in [11].

Definition 4 (Labelled Atomic Decomposition). A Labelled Atomic De-
composition is a tuple LAD = 〈S,4, L〉, where G = 〈S,4〉 is an atomic de-
composition and L is a labelling function that maps S into a set of labels. A
top-level labelling maps an atom A to a (possibly empty) subset of its signature

L(A) = Ã \ (
⋃

B4A L(B)).

Proposition 1. Let LAD = 〈S,4, L〉 be a top-level labelled atomic decompo-

sition of an ontology O. Then for all named classes x, y from Õ the following
holds:

1. If O |= x v y, then ∃A,B ∈ S : x ∈ L(A), y ∈ L(B) and B 4 A;
2. If O |= x ≡ y, then ∃A ∈ S : x ∈ L(A) and y ∈ L(A).

Proof. 1) From [3], Proposition 11, O |= x v y iff for the ⊥-locality-based module
M of O w.r.t. signature {x} holds M |= x v y. Assume O |= x v y. Then M is

non-empty and x ∈ M̃ . Thus there is an atom A ∈ S such that x ∈ L(A). Due
to the atomic decomposition properties, the union of an atom together with all
the dependent atoms forms a module. So let MA =

⋃
B4AB be such a module.

This module also has x in its signature, so M ⊆MA. But by the definition of the
top-level labelling MA is the smallest module that contains x in the signature;

so M = MA. This also means that there is only one atom which label contains x.
Now, using the results from [3], we can conclude that y ∈ M̃A; that means, that
one of the atoms B ∈MA is labelled with y. But all such atoms are dependencies
of A, i.e. B 4 A.

2) Assume O |= x ≡ y, which is equivalent to O |= x v y and O |= x v
y. From Case 1) this means that there are atoms A,A′, B,B′ such that x ∈
L(A), x ∈ L(A′), y ∈ L(B), y ∈ L(B′) and B′ 4 A,A′ 4 B. As shown in Case 1),
there is only one atom that contains x (resp. y) in its label, so A = A′, B = B′

and B 4 A,A 4 B. The latter is possible only in case A = B. ut

This proposition provides a way to separate parts of the ontologies necessary
to answer hierarchical queries about named classes. Indeed, it is enough to label
the atomic decomposition with a top-level labelling and the modules for finding
a subsumption relation can easily be found. This approach is orthogonal to
a modularity-based one: while the latter deals easily with the entailment-like
queries, the former provides a way to describe an ontology subset suitable to
answer hierarchical queries.

This also explains the choice of ⊥-locality in our approach. It is possible
to define >-locality in a similar manner (replace all entities not in signature
with >), and use it for the module extraction. Module extraction could be also
done in a more complex manner, called STAR, interleaving > and ⊥ extraction
passes until a fixpoint is reached. However, >-local modules are usually larger
than ⊥-local ones, so there is no reason to use them. The STAR modularisa-
tion, although provides slightly smaller modules, does not ensure properties from
Proposition 1, that are necessary for our approach.

3 Implementation of Chainsaw

The essence of Chainsaw is mirrored in the paper’s title. Unlike other reasoners,
which usually do the classification of the ontology before any query is asked,
Chainsaw deals with requests in a lazy way, leaving classification to the delegate
reasoners, which are usually at work on a small subset of the ontology.

For each query received, Chainsaw tries to keep the subset of the ontology
needed to answer as small as possible without sacrificing completeness. This is
achieved using different strategies according to the query; i.e., it is not possible
to reduce the size of the ontology when checking for its consistency; however,
other queries, as detailed in Section 2, can be answered by using modules built
via LAD or locality based modules. More in detail, querying about superclasses
of a term will only need the dependency closures of the top-level atoms for that
term for the answers to be computed; the opposite is true for subclass requests.

During preprocessing of the ontology, a LAD of that ontology is built, us-
ing the Atomic Decomposition algorithm available in FaCT++ [5], and both
dependency closure and its reverse are cached for every class name. For every
query the module is constructed: via modularisation algorithm for entailment
queries and via LAD for hierarchical queries. Then a suitable reasoner is created

for that module, and the query is delegated to it. The answer then is returned
to a user.

A naive strategy for answering any query would consist of:

– Build a module M for the query
– Start a new reasoner R on M
– Answer the original query using R

However, it is easy to find possible optimisations to this strategy.
First, this approach creates a new reasoner for each query; if two queries with

the same signature are asked, two (identical) modules would be built and two
reasoners would be initialized, while just keeping the same reasoner would be
enough.

Moreover, while the number of possible signatures for a query is exponential
in the size of the ontology signature (not counting possible fresh entities used
in the query), the number of distinct modules that can be computed against a
given ontology with these signatures is much smaller [2]. This means that, given
a module, there is a good chance that it can be reused for answering queries
with a slightly different signature; therefore, the same reasoner can be used to
answer more than one specific query.

Therefore, a tradeoff exists between reducing the size of the module to be
reasoned upon, the complexity of determining such a module and the cost of
starting a new reasoner for each query; to this, one must add the memory re-
quirements of keeping a large module and reasoner cache.

Our approach in Chainsaw is to use a cache for modules and a cache for
reasoners, both limited in the number of cached elements, and ordered as least
recently used (LRU) caches; this has shown to perform rather well in some of
our tests, where around one hundred thousand entailment checks against a large
ontology have been satisfied using approximately 100 simultaneous reasoners,
some of which were reused up to 20 times before being discarded. Similar results
have been obtained when caching the modules to avoid rebuilding the same
module for the same signature.

3.1 Future Improvements

There is one more optimisation that was not implemented: if a module is included
in another module, the larger module can be used in place of the smaller one.
However, this presents a slippery slope problem: at what level do we stop using
the next containing module, since we do not have an easy way to predict where
this series of modules will become really hard to reason with?

Determining the containment is also an expensive operation; for simple mod-
ules, this operation might cost more than the actual reasoning required. The
sweet spot for this optimisation is a situation in which many fairly complex
modules share a large number of axioms and are used often, and their union
does not produce a module which pushes the reasoner’s envelope. Using the
union would provide for a good boost in performance and save memory as well,
but at the time of writing we do not have an effective way of finding such spots.

It seems that atomic decomposition could provide relevant information for
this task; an educated guess would be that such sweet spots reside near the parts
of the dependency graph where a number of edges converge, but, to the best of
our knowledge, there is no strong evidence in favor of this correlation. Future
work might well explore this area.

Another improvement is to add a strategy to choose the best suited reasoner
for a given module; such a strategy would have to take into account the known
weak spots and strong points of each reasoner, as well as the characteristics of
the module and of the query, such as size and OWL profile, or whether the
query requires classification of the module or not. Where this is not sufficient,
statistical records could be kept in order to create evidence based preferences
and improve the strategy over time.

4 Characteristics of the Reasoners

In this paper we present the comparison between three reasoners that have
something in common.

Chainsaw is an OWL 2 DL reasoner that uses modularity to improve query
answering for large and complex ontologies. FaCT++ [5] is a tableaux highly
optimised OWL 2 DL reasoner implemented in C++. JFact1 is a Java imple-
mentation of FaCT++, that has extended datatypes support. The description
of the reasoners’ features can be found in Table 1.

Characteristic Chainsaw JFact FaCT++

OWL 2 profile supported EL, RL, QL, DL

Interfaces OWLAPI2 OWLAPI OWLAPI, LISP

Algorithms AD/sub-reasoner tableaux tableaux

Optimisations meta-reasoning same as N/A
sub-reasoner FaCT++

Advantages scalability; pure Java; good general
good modularity extended DT performance
approximation

Disadvantages AD overhead work in progress OWLAPI interface
is complicated

Application focus large ontologies general purposes

Table 1. Characteristics of compared reasoners.

Some notes about the table. The algorithm used in Chainsaw for answering
hierarchical queries is based on Labelled Atomic Decomposition. For entailment
queries an algorithm used in the chosen sub-reasoner is applied. The architecture

1 http://jfact.sourceforge.net
2 http://owlapi.sourceforge.net

provides the possibility of using different kinds of reasoners for different queries,
so that more efficient reasoners can be used when possible; however, our current
implementation does not provide this functionality yet.

We are not going to say much about FaCT++ and JFact here; the optimi-
sations used in FaCT++ are described in a number of publications [6–9], and
JFact is a port of FaCT++, so it uses the same techniques and contains the
same optimisations. The advantage of Chainsaw is the focus: for every query
it uses only the necessary part of the ontology. This allows it to work in sit-
uations where the ontology is too large and complex to be dealt with by any
other reasoner. So we see the main application area of Chainsaw as large and
complex ontologies. Both FaCT++ and JFact are general purpose reasoners,
which can be easily integrated in any application that uses OWLReasoner inter-
face. In addition to that, FaCT++ could be used directly from C and C++
programs.

Summarising the paper results, the main disadvantage of Chainsaw is the
overhead that is brought in by the need to build a LAD and maintain a number
of sub-reasoners that answers particular entailment queries. JFact is still a
work in progress, so there is a high variance in performance depending on the
task. Also, it has a small user base, by which we mean that there are probably
bugs which have not been found yet. FaCT++ main problem, when used from
Java applications, is its JNI interface, which makes it cumbersome to set up in
some environments; for example, in web applications, native libraries are not
straightforward to load and work with, and an error might cause issues to the
whole application server. The datatype support is not very refined at the time
of writing as well.

5 Empirical Evaluation

To check the performance of Chainsaw we ran several tests with it. For the
tests we used a MacBook Pro laptop with 2.66 GHz i7 processor and 8Gb of
memory.

We use Chainsaw with FaCT++ v 1.5.3 as a delegate reasoner, and com-
pare the results with the same version of FaCT++ and JFact v 0.9.

In Table 2 we present the results coming from the ORE test suite, specifically
the number of tests that our reasoners failed; these failures are either timeout
failures or problems with some unsupported feature of the input ontologies.

As reported in the Total row, Chainsaw has the least amount of failures,
while JFact has the highest; this can be explained in terms of time needed for the
tasks: we know already that JFact performances are worse than FaCT++, and
Chainsaw does not need to perform all tasks on the whole ontology. This gives it
an edge over both JFact and FaCT++ in the case of large/complex ontologies;
although FaCT++ is much faster on smaller ontologies, larger ontologies push
it over our five minutes timeout, thus causing a failure.

We do not report detailed timings for every task in the test suite. Instead,
for every task we select the minimal time for successfully completing the task

Task Chainsaw JFact FaCT++

Classification 10 9 21
Class Sat 0 14 3
Ontology Sat 0 11 0
Pos. Entailment 2 3 2
Neg. Entailment 0 0 0
Retrieval 0 1 2

Total 12 38 28

Table 2. Number of failed tests in the ORE test suite.

and use it to calculate a normalised performance index for each reasoner. This
provides a relative measure on how good a reasoner is compared to the others.

The index is calculated for the initialisation of a reasoner and for perform-
ing the task itself. We then average this index for every reasoner over all the
ontologies in every test suite task, and the resulting values are in Table 3.

Task Init Main Task
Chainsaw JFact FaCT++ Chainsaw JFact FaCT++

Classification 1.01 3.85 1.75 46.6 43.59 1.32
Class Sat 1.04 2.86 1.74 14.15 126.9 3.9
Ontology Sat 1.05 2.77 1.85 19.17 56.6 1
Pos. Entailment 1 4.18 2.2 51.27 76.2 1
Neg. Entailment 1 4.13 2.06 58.36 119 1
Retrieval 1.04 3.35 1.88 4.39 44.37 25.57

Table 3. Average performance indexes for all reasoners over the ontologies included
in each reasoning task.

As can be seen from the data in Table 3, initialisation is a simple process for
Chainsaw; in fact, it does very little work at this stage, while both JFact and
FaCT++ do a substantial amount of loading and preprocessing; Chainsaw is
instead delegating this work until it becomes necessary, i.e., at query answering
time.

At query time, FaCT++ turns out to be the fastest reasoner by a large
margin; Chainsaw comes second and JFact last. Chainsaw is faster in the
retrieval task, but its results were checked manually and they are incorrect; the
speed is therefore probably due to a bug in the modularisation code that is used
for building the module to be used, and its good performance should not be
taken into account.

It is worth mentioning that Chainsaw average includes the ontologies on
which the other reasoners failed; therefore, we can conclude that, while slower
than FaCT++, it can provide answers in cases in which the other reasoners
would not be able to answer in a timely manner at all.

6 Conclusions

In this paper, we presented the relative performances of the three reasoners, and
listed their advantages and disadvantages. From these results, we deduce that
Chainsaw has the potential of providing acceptable performances where other
reasoners fail; it also emerges that its current performances in other cases are
not on a par with more mature reasoners such as FaCT++. We consider this
an encouraging result, and we presented a few improvements that are already
under development.

References

1. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontolo-
gies: Theory and practice. JAIR 31, 273–318 (2008)

2. Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: Atomic decomposition. In: Proc. of IJCAI-11. pp. 2232–2237 (2011)

3. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Extracting modules from on-
tologies: A logic-based approach. In: Stuckenschmidt, H., Parent, C., Spaccapietra,
S. (eds.) Modular Ontologies, Lecture Notes in Computer Science, vol. 5445, pp.
159–186. Springer (2009)

4. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of el ontologies.
In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.F.,
Blomqvist, E. (eds.) International Semantic Web Conference (1). Lecture Notes in
Computer Science, vol. 7031, pp. 305–320. Springer (2011)

5. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
Automated Reasoning pp. 292–297 (2006)

6. Tsarkov, D., Horrocks, I.: Efficient reasoning with range and domain constraints.
In: Haarslev, V., Möller, R. (eds.) Description Logics. CEUR Workshop Proceed-
ings, vol. 104. CEUR-WS.org (2004)

7. Tsarkov, D., Horrocks, I.: Optimised classification for taxonomic knowledge bases.
In: Horrocks, I., Sattler, U., Wolter, F. (eds.) Description Logics. CEUR Workshop
Proceedings, vol. 147. CEUR-WS.org (2005)

8. Tsarkov, D., Horrocks, I.: Ordering heuristics for description logic reasoning. In:
Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI. pp. 609–614. Professional Book Center
(2005)

9. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reason-
ing for expressive description logics. J. Autom. Reasoning 39(3), 277–316 (2007)

10. Tsarkov, D., Palmisano, I.: Divide et impera: Metareasoning for large ontologies. In:
Proc. of 9th International Workshop OWL: Experiences and Directions (OWLED
2012). To Appear (2012)

11. Vescovo, C.D.: The modular structure of an ontology: Atomic decomposition to-
wards applications. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Descrip-
tion Logics. CEUR Workshop Proceedings, vol. 745. CEUR-WS.org (2011)

12. Vescovo, C.D., Parsia, B., Sattler, U., Schneider, T.: The modular structure of
an ontology: Atomic decomposition and module count. In: Kutz, O., Schneider,
T. (eds.) WoMO. Frontiers in Artificial Intelligence and Applications, Frontiers in
Artificial Intelligence and Applications, vol. 230, pp. 25–39. IOS Press (2011)

Evaluating DBOWL: A Non-materializing OWL
Reasoner based on Relational Database

Technology

Maria del Mar Roldan-Garcia, Jose F. Aldana-Montes

University of Malaga, Departamento de Lenguajes y Ciencias de la Computacion
Malaga 29071, Spain,

(mmar,jfam)@lcc.uma.es,
WWW home page: http://khaos.uma.es

Abstract. DBOWL is a scalable reasoner for OWL ontologies with very
large Aboxes (billions of instances). DBOWL supports most of the frag-
ment of OWL covering OWL-DL. DBOWL stores ontologies and clas-
sifies instances using relational database technology and combines rela-
tional algebra expressions and fixed-point iterations for computing the
closure of the ontology, called knowledge base creation. In this paper we
describe and evaluate DBOWL. For the evaluation both the standard
datasets provided in the context of the ORE 2012 workshop and the
UOBM (University Ontology Benchmark) are used. A demo of DBOWL
is available at http://khaos.uma.es/dbowl.

1 Introduction

With the explosion of Linked Data1, some communities are making an effort to
develop formal ontologies for annotating their databases and are publishing these
databases as RDF triples. Examples of this are biopax2 in the field of Life Sci-
ence and LinkedGeoData3 in the field of Geographic Information Systems. This
means that formal ontologies with a large number (billions of) instances are now
available. In order to manage these ontologies, current platforms need a scalable,
high-performance repository offering both light and heavy-weight reasoning ca-
pabilities. The majority of current ontologies are expressed in the well-known
Web Ontology Language (OWL) that is based on a family of logical formalisms
called Description Logic (DL). Managing large amounts of OWL data, includ-
ing query answering and reasoning, is a challenging technical prospect, but one
which is increasingly needed in numerous real-world application domains from
Health Care and Life Sciences to Finance and Government.

In order to solve these problems, we have developed DBOWL, a scalable rea-
soner for very large OWL ontologies. DBOWL supports most of the fragment
of OWL covering OWL 1 DL. DBOWL stores ontologies and classifies instances

1 http://linkeddata.org/
2 http://www.biopax.org/
3 http://linkedgeodata.org/About

2

using relational database technology. The state-of-the-art algorithm for achiev-
ing soundness and completeness in reasoning with expressive DL ontologies is
the so-called Tableau procedure. Current Tableau-based implementations such
as Pellet, Racer and HermiT show very good behavior in practice, but are com-
pletely memory-based and thus cannot cope with ontologies that have a large
ABox. Several alternative approaches using disk-oriented implementations have
been presented. These proposals can be classified into three categories. (1) Those
which combine a DL main-memory based reasoner with a database, (2) Those
which translate the ontology to Datalog and use a deductive database to eval-
uate it, and (3) Those which extend the database with reasoning capabilities.
Our proposal follows a different approach: The state-of-the-art OWL reasoner
Pellet4 is currently used to classify the ontology Tbox. Information returned by
Pellet is stored in a relational database. Class and property instances are also
stored in the relational database as relation tuples. An algorithm which combines
relational algebra expressions with fixed-point iterations is used to compute the
closure of the of the ontology, called knowledge base creation. The use of an OWL
reasoner, like Pellet, to classify the Tbox is crucial in our approach. This allows
the capture of some Tbox inferences that cannot be obtained by other similar
proposals such as those based on disjunctive datalog [1].

This paper presents a description and an evaluation of DBOWL. In order
to evaluate DBOWL we use the standard datasets provided in the context of
the ORE 2012 workshop5 and the UOBM (University Ontology Benchmark) [2],
the extremely well known benchmark for comparing ontology repositories in the
Semantic Web. The rest of the paper is organized as follows. Section 2 introduces
the theoretical concepts on which DBOWL is based. Section 3 describes the
theoretical foundation of DBOWL, presenting the process for computing the
ontology closure. Section 4 discusses the advantages and limitations of DBOWL.
The evaluation of DBOWL is presented in Section 5. Finally Section 6 concludes
the paper.

2 Preliminaries

2.1 The Relational Model

The relational model was first introduced by Ted Codd of IBM Research in 1970
in a classic paper [3]. The relational model is characterized by its simplicity
and mathematical foundation. The relational model represents the database as
a collection of relations.

A domain D is a set of atomic values. Atomic means that each value in
the domain is indivisible as far as the relational model is concerned. A common
method of specifying a domain is to specify a data type from which the data
values forming the domain are drawn. It is also useful to specify a name for
the domain, to help in interpreting its values. A relation schema R, denoted

4 http://clarkparsia.com/pellet
5 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/

3

by R(A1, A2, . . . , An) is made up of a relation name R and a list of attributes
A1, A2, . . . , An. Each attribute Ai is the name of a role payed by some do-
main D in the relation schema R. D is called the domain of Ai and is denoted
by dom(Ai). The degree (or arity) of a relation is the number of attributes n
of its relation schema. A relation (or relation state) r of the relation schema
R(A1, A2, . . . , An), also denoted by r(R), is a mathematical relation of degree
n on the domains A1, A2, . . . , An), which is a subset of the cartesian product
of the domains that define R:

r(R) ⊆ (dom(A1)× dom(A2)× . . .× dom(An))

r(R) is defined more informally as a set of n-tuples r = {t1, t2, . . . , tm}. Each
n-tuple t is an ordered list of n values t =< v1, v2, . . . , vn >, where each value vi,
1 ≤ i ≤ n, is an element of dom(Ai), or is a special NULL value. NULL is used
to represent the values of attributes that may be unknown or may not apply to
a tuple. This notation is used in the rest of the paper.

The terms relation intension for the schema R and relation extension
for a relation state r(R) are also commonly used. A relation is defined as a set
of tuples. Mathematically elements of a set have no order among them.

2.2 The Relational Algebra

The basic set of operations for the relational model has an algebraic topology,
and is known as the Relational Algebra. Operands in the Relational Algebra
are Relations. Relational Algebra is closed with respect to the relational model:
Each operation takes one or more relations and returns a relation. Given closure
property, operations can be composed.

Relational Algebra operations enable a user to specify basic retrieval re-
quests. The result of a retrieval is a new relation, which may have been formed
from one or more relations. A sequence of relational algebra operations forms
a relational algebra expression, the result of which will also be a relation
that represents the result of a database query (or retrieval request). Therefore,
it is possible to assign a new relation name to a relational algebra expression, in
order to simplify its use by other relational algebra expressions. Such relations
are called idb (Intensional) relations, unlike the relations in R, which are called
edb (Extensional) relations.

Operations in relational algebra can be divided into two groups: Set opera-
tions from mathematical set theory (UNION (∪), INTERSECTION (∩), SET
DIFFERENCE (\) and CARTESIAN PRODUCT (×)), and operations devel-
oped specifically for relational databases (SELECT (σ), which selects a subset
of the tuples from a relation that satisfied a selection condition, PROJECT
(π), which selects certain attributes from the relation and discard the other at-
tributes, JOIN (◃▹), which combines related tuples from two relations into single
tuples) among others.

4

2.3 DBOWL Ontologies

In order to simplify the implementation of the reasoner, some restrictions are
imposed on the OWL ontologies supported by DBOWL. Even so, the ontolo-
gies supported by DBOWL are expressive enough for real application in the
Semantic Web. DBOWL covers all of OWL 1 DL including inverse, transitive
and symmetric properties, cardinality restrictions, simple XML schema defined
datatypes and instance assertions. Enumerate classes (a.k.a, nominals) are only
partially supported.

Let P and Q be properties, x be an individual and n be a positive number,
class descriptions in DBOWL ontologies are formed according to the following
syntax rule:

C, D → A (NamedClass) | ¬A (complementOf NamedClass) |
C ⊓D (intersectionOf ClassDescriptions) |
C ⊔D (unionOf ClassDescriptions) | ∀P.C (allV aluesFrom) |
∃P.C (someV aluesFrom) | ∃P.{x} (hasV alue) |
{x1, . . . , xn} (oneOf) | >= nP (minCardinality) | <= nP (maxCardinality)

Tbox Axiom DL syntax

SubClassOf A ⊑ B
equivalentClasses A ≡ B
SubPropertyOf P ⊑ Q
equivalentProperty P ≡ Q
disjointWith A ⊑ ¬B
inverseOf P ≡ Q−

transitiveProperty P+ ⊑ P
symmetricProperty P ≡ P−

functionalProperty ⊤ ⊑≤ 1P
inverseFunctionalProperty ⊤ ⊑≤ 1P−

domain ≥ 1P ⊑ A
range ⊤ ⊑ ∀P.A
Abox Axiom DL syntax

class instance A(x)
property instance P (x, y)
sameAs x1 ≡ x2

Table 1. DBOWL ontologies axioms

Table 1 shows the Tbox and Abox axioms for DBOWL ontologies. A and
B are used for specifying Named Classes and C and D for specifying Class
Descriptions. DBOWL assumes that all individuals are different unless the on-
tology includes an owl:sameAs assertion or you inferred it. This is important in
real applications with a large number of individuals where usually it is easier
to specify if two individuals represent the same resource than which individuals
are different to others. The following restrictions are imposed on the DBOWL

5

ontologies. These restrictions are related more to the ontology syntax than to
the ontology expressivity:

1. In the Tbox, all OWL constructors are supported. However, class descrip-
tions always appear in the ontology as an equivalence or as a superclass of a
Named Class. In an RDF/XML OWL ontology, class descriptions are always
involved in the definition of a Named Class.

2. In the Abox, only assertions of Named Classes and Property Names are
supported.

3. Only negation of Named Classes is allowed. Nevertheless, a negation of a
class description could be included in the ontology defining a Named Class
as equivalent to a Class Description and negating this Named Class.

4. Properties’ domain and range must be Named Classes. In the same way, for
asserting a complex property’s domain or range we must define a Named
Class as equivalent to a Class Description and use this Named Class as
Property domain or range.

5. Only disjointness of Named Classes is allowed. As in the previous cases, a
disjointness of a class description could be included in the ontology defining a
Named Class as equivalent to a Class Description and disjoining this Named
Class.

3 DBOWL Theoretical Foundations

In this section we present the theoretical foundations of our approach to scal-
able OWL reasoning. Although DBOWL is basically a Description Logic rea-
soner, it has been designed as an OWL reasoner. This implies that not all
the DL inferences are supported. The main objective of DBOWL is to clas-
sify instances in Named Classes and Properties. In order to do this, for each
Named Class and Property in the ontology, a edb relation RA1(id), . . . , RAn(id),
RP1(subject, object), . . . , RPm(subject, object) is defined, being n and m the
number of Named Classes and Properties in the ontology respectively. These
relations contain one tuple for each individual or pair of individual asserted as
member of such Named Class or Property.

3.1 Classification Function

In order to classify instances in Names Classes and Properties, we define a clas-
sification function F (see table 2). This function takes as input a DBOWL
property axiom, a DBOWL domain or range axiom (see table 1), or an axiom
(A ≡ C), where C is a DBOWL class description and A is a Named Class in the
ontology or an auxiliary name. The function define a new idb relation by means
of a relational algebra expression, depending on the input type, or invoke the
function with a new input.

For each Named Class in the ontology, a set of idb relations SAi0
(id), . . . ,

SAik
(id), i : 1 . . . n are defined. In the same way, for each Property in the ontology

6

a set of idb relations SPj0
(subject, object), . . . , SPjl

(subject, object), j : 1 . . .m
are defined. The values of k and l depend on the number of axioms in the ontology
evolving Ci and Pj respectively.

Each SAix
, x : 0 . . . k has the following features (similarly for each SPjx

):

– SAix
= QAix

, where QAix
is a relational algebra expression,

– SAi0
= RAi ,

– SAi(x−1)
always occurs in Qix , for x : 1 . . . k, and

– if SAjr
or SPjs

occur in Qix , they represent the last idb relation defined for
Aj and Pj respectively.

3.2 Knowledge base Creation

In order to create the DBOWL knowledge base, function F is evaluate iteratively,
defining the corresponding idb relations, until no new tuples are generated, i.e.
until a fixed-point is reached. (SAix

= SAi(x−1)
, i : 1, . . . , n, and SPjx

= SPj(x−1)
,

j : 1, . . . ,m).

In order to improve the efficiency of the evaluation, F is expressed as a com-
position of four functions, i.e.

F = F1 ◦ F2 ◦ F3 ◦ F4, where,

– F1 takes as input only axioms such as P ⊑ Q, P ≡ Q, P ≡ Q−, P+ ⊑ P ,
P ≡ P−

– F2 takes as input only axioms such as ≥ 1P ⊑ A, ⊤ ⊑ ∀P.A
– F3 takes as input only axioms such as A ⊑ B, A ≡ B, A ≡ C⊓D, A ≡ C⊔D,

A ⊑ ∀P.C, A ≡ ∃P.C, A ≡ ¬B, A ≡ {v1, . . . , vn}, A ≡ ∃P.{v}
– F4 takes as input only axioms such as A ≡ ∃P.{v}

The algorithm proceeds as follows:

1. F1 is evaluated iteratively, defining the corresponding idb relations, until no
new tuples are generated, i.e. until a fixed-point is reached. (SPjx

= SPj(x−1)
,

j : 1, . . . ,m).

2. F2 is evaluated defining the corresponding idb relations (SAix
, i : 1, . . . , n).

3. F3 is evaluated iteratively defining the corresponding idb relations, until no
new tuples are generated, i.e. until a fixed-point is reached. (SAi(x+1)

= SAix
,

i : 1, . . . , n).

4. F4 is evaluated defining the corresponding idb relations (SPj(x+1)
, j : 1, . . . ,m).

5. Steps from 1 to 4 are repeated until no new tuples are generated by step 4,
i.e. until a fixed-point is reached (SPj(x+1)

= SPjx
, j : 1, . . . ,m).

7

F
(P

⊑
Q
)

A
n
ew

id
b
re
la
ti
o
n
S
Q

i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

Q
(
i
−

1
)
)
∪

π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
j
).

F
(P

≡
Q
)

A
n
ew

id
b
re
la
ti
o
n
S
Q

i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

Q
(
i
−

1
)
)
∪

π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
j
).

F
(P

≡
Q

−
)

A
n
ew

id
b
re
la
ti
o
n
S
P
i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
i
−

1
)
)
∪

π
o
b
j
e
c
t,
s
u
b
j
e
c
t
(S

Q
j
).

F
(P

+
⊑

P
)

If
(x
,y
)
is

a
tu
p
le

in
S
P
(
i
−

1
)
a
n
d
(y
,z
)
is

a
ls
o
a
tu
p
le

in
S
P
(
i
−

1
)
,
th
en

a
n
ew

id
b
re
la
ti
o
n
S
P
i
is

d
efi

n
ed

a
s

π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
i
−

1
)
)
∪

(π
s
u
b
j
e
c
t,
o
b
j
e
c
t
((
S
P
(
i
−

1
)
)
◃▹

o
b
j
e
c
t=

s
u
b
j
e
c
t
(S

P
(
i
−

1
)
))
).

F
(P

≡
P

−
)

A
n
ew

id
b
re
la
ti
o
n
S
P
i
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
i
−

1
)
)
∪

π
o
b
j
e
c
t,
s
u
b
j
e
c
t
(S

P
(
i
−

1
)
).

F
(≥

1
P

⊑
A
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
((
S
A

(
i
−

1
)
))

∪
π
s
u
b
j
e
c
t
((
S
P
j
))
.

F
(⊤

⊑
∀P

.A
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
o
b
j
e
c
t
(S

P
j
).

F
(A

⊑
B
)

A
n
ew

id
b
re
la
ti
o
n
S
B

i
is

d
efi

n
ed

a
s
π
id
(S

B
(
i
−

1
)
)
∪

π
id
(A

j
).

F
(A

≡
B
)

A
n
ew

id
b
re
la
ti
o
n
S
B

i
is

d
efi

n
ed

a
s
π
id
(S

B
(
i
−

1
)
)
∪

π
id
(A

j
).

F
(A

≡
C

⊓
D
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

(π
id
(F

(B
≡

C
))

∩
π
id
(F

(B
≡

D
))
).

F
(A

⊑
C

⊓
D
)

F
(A

≡
C
),

F
(A

≡
D
)

F
(A

≡
C

⊔
D
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(F

(B
≡

C
))

∪
π
id
(F

(B
≡

D
))
.

F
(A

≡
B

⊔
C
)

If
I
≡

¬
B
,
a
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
id
(S

A
i
)
∩

π
id
(S

I
j
),

F
(X

≡
C
)

F
(A

⊑
∀P

.C
)

A
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
o
b
j
e
c
t
(S

A
i
◃▹

id
=
s
u
b
j
e
c
t
S
P
j
).

F
(X

≡
C
)

F
(A

≡
∃P

.C
)

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(F

(X
≡

C
))

◃▹
id

=
o
b
j
e
c
t
S
P
j
).

F
(A

⊑
∃P

.C
)

If
P

is
a
fu
n
ct
io
n
a
l
p
ro
p
er
ty
,
a
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
s
u
b
j
e
c
t
(S

A
i
◃▹

id
=
s
u
b
j
e
c
t
S
P
j
).

F
(X

≡
C
)

F
(A

≡
¬
B
)

If
B

≡
¬
I
,
a
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(S

I
j
)

F
(A

≡
¬
B
)

If
I
≡

B
⊔
C
),

a
n
ew

id
b
re
la
ti
o
n
S
X

is
d
efi

n
ed

a
s
π
id
(S

A
i
)
∩

π
id
(S

I
j
),

F
(X

≡
C
)

F
(A

≡
¬
B
)

If
I
≡

¬
A
,
a
n
ew

id
b
re
la
ti
o
n
S
B

i
is

d
efi

n
ed

a
s
π
id
(S

B
(
i
−

1
)
)
∪

π
id
(S

I
j
)

F
(A

≡
{v

1
,.
..
,v

n
})

A
n
ew

ed
b
re
la
ti
o
n
T
(i
d
)
is

d
efi

n
ed

w
h
er
e
r(
T
)
=

{t
1
,.
..
,t
n
}
a
n
d
t i

=
v i
,
i
:
1
..
.n

.
T
h
en

a
n
ew

id
b
re
la
ti
o
n

S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(T

).
F
(A

≡
≤

n
P
)

if
(x
,y

i
),

i
:
1
..
n

a
re

in
st
a
n
ce
s
o
f
P
,
a
n
d
th
e
y
i
a
re

a
ll
d
iff
er
en

t,
a
n
ew

ed
b
re
la
ti
o
n
T
(i
d
)
is

d
efi

n
ed

w
h
er
e

r(
T
)
=

{t
}
a
n
d
t
=

x
.
T
h
en

a
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
id
(T

).
F
(A

≡
∃P

.{
v
})

A
n
ew

id
b
re
la
ti
o
n
S
A

i
is

d
efi

n
ed

a
s
π
id
(S

A
(
i
−

1
)
)
∪

π
s
u
b
j
e
c
t
(σ

o
b
j
e
c
t=

v
(S

P
j
))
.

F
(A

≡
∃P

.{
v
})

A
n
ew

id
b
re
la
ti
o
n
S
P
j
is

d
efi

n
ed

a
s
π
s
u
b
j
e
c
t,
o
b
j
e
c
t
(S

P
(
j
−

1
)
)
∪

π
id

,v
(π

id
(S

A
j
))
.

T
a
b
le

2
.
D
B
O
W

L
C
la
ss
ifi
ca
ti
o
n
F
u
n
ct
io
n

8

4 DBOWL Advantages and Limitations

DBOWL is implemented using Oracle 10g as Relational Database Management
Systems. edb relations are tables in the database while idb relations are SQL
views. A view in SQL terminology is a single table that is derived from other
tables [4]. A view does not necessarily exists in physical form; it is considered a
virtual table (non-materialized). The query defining the view is evaluated when
needed. Then, once the knowledge base is created, for each Named Class and
Property in the ontology there is a SQL view which defines the set of tuples
(asserted and inferred) belonging to such Named Class or Property.

In order to query the knowledge base, SPARQL queries are re-written in
terms of the SQL views and evaluated on the database. The names of the Named
Classes and Properties involved in the query are changed by the corresponding
SQL view name. Note that the queries defining the views are evaluated when
the SPARQL query is evaluated. Thus, the inferred instances are not material-
ized in the database. Only some intermediate results are physically stored in the
database, like the results of the transitive function. This non-materialized ap-
proach allows us to deal with billions of instances without the need of very large
storage repositories. However, the main advantage of this approach is regarding
updates. The non-materialization of the inferred instances permits the support
of low-cost updates, as well as the possibility of implementing incremental rea-
soning algorithms.

Another important feature of DBOWL is the management of the owl:sameAs
statement. At the end of each loop of the algorithm for the knowledge base
creation, those individuals related by the owl:sameAs statement are included
in the SQL views. DBOWL obtains the individuals related by the owl:sameAs
statement as: (1) Those individuals explicitly asserted as (x sameAs y); (2)
By means of functional and inverse functional properties; (3) By means of the
maxCardinality to 1 restriction.

DBOWL is complete with respect to the DBOWL knowledge base and the
implemented functions, classifying all instances in Named Classes and Properties
correctly. However, it presents some limitations:

As DBOWL separates Tbox and Abox reasoning, some inferences with nom-
inals are lost. Fortunately, this information is not relevant for DBOWL because
the objective of DBOWL is to classify instances in Named Classes and these
inferences do not generate additional information for classification of instances.

DBOWL presents a problem regarding the open-world semantics of a DL
Abox, which implies that an Abox has several models. The problem of exploring
all the possible models in DBOWL is not trivial, even so, as DBOWL supports
a large number of instances, it is logical to think that it could be very inefficient.
Nevertheless, we plan to study how to provide a (partial) solution to this problem
in the future.

Currently updates are not efficiently supported in DBOWL.
Finally, consistency checking of the knowledge base is not completely sup-

ported. Currently only the inconsistency caused by the classification of the same
instance into (or the assertion of the same instance as member of) two disjoint

9

Fig. 1. Number of instances for each UOBM query

classes, and by the classification of one instance in a unsatisfiable class are im-
plemented.

5 DBOWL Evaluation

In order to demonstrate practically the completeness of DBOWL we use the
UOBM (University Ontology Benchmark) [2], a well known benchmark to com-
pare repositories in the Semantic Web. This benchmark is intended to evaluate
the performance of OWL repositories with respect to extensional queries over
a large data set that commits to a single realistic ontology. Furthermore, the
benchmark evaluates the system completeness and soundness with respect to
the queries defined. This benchmark provides three OWL-DL ontologies, i.e. a
20, 100 and 200 Megabytes ontologies and the query results for each one. This
experiment is conducted on a VMWARE virtual machine (one for each tool)
with 8192 MB memory, running on a Windows XP 64 bits professional and java
runtime environment build 1.6.0 14− b08.

We evaluated the UOBM-DL queries for the 20, 100 and 200 Megabytes
ontologies in DBOWL and obtained the correct results for all queries. Figure
1 presents the results for each ontology and for each query. As we can see,
some DBOWL results are marked in a different color. This is because DBOWL
and UOBM return different results for queries 11, 13 and 15. We checked the
UOBM results for these queries and we believe that they are incorrect. For
query 11 DBOWL returns more results than UOBM. In the case of queries 11
and 15, it is because several owl:sameAs relationships between some UOBM
individuals can be inferred. Therefore, these individuals should be in the result.
In the case of query 13, it is because the UOBM result includes instances of
all departments, but query 13 asks only for instances in department0. Figure 2
presents the response times for the UOBM-DL 200 Megabytes ontology.

We have also evaluated DBOWL using the standard datasets provided in
the context of the ORE 2012 workshop. These datasets include a set of state

10

Fig. 2. Response times for UOBM-DL 200M ontology

of the art ontologies in OWL 2 language, both in RDF/XML and Functional
syntax. and they are organised by reasoning services, i.e. Classification, Class
satisfiability, Ontology satisfiability, Logical entailment and non entailment and
Instance retrieval. DBOWL uses Pellet in order to classify the ontology Tbox
and to check the class satisfiability. Therefore, datasets corresponding to these
reasoning services are not included in our evaluation. As the main objective of
DBOWL is to classify instances in Named Classes and Properties, we evalu-
ate DBOWL using the Instance Retrieval test cases. Some of the ontologies in
these datasets present unsatisfiable classes. We use these ontologies to test the
behavior of DBOWL in such cases. However, the total time taken to load and
test the satisfiability of one ontology and the satisfiability result is reported by
Pellet. DBOWL only stores in the database the classes that Pellet returns as
unsatisfiable. When DBOWL classifies an instance in a unsatisfiable class, it re-
turns that the ontology is inconsistent, via a simple SQL query to the relational
database. Thus, the performance of the ontology classification reasoning service
falls on Pellet. Finally, as DBOWL is an OWL-DL reasoner, we use the OWL-DL
Instance Retrieval test case for the evaluation.

This experiment has been carried out in two phases. In the first step, we
loaded the nine ontologies in DBOWL. Most of the ontologies could not be
loaded due to different problems: (1) Some ontologies are not valid DBOWL
ontologies (see section 2.3). Information 397.owl, minswap.owl, and people.owl
define complex property’s domains or range (different from named Classes). In-
formation 397.owl and people2.owl contain complex Abox assertions (different
from Named Classes assertions). Finally, obi.owl cannot be classified by Pellet
because of memory problems. (2) DBOWL presented some problems dealing with
unsatisfiable classes, because the storage and management of the class Nothing
was not completely implemented. (3) DBOWL presented some problems regard-
ing the management of the namespaces.

11

Fig. 3. Results for OWL-DL Instance Retrieval dataset

In the second step, we solved the aforementioned problems and we loaded
eight of the nine ontologies in DBOWL (obi.owl could not be loaded because
it presented a problem with Pellet) and we obtained the corrected result for all
of them. We followed the guidelines outlined in Section 2.3 in order to convert
the ontologies into DBOWL ontologies. Figure 3 summarizes the results of the
evaluation. Load time includes Tbox classification (Pellet), database creation,
ontology storage and knowledge base creation (instances classification).

6 Conclusions

From the evaluation we extract some general conclusions. To the best of our
knowledge, DBOWL is the only OWL reasoner able to deal with the three
UOBM-DL ontologies obtaining the correct results for all queries in all cases.
Furthermore, this allows us to check the UOBM results for queries 11, 13 and
15 and to conclude that they are incorrect. Finally, DBOWL response times are
very good the highest one being 0.328 seconds for the UOBM 200MB ontol-
ogy. The results obtained with both evaluations suggest that DBOWL is a real
complement to current OWL reasoners. Currently, DBOWL supports ontologies
with much bigger Aboxes than traditional systems based on description logic
and satisfiability. This is especially important for some applications such as life
sciences, where particularly large ontologies are used. The datasets provided in
the context of the ORE 2012 workshops have allowed us to improve DBOWL
in several ways. Thus, the latest version of DBOWL is able to deal with all
types of namespaces, to control when a class is non-satisfiable and to check the
ontology consistency in such a case. Furthermore, we empirically test that the
restrictions imposed on the DBOWL ontologies are not a problem for developing
real ontologies, because any ontology can be converted to a DBOWL ontology,
keeping the ontology expressivity. With respect to instance retrieval, DBOWL is

12

able to obtain the same results as the expected result provided by the OWL-DL
Instance Retrieval dataset, suggesting that the DBOWL classification functions
and the algorithm for creating the knowledge base work well.

The use of a relational database to store the ontologies implies that the time
for loading an ontology in DBOWL can be longer than the load time in main-
memory reasoners. The advantage of our approach is that, once the knowledge
base is created, the query time is really small. Furthermore, as the knowledge
base is persistent, you can query it at any moment without creating it again.
Although other approaches also provide solutions for instance retrieval, they
present some problems regarding reasoning expressivity or response query times.
SHER 6, is a platform developed by IBM which supports sound and complete
reasoning for the fragment of OWL 1 DL without nominals. SHER adopts a
modularisation-based approach in which the ontology breaks into small parts
and is reasoned with a DL reasoner in the main memory. After the reasoning
procedure is finished, the corresponding axioms are stored in the database. Rea-
soning with instances is performed at query time. Oracle 11g 7 is the laster
version of the extremely well known RDMS Oracle. Oracle 11g includes a native
inference engine able to handle a subset of OWL called OWLPrime which covers
part of OWL Lite and a little part of OWL 1 DL. It also supports querying of
RDF/OWL data using SPARQL-like graph patterns embedded in SQL.

As for future work, we are studying some optimisation techniques (such as
database indexes, parallel computation and incremental reasoning) in order to
improve the response times of the queries. We also are studying the possibility
of incorporating other OWL reasoners different from Pellet, in DBOWL. The
idea is to select the most convenient OWL reasoner depending on the ontology
expressivity and size.

7 Acknowledgements

This work is supported by the Project Grant TIN2011-25840 (Spanish Ministry
of Education and Science) and P11-TIC-7529 (Innovation, Science and Enter-
prise Ministry of the regional government of the Junta de Andalućıa).

References

1. Ullrich Hustadt , Boris Motik , Ulrike Sattler. Reasoning in Description Logics by
a Reduction to Disjunctive Datalog. Journal of Automated Reasoning, v.39 n.3,
p.351-384, October 2007.

2. Ma, L; Yang, Y; Qiu, Z; Xie, G; Pan, Y. Towards A Complete OWL Ontology
Benchmark. In. Proc. of the 3rd European Semantic Web Conference (ESWC 2006).

3. Codd, E. A relational Model for Large Shared Data Banks, CACM, 13:6, june 1970.
4. Abiteboul, S., Hull, R., Vianu, V. Foundations of Databases. Addison-Wesley Pub-

lishing Company. 1995.

6 http://domino.research.ibm.com/comm/research projects.nsf/pages/iaa.index.html
7 http://www.oracle.com

Advancing the Enterprise-class OWL Inference Engine in
Oracle Database

Zhe Wu, Karl Rieb, George Eadon
Oracle Corporation

{alan.wu, karl.rieb, george.eadon}@oracle.com

Ankesh Khandelwal, Vladimir Kolovski
Rensselaer Polytechnic Institute, Novartis Institut es for Bio-

medical Research
ankesh@cs.rpi.edu, vladimir.kolovski@novartis.com

Abstract.

OWL is a standard ontology language defined by W3C that is used for
knowledge representation, discovery, and integration. Having a solid
OWL reasoning engine inside a relational database system like Oracle
is significant because 1) many relational techniques, including query
optimization, compression, partitioning, and parallel execution, can be
inherited and applied; and 2) relational databases are still the primary
place holder for enterprise information and there is an increasing use of
OWL for representing such information. Our approach is to perform da-
ta intensive reasoning as close as possible to the data. Since 2006, we
have been developing an RDBMS-based large scale and efficient for-
ward-chaining inference engine capable of handling RDF(S), OWL 2
RL/RDF, SKOS, and user defined rules. In this paper, we discuss our
recent implementation and optimization techniques for query-rewrite
based OWL 2 QL reasoning, named graph-based inference (local infer-
ence), and integration with external OWL reasoners.

1 Introduction

OWL [1] is an important standard ontology language defined by W3C and it has a
profound use in knowledge representation, discovery, and integration. To support
OWL reasoning over large datasets we have developed a forward-chaining rule-based
inference engine [2] on top of the Oracle Database. By implementing the inference
engine as a database application we are able to leverage the database’s capabilities for
handling large scale data. The most recent release of our engine, with support for
RDFS, OWL 2 RL/RDF [3], SKOS and user-defined rules, is available as part of
Oracle Database 11g Release 2 [4, 5, 7].

In our system semantic data is stored in a normalized representation, with one table
named LEXVALUES providing a mapping between lexical values and integer IDs and

another table named IDT RIPLES enumerating triples or quads in terms of IDs, similar
to other systems [8, 9]. Inference engine rules are translated to SQL and passed to
Oracle’s cost-based optimizer for efficient execution. For notational convenience,
SQL queries in this paper are written in terms of placeholders ID(x) and <IVIEW> . In
the implementation ID(x) is replaced by the ID for the given lexical value x , which
can be found by querying our LEXVALUES table, and <IVIEW> is replaced by an inline
view that unions the relevant triples (or quads) in IDT RIPLES with the inferred triples
(or quads) computed so far.

Additional features of our inference engine include: (1) for built-in OWL con-
structs we manually craft the SQL and algorithms that drive the inference, optimizing
for special cases including transitive properties and equivalence relations such as
owl:sameAs , (2) user-defined rules are translated to SQL automatically, (3) we lever-
age Oracle’s parallel SQL execution capability to fully utilize multi-CPU hardware,
and (4) we efficiently update the materialized inferred triples after additions to the
underlying data model, using a technique based on semi-naive evaluation [7].

Our engine has been used in production systems since 2006, and has proven
capable of handling many real-world applications. However, challenges remain:
- Despite support for efficient incremental inference, fully materializing inferred

results via forward chaining can be a burden, especially for large frequently-
updated data sets. Therefore we are introducing backward-chaining into our
system with a query-rewrite-based implementation of OWL 2 QL reasoning [2].

- Some applications need to restrict inference to a single ontology represented by a
named graph. For these applications inference should apply to just the assertions
in each named graph and a common schema ontology (TBox). This kind of infer-
ence is therefore local, as opposed to the traditional global inference, and it is
called Named Graph based Local Inference (NGLI) by Oracle.

- Some applications need the full expressivity of OWL 2 DL. To satisfy these
applications, we have further extended our inference engine by integrating it with
third-party complete OWL 2 DL reasoners like PelletDB [6].

In this paper we present our recent advances. Section 2 describes our query-rewrite
implementation of OWL 2 QL reasoning. Section 3 describes our implementation of
named graph local inference. Section 4 describes integration with external third-party
OWL reasoners. Section 5 presents a performance evaluation using synthetic Lehigh
University Benchmark (LUBM) datasets. Section 6 describes related work. Finally,
Section 7 concludes this paper.

2 Support of OWL 2 QL in the Context of SPARQL

OWL 2 QL is based on the DL-Lite family of Description Logics, specifically DL-
LiteR [10]. OWL 2 QL is an important profile because it has been designed so that
data (Abox) can be queried through an ontology (Tbox) via a simple rewriting mech-
anism. Queries can be expanded to include the semantic information in Tbox, using
query-rewrite techniques such as the PerfectRef algorithm [10], before executing
them against the Abox. The query expansion could produce many complex queries,
which presents a challenge for scalable QL reasoning. There have been several pro-

posals for optimizing and reducing the size of rewritten queries; see Section 6 for a
brief discussion. Most of these techniques return a union of conjunctive queries
(UCQ) for an input conjunctive query (CQ). Rosati et.al. [11] proposed a more so-
phisticated rewriting technique, the Presto algorithm, that produces non-recursive
datalog (nr-datalog), instead of UCQ. OWL 2 QL inference is supported in the Oracle
OWL inference engine based on the Presto algorithm. We elaborate on this and other
optimizations for efficient executions of query rewrites in Section 2.1. To meet the
requirements of enterprise data, OWL 2 QL inference engine must handle arbitrary
SPARQL queries. We discuss some subtleties to handling arbitrary SPARQL queries
by query expansion in Section 2.2. We will be using the following OWL 2 QL ontol-
ogy to illustrate various concepts. It is described in functional syntax and has been
trimmed down for brevity.

Ontology (SubDataPropertyOf(:nickName :name)
 SubClassOf(:Married ObjectSomeValuesFrom(:spouseOf :Person))
 SubObjectPropertyOf(:spouseOf :friendOf)
 DataPropertyAssertion(:name :Mary "Mary")
 ClassAssertion(:Married :John)
 DataPropertyAssertion(:name :Uli "Uli"))

2.1 Optimizing Execution of Query Rewrites

As noted in the introduction, Oracle OWL inference engine implements an approach
that is similar to that of rewriting CQs as nr-datalog. We will illustrate our approach
through some examples. Consider the conjunctive query (CQ),

 select ?x ?y ?n where { ?x :friendOf ?y . ?y :name ?n },

and its equivalent datalog query q(?x, ?y, ?n) :- friendOf(?x, ?y),

name(?y, ?n) . Note that friendOf(?x, ?y) and name(?y, ?n) are referred to
as atoms of the query. q(?x, ?y, ?n) can be translated into following nr-datalog
using the Presto algorithm, and the example Tbox.
 q(?x, ?y, ?n) :- q1(?x, ?y), q2(?y, ?n) .
 q1(?x, ?y) :- friendOf(?x, ?y) .
 q1(?x, ?y) :- spouseOf(?x, ?y) .
 q2(?y, ?n) :- name(?y, ?n) .
 q2(?y, ?n) :- nickName(?y, ?n) .

The nr-datalog can be represented by a single SPARQL query as shown below.
The heads of the nr-datalog, q1(?x, ?y) and q2(?y, ?n) for example, define a
view for the atoms of the query, which can be represented via UNION operation. The
conjunctions in the body of nr-datalog rules can be represented via intersections of
views. We refer to the resulting form of SPARQL query as the Joins of Union (JoU)
form. (UCQs, in contrast, are of the form Unions of Joins (UoJ).)

select ?x ?y ?n where { {{?x :friendOf ?y} UNION {?x :spouseOf ?y}}

 {{?y :name ?n} UNION {?y :nickName ?n}}}

The JoU form of SPARQL queries generated from query rewrite often contains
many UNION clauses and nested graph patterns that can become difficult for the
query optimizer to optimize. To improve the quality of query plans generated by the

query optimizer, our latest inference engine rewrites the UNION clauses using
FILTER clauses. For example, the query above is rewritten as follows, using
sT(...) as notational shorthand for the SPARQL operator sameTerm(...) . Recall
that sameTerm(A, B) is true if A and B are the same RDF term.

select ?x ?y ?n where

 {{?x ?p1 ?y FILTER(sT(?p1, :friendOf) || sT(?p1, :spouseOf))}

 {?y ?p2 ?n FILTER(sT(?p2, :name) || sT(?p2, :nickName))}}.

As mentioned earlier, UNION clauses correspond to views for atoms in the query.
Rules in the nr-datalog that define view for an atom of the query contain single atom
in their body [11]. The former atom is entailed by the latter atoms. For example, the
(SPARQL) CQ atom {?x p ?y} can be entailed from atoms of types {?x q ?y}

(by sub-property relationships) and {?y q ?x} (by inverse relationships), and also
of type {?x rdf:type c} (by existential class definition) if ?y is a non-
distinguished non-shared variable. There may be more than one atom for each type. In
that case, the view corresponding to atom {?x p ?y} can be defined via filter claus-
es as follows. (Any of n2 , n3 may be zero in which case corresponding pattern is
omitted; q11 equals p.)

 {{?x ?q ?y FILTER(sT(?q, q11) || ... sT(?q, q1n1))} UNION

 {?y ?q ?x FILTER(sT(?q, q21) || ... sT(?q, q2n2))} UNION

 {?x rdf:type ?c FILTER(sT(?c, c11) || ... sT(?c, c1n3))}}

Note that the unions above can be further collapsed using more general filter ex-
pressions and the result of query-rewrite is an expanded query (that is no rules are
generated). A key benefit of treating UCQ as JoU is that the SQL translation of a JoU
query is typically more amenable to RDBMS query optimizations because it uses
fewer relational operators, which reduces the optimizer’s combinatorial search space;
and the JoU, together with the filter clause optimization, will typically execute more
efficiently in an RDBMS because the optimizer can find a better plan involving fewer
operators, which reduces runtime initialization and destruction costs. Take the Lehigh
Benchmark (LUBM) Query 5 and 6 for example. The JoU approach takes both less
time and fewer database I/O requests, as shown in the following table, to complete the
query executions against the 1.1 billion-assertion LUBM 8000 data set. The machine
used was a Sun M8000 server described in Section 5.

LUBM8000 (1.1B+
asserted facts)

JoU with FILTER Optimization No Optimization

Time # of DB I/O Time # of DB I/O
Q5 (719 matches) 98.9s 73K 171.1s 271K

Q6 (63M+ matches) 25.68s 48K 28.7s 73K

Table 1 Effectiveness of JoU with FILTER optimization

2.2 SPARQLing OWL 2 QL Aboxes

The main mechanism for computing query results in the current SPARQL standard is
subgraph matching, that is, simple RDF entailment [12]. Additional RDF statements

can be inferred from the explicit RDF statements of an ontology using semantic inter-
pretations of ontology languages such as OWL 2 QL. The next version of SPARQL
(SPARQL 1.1) is in preparation and various entailment regimes have been specified
that define basic graph pattern matching in terms of semantic entailment relations
[13]. One such entailment regime is the OWL 2 Direct Semantics Entailment Regime
(ER), which is relevant for querying OWL 2 QL Aboxes. The ER specifies how the
entailment is used.

The entailed graphs may contain new blank nodes (that are not used in the explicit
RDF statements). ER, however, restricts semantic entailments to just those graphs
which contain no new blank nodes. In other words, all the variables of the query are
treated as distinguished variables irrespective of whether they are projected. This
limits the range of CQs that can be expressed using SPARQL 1.1 ER. For example,
consider following two queries that differ only in projected variables.

 select ?s ?x { ?s :friendOf ?x .}

 select ?s { ?s :friendOf ?x .}

Per ER, both queries have empty results. However, if viewed as CQs, ?x is a non-
distinguished variable in the second query and [?s � :John] is a valid result.
Therefore, the second CQ cannot be expressed in SPARQL 1.1 ER.

For practical reasons, we would like to be able to express all types of CQs to
OWL-2 QL Aboxes using SPARQL, especially when there are well-defined algo-
rithms such as PerfectRef for computing sound and complete answers for CQs. We
thereby adopt, in addition to ER, another entailment regime for Abox queries to OWL
2 QL ontologies, namely OWL 2 QL Entailment Regime (QLER). QLER is similar to
ER except that non-projected variables can be mapped to new blank nodes (not speci-
fied in the explicit triples of the Abox or Tbox). Projected variables cannot be mapped
to new blank nodes under both ER and QLER. QLER, unlike ER, is defined only for
Abox queries, and property and class expressions are not allowed (that is, only con-
cept and property IRIs may be used). Note that the results obtained under ER are al-
ways a subset of the results obtained under QLER.

Now, any CQ can be expressed as BGP SPARQL query under QLER (unlike ER).
The BGP query can be expanded, as discussed in Section 2.1, such that the query
results can be obtained from the expanded query by standard subgraph matching.
SPARQL, however, supports more complex queries than BGPs and union of BGPs
such as accessing graph names, filter clauses, and optional graph patterns. Thus, a
query-rewrite technique for complex SPARQL queries is also required.

Under ER, since all variables are treated as distinguished variables, individual
BGPs of a complex query can be expanded separately and replaced in place. For ex-
ample, SPARQL query select ?s ?n {?s :friendOf ?x} OPTIONAL {?x :name ?n} can be
expanded as,
 select ?s ?n {{ {?s :friendOf ?x} UNION {?s :spouseOf ?x} }

 OPTIONAL {{ ?x :name ?n } UNION {?x :nickname ?n}}}.

This expansion strategy is, however, not valid under QLER. ?x is a non-
distinguished variable under QLER, and the expanded form by that strategy will be,
 select ?s ?n {{{?s :friendOf ?x}

 UNION {?s :spouseOf ?x} UNION {?s rdf:type :Married} }
 OPTIONAL { { ?x :name ?n } UNION {?x :nickname ?n}}.

The query above produces two incorrect answers, [?s � :John; ?n �

“Uli”] and [?s � :John; ?n � “Mary”], and the source of the incorrect an-
swers is that binding [?s � :John] is obtained from the pattern {?s rdf:type

:Married} , and then ?x , which is implicitly bound to some new blank node, is ex-
plicitly bound to nothing (that is ?x is null). A left outer join with bindings from
{?x :name ?n } produces erroneous results because null value matches any value
of ?x from the optional pattern.

The way around that problem is to bind ?x to a new blank node using SPARQL 1.1
assignment expression [14] BIND(BNODE(STR(?s)) AS ?x) as shown below. The
BGP { ?s :friendOf ?x } is expanded into

 {{ ?s :friendOf ?x } UNION { ?s :hasSpouce ?x } UNION

 { ?s rdf:type :Married . BIND(BNODE(STR(?s)) AS ?x). }}.

The bindings for a non-distinguished variable are also lost when two similar atoms
of a CQ are replaced by their most general unifier; cf. reduction step of the
PerfectRef algorithm. Let ?x be a non-distinguished variable that is unified with
term t of other atom, which may be a variable or a constant, then the binding for ?x
can be retained by using SPARQL 1.1 assignment expression BIND(t as ?x) , in a
manner similar to that used in the above example.

So, the query-rewrite technique for complex SPARQL queries under QLER con-
sists of the following steps: 1) identify distinguished variables for all BGPs of the
query, 2) expand BGPs separately using the standard query-rewrite techniques (for
CQs), including the one described in Section 2.1, 3) make the bindings for non-
distinguished variables explicit whenever they are not using SPARQL 1.1 assignment
expressions as discussed above, and 4) replace the expanded BGPs in place. Steps 2)
and 3), even though presented sequentially, are intended to be performed concurrent-
ly. That is the bindings may be made explicit in the expansion phase for BGPs.

3 Named-Graph based Local inference

Inference is typically performed against a complete ontology together with all the
ontologies imported via owl:imports . In this case inference engines consolidate all
of the information and then perform tasks like classification, consistency checking,
and query answering, thereby maximizing the discovery of implicit relationships.

However, some applications need to restrict inference to a single ontology repre-
sented by a named graph. For example, a health care application may create a separate
named graph for each patient in its system. In this case, inference is required to apply
to just the assertions about each patient and a common schema ontology (TBox). This
kind of inference is therefore local, as opposed to the traditional global inference, and
it is called Named Graph based Local Inference (NGLI) by Oracle. NGLI together
with the use of named graphs for asserted facts modularizes and improves the man-
ageability of the data. For example, one patient’s asserted and inferred information
can be updated or removed without affecting those of other patients. In addition, a

modeling mistake in one patient’s named graph will not be propagated throughout the
rest of the dataset.

One naïve implementation is to run the regular, global, inference against each and
every named graph separately. Such an approach is fine when the number of named
graphs is small. The challenge is to efficiently deal with thousands, or tens of thou-
sands of named graphs. In the existing forward-chaining based implementation, Ora-
cle database uses SQL statements to implement the rule set defined in the OWL 2 RL
specification. To add the local inference feature, we have considered two approaches.
The first approach re-implements each rule by manually adding SQL constructs to
limit joins to triples coming from the same named graphs. Take for example a length
2 property chain rule defined as follows:

?u1 :p1 ?u2, ?u2 :p2 ?u3 � ?u1 :p ?u3

This rule can be implemented using the following SQL statement. Obviously this
rule applies to all assertions in the given data set <IVIEW>, irrespective of the origins
of the assertions involved.

 select distinct m1.sid, ID(p), m2.oid from <IVIEW> m1, <IVIEW> m2

 where m1.pid=ID(p1) and m1.oid=m2.sid and m2.pid=ID(p2)

To extend the above SQL with local inference capability, the following additional
SQL constructs (in Italic font) are added. The assumption here is that <IVIEW> has
an additional column, gid , which stores the integer hash ID values of graph names.
Also, as a convention, the common schema ontology is stored with a NULL gid value
in the same <IVIEW>. This allows an easy separation of the common schema ontolo-
gy axioms from those assertions made and stored in named graphs.

select distinct m1.sid, ID(p), m2.oid, nvl(m1.gid,m2.gid) AS gid
 from <IVIEW> m1, <IVIEW> m2
 where m1.pid=ID(p1) and m1.oid=m2.sid and m2.pid=ID(p2)
 and (m1.gid = m2.gid or m1.gid is null or m2.gid is null)

In the above SQL statement, a new projection of gid column is added to tag each
inferred triple with its origin. This is very useful provenance information. Also, a new
Boolean expression is added to the end of the SQL statement. This new expression
enforces that the two participating triples must come from the same named graph or
one of them must come from the common schema ontology. Note that when dealing
with more complex OWL 2 RL rules, the number of joins increases and this addition-
al Boolean expression becomes more complicated. As a consequence, it is error prone
to manually modify all existing SQL implementations to support the local inference.
This motivated an annotation-based approach, where each existing SQL statement is
annotated using SQL comments. Using the above example, the annotation (in Italic
font) together with the original SQL statement looks like:

select distinct m1.sid, ID(p), m2.oid /* ANNOTATION: PROJECTION */

 from <IVIEW> m1, <IVIEW> m2 where m1.pid=ID(p1) and m1.oid=m2.sid

 and m2.pid=ID(p2) /* ANNOTATION: ADDITIONAL_PREDICATE */

At runtime, the above dummy annotation texts will be replaced with proper SQL
constructs, similar to those described before. Those automatically-generated SQL
constructs are based on the number of joins in a rule implementation, and the set of

view aliases used in the SQL statement. Compared to the first approach, this annota-
tion based approach is easier to implement and much more robust because all the
actual SQL changes are centralized in a single function.

4 Extensible Inference

We realize in practice that, to be enterprise ready, an inference engine has to be ex-
tensible. Our engine natively supports RDFS, SKOS, OWLPrime [3], OWL 2 RL
which is a rich subset of the OWL 2 semantics, and a core subset of OWL 2 EL that is
sufficient to classify the well-known SNOMED ontology, in addition to user-defined
positive Datalog-like forward-chaining rules to extend the semantics and reasoning
capabilities beyond OWL. This is sufficient to satisfy the requirements of many real-
world applications. However, some application domains need the full expressivity of
OWL 2 DL. To satisfy these applications, we have further extended our inference
engine by integrating it with third-party complete OWL 2 DL reasoners like PelletDB
[6]. A key observation has been that even when dealing with a large-scale dataset
which does not fit into main memory, the schema portion, or the TBox, tends to be
small enough to fit into physical memory. So the idea is to extract the TBox from
Oracle database via a set of Java APIs provided in the Jena Adapter [5], perform clas-
sification using the in memory DL reasoner and materialize the class and property
hierarchies, save them back into Oracle, and finally invoke Oracle’s native inference
API to perform reasoning against the instance data, or the ABox.

This approach combines the full expressivity support provided by an external
OWL 2 DL reasoner and the scalability of Oracle database. Such an approach is gen-
eral enough and can be applied to other well-known OWL reasoners including
Fact++, HermiT, and TrOWL. It is worth pointing out that such an extension to Ora-
cle's inference capability is sound, but completeness in terms of query results cannot
be guaranteed. Nonetheless, users welcome such an extension because 1) in-memory
solutions simply cannot handle a very large dataset that exceeds the memory con-
straint, 2) more implicit relationships are made available using additional semantics
provided by external reasoners.

5 Performance Evaluation

In this section, we evaluate the performance of Oracle’s native inference engine.
Most tests were performed on a SPARC Enterprise M8000 server with 16 SPARC 64
VII+ 3.0GHz CPUs providing a total of 64 cores and 128 parallel threads. There is
512 GB RAM and two 1-TB F5100 flash arrays incorporating 160 storage devices.
Note that the performance evaluation is focused on local inference performance. A
systematic evaluation of SPARQL query answering under QL semantics is ongoing.

Benchmark Data Generation. We are using the well-known, synthetic Lehigh
University Benchmark (LUBM) to test the performance because 1) a LUBM dataset
can be arbitrarily large; and 2) it is quite natural to extend a LUBM dataset from tri-

ples to quads. The existing LUBM data generator produces data in triple format.
However, the triples are produced on a per university basis, so it is straightforward to
append university information to the triples to yield quad data.

Local Inference Performance. In the following table, we compare the perfor-
mance of named-graph based local inference against that of the regular, global infer-
ence. Three benchmark datasets are used and the dataset size is between 133 million
and 3.45+ billion asserted facts. Such a scale is sufficient for many enterprise-class
applications. The second and third columns list the number of inferred triples and
elapsed time for global inference. The last two columns list the number of inferred
new quads and elapsed time for local inference. Note that a parallel inference [7] with
a degree of 128 was used for both the global and local inferences. In addition, at the
end of both global and local inference process, a multi-column B-Tree index is built
so that the inferred data is ready for query. The only factor that stopped us from test-
ing even bigger ontologies was the 2-TB disk space constraint.

Benchmark/Inference
Type

Global Inference Local Inference

New triples Elapsed time New quads Elapsed time
LUBM10001 108M 12m 15s 111M 13m 0s

LUBM8000 869M 33m 17s 892M 40m 3s

LUBM25000 2.71B 1h 44m 2.78B 2h 1m
Table 2 Performance comparison between global and local inference

The performance of local inference is a bit slower than but still quite comparable to
that of the global inference. The performance difference comes from two places: 1)
local inference deals with quads instead of triples and a quad dataset is larger in size
than its triple counterpart because of the additional graph names, 2) the SQL state-
ment is more complex due to the additional expressions.

It may be counter intuitive that local inference produced more inferred relation-
ships than global inference. An examination of the inference results suggests that
there are inferred triples showing multiple times in different named graphs even
though any named graph contains only a unique set of triples.

With help from a customer, we conducted a performance evaluation of local infer-
ence using OWL 2 RL profile against large-scale real-world data2 from the medi-
cal/hospital domain. The machine used was a quarter-rack Exadata x2-2. It is a 2-node
cluster and each node has 96 GB RAM and 24 CPU cores. Detailed hardware specifi-
cations can be found here3. It took around 100 minutes to complete the local inference
using a parallel degree of 48. Inference generated a total of 574 million new quads.

Benchmark/Inference Type
Local Inference

New quads Elapsed time
Real-world Medical/Hospital Dataset 574M 100m 28s

Table 3 Local inference performance against real-world quad dataset

1 LUBM1000, LUBM8000, and LUBM25000 datasets have 133M+, 1.1B+, and 3.45B+ facts
asserted, respectively.

2 Private data. It has 1.163B+ quads asserted.
3 http://www.oracle.com/technetwork/database/exadata/dbmachine-x2-2-datasheet-175280.pdf

Parallel Inference. Oracle’s inference engine has benefited greatly from the paral-
lel execution capabilities provided by the database. The same kind of parallel infer-
ence optimization, explained in [7], applies both to the regular, global inference and
the local inference. Figure 1 shows the local inference performance improvement as
the degree of parallelism goes higher. LUBM 25K benchmark was used for this ex-
periment. Note that most improvement was achieved when the parallel degree went
up from 24 to 64. After that, only marginal improvement was observed. This is due to
the fact that the Sun M8000 has 64 cores.

Figure 1 Local inference elapsed time versus degree of parallelism

6 Related Work

We will discuss works related to query rewriting as required for OWL 2 QL infer-
ence, implementations for OWL 2 QL reasoning. (We will be focusing on theory and
techniques and not so much on relative performances).

Several techniques for query-rewriting have been developed since the
PerfectRef algorithm was introduced in [10]; see [15] for a nice summary. The
given CQ is reformulated as a UCQ by means of a backward-chaining resolution pro-
cedure in the PerfectRef algorithm. The size of the computed rewriting increases
exponentially with respect to the number of atoms in the given query, in the worst
case. But as observed by others, many of the new queries that were generated were
superfluous, for example some of the CQs in a UCQ may be subsumed by others in
the UCQ. An alternative resolution-based rewriting technique was proposed in [16]
which avoids many useless unifications and thus UCQs are smaller even though they
are still exponential in the number of atoms of the query. This alternative rewriting
technique is implemented in the Requiem system4. Rosati et al. [11] argued that
UCQs are reasons for exponential blow up, and have proposed a very sophisticated
rewriting technique, the Presto algorithm, which produces a non-recursive Datalog
program as a rewriting, instead of a UCQ. As noted before, we deploy the Presto al-
gorithm for optimal performance.

The W3C's OWL implementations page5 lists four systems that support OWL 2
QL reasoning: QuOnto6, Owlgres7, OWLIM8, Quill9.

4 http://www.cs.ox.ac.uk/isg/tools/Requiem/
5 http://www.w3.org/2007/OWL/wiki/Implementations
6 http://www.dis.uniroma1.it/~quonto/

QuOnto, Quill and Owlgres implement the PerfectRef query-rewrite technique,
but Quonto implements an optimized PerfectRef query-rewrite technique,
QPerfRef [10], and Quill in addition to query-rewrite, transforms ontology into a
semantically approximate ontology [17].

Owlgres is an RDBMS-based implementation [18]. It deploys PerfectRef query-
rewrite technique, with some optimizations such as Tbox terms with zero occurrences
in Abox are identified in a preprocessing step and CQs of a UCQ that contain such
Tbox terms are discarded, in contrast to the Presto algorithm. Furthermore, the UCQs
are translated into a single SQL query that is a union of SQL queries, which is remi-
niscent of UoJ form. In contrast, we translate UCQs into more efficient JoU form, and
the unions are collapsed into compact FILTER clauses.

OWLIM supports forward-chaining style rule-based reasoning, wherein blank
nodes can be inferred during rule evaluation. OWL 2 QL reasoning is supported in
OWLIM by defining new ruleset that captures OWL 2 QL semantics [19], and using
the same forward chaining mechanism.

7 Conclusions

This paper described the recent advances in our OWL inference engine, which is
implemented on top of the Oracle Database. We described optimizations for rewrite-
based backward-chaining implementation of OWL 2 QL. We showed that conjunctive
queries for OWL 2 QL knowledge bases cannot be expressed in SPARQL 1.1 using
its entailment regimes because the regimes are very restrictive towards bindings to
new blank nodes. We introduced a new regime to overcome that and described a que-
ry-rewrite technique for general SPARQL queries (which may contain constructs such
as optional graph patterns). We introduced the concept of “named-graph based local
inference” and described our implementation. We described the motivation for inte-
grating a third-party OWL reasoner in our system, and described our implementation.
Finally, we evaluated the performance of named-graph based local inference as com-
pared to traditional global inference on synthetic data sets.

Acknowledgement. We thank Jay Banerjee for his support. We thank Rick Heth-
erington and Brian Whitney for providing access to and guiding us on the use of the
Oracle Sun M8000 server machine. We thank Christopher Hecht and Kathleen Li for
their assistance in using the Exadata platform.

Reference

1. OWL 2 Web Ontology Language Direct Semantics. http://www.w3.org/TR/owl2-direct-semantics/
2. Oracle Database Semantic Technologies.

http://www.oracle.com/technetwork/database/options/semantic-tech/index.html

7 http://pellet.owldl.com/owlgres
8 http://www.ontotext.com/owlim/
9 http://kt.abdn.ac.uk/wiki/Projects/Quill

3. OWL 2 Web Ontology Language Profiles. http://www.w3.org/TR/owl2-profiles/
4. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: “Implementing

and Inference Engine for RDFS/OWL Constructs and User-Defined Rules in Oracle” IEEE 24th Intl.
Conf. On Data Engineering (ICDE) 2008

5. Oracle Database Semantic Technologies Developer’s Guide 11g Release 2 (11.2)
http://docs.oracle.com/cd/E11882_01/appdev.112/e11828/toc.htm

6. Introducing PelletDb: Expressive, Scalable Semantic Reasoning for the Enterprise
http://clarkparsia.com/files/pdf/pelletdb-whitepaper.pdf

7. Kolovski, V., Wu, Z., Eadon, G.: Optimizing Enterprise-Scale OWL 2 RL Reasoning in a Relational
Database System. International Semantic Web Conference (1) 2010: 436-452

8. J. Broekstra, F. van Harmelen, and A. Kampman, “Seasme: A Generic Architecture for Storing and
Querying RDF and RDF Schema”. International Semantic Web Conference (ISWC) 2002.

9. L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu, “RStar: An RDF Storage and Querying System for Enter-
prise Resource Management”. CIKM 2004.

10. Calvanese, G. deD., Giacomo, D.G., Lembo, M.D., Lenzerini, R.M., Rosati “, R.: Tractable Reason-
ing and Efficient Query Answering in Description Logics: The DL-Lite Family” In J.. Journal of Au-
tomated Reasoning 39(3):) (October 2007) 385---429, 2007.

11. Rosati, R., Almatelli, A.: Improving Query Answering over DL-Lite Ontologies. In Proceedings of the
12th International Conference on Principles of Knowledge Representation and Reasoning. KR, AAAI
Press (2010).

12. SPARQL Query Language for RDF. W3C Recommendation 15 January 2008.
http://www.w3.org/TR/rdf-sparql-query/ Last accessed 18-April-2012.

13. SPARQL 1.1 Entailment Regimes. W3C Working Draft 05 January 2012.
http://www.w3.org/TR/sparql11-entailment/ Last accessed 18-April-2012.

14. SPARQL 1.1 Query Language. W3C Working Draft 05 January 2012.
http://www.w3.org/TR/sparql11-query/ Last accessed 18-April-2012.

15. Gottlob, G., Schwentick, T.: Rewriting Ontological Queries into Small Nonrecursive Datalog Pro-
grams. In Proceedings of the 24th International Workshop on Description Logics (DL 2011), Barcelo-
na, Spain, July 13-16, 2011.

16. Pe'rez-Urbina, H., Motik, B., Horrocks, I.: Tractable Query Answering and Rewriting under Descrip-
tion Logic Constraints. Journal of Applied Logic 8(2) (2010) 186—209.

17. Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontologies. In: Proceedings of the 22nd National
Conference on Artificial Intelligence - Volume 2. AAAI'07, AAAI Press (2007) 1434—1439.

18. Stocker, M., Smith, M.: Owlgres: A Scalable OWL Reasoner. In Proceedings of the Fifth OWLED
Workshop on OWL: Experiences and Directions, Karlsruhe, Germany, October 26-27, 2008.

19. Bishop, B., Bojanov, S.: Implementing OWL 2 RL and OWL 2 QL. In Proceedings of the 8th Inter-
national Workshop on OWL: Experiences and Directions (OWLED 2011), San Francisco, California,
USA, June 5-6, 2011.

20. Narayanan, S., Catalyurek, U., Kurc, T., Saltz, J.: Parallel Materialization of Large ABoxes. In: Pro-
ceedings of the 2009 ACM symposium on Applied Computing. SAC'09, New York, NY, USA, ACM
(2009) 1257—1261.

21. Urbani, J., Kotoulas, S., Massen, J., van Harmelen, F., Bal, H.: Webpie: A web-scale parallel infer-
ence engine using mapreduce. Web Semantics: Science, Services and Agents on the World Wide Web
10 (2012).

22. Hogan, A., Pan, J., Polleres, A., Decker, S.: SAOR: Template Rule Optimisations for Distributed
Reasoning over 1 Billion Linked Data Triples. In: 9th International Semantic Web Conference
(ISWC). (November 2010).

Mini-ME: the Mini Matchmaking Engine

M. Ruta, F. Scioscia, E. Di Sciascio, F. Gramegna, and G. Loseto

Politecnico di Bari, via E. Orabona 4, I-70125 Bari, Italy
E-mail: m.ruta@poliba.it, f.scioscia@poliba.it, disciascio@poliba.it,

gramegna@deemail.poliba.it, loseto@deemail.poliba.it

Abstract. The Semantic Web of Things (SWoT) is a novel paradigm,
blending the Semantic Web and the Internet of Things visions. Due to
architectural and performance issues, it is currently impractical to use
available reasoners for processing semantic-based information and per-
form resource discovery in pervasive computing scenarios. This paper
presents a prototypical mobile reasoner for the SWoT, supporting Se-
mantic Web technologies and implementing both standard (subsumption,
satisfiability, classification) and non-standard (abduction, contraction)
inference tasks for moderately expressive knowledge bases. Architectural
and functional features are described and an experimental performance
evaluation is provided both on a PC testbed (w.r.t. other popular Se-
mantic Web reasoners) and on a smartphone.

1 Introduction

The Semantic Web of Things (SWoT) is an emerging paradigm in Information
and Communication Technology, joining the Semantic Web and the Internet
of Things. The Semantic Web initiative [5] envisions software agents to share,
reuse and combine data available in the World Wide Web, by means of machine-
understandable annotation languages such as RDF1 and OWL2, grounded on
Description Logics (DLs) formalisms. The Internet of Things vision [11] pro-
motes pervasive computing on a global scale, aiming to give intelligence to ordi-
nary objects and physical locations by means of a large number of heterogeneous
micro-devices, each conveying a small amount of information. Consequently, the
goal of the SWoT is to embed semantically rich and easily accessible metadata
into the physical world, by enabling storage and retrieval of annotations from
tiny smart objects. Such a vision requires an increased autonomy and efficiency
of knowledge-based systems for what concerns information memorization, man-
agement, dissemination and discovery. Particularly, reasoning and query answer-
ing aimed to resource discovery is critical in mobile computing platforms (e.g.,
smartphones, tablets) which –albeit increasingly effective and powerful– are still
affected by hardware/software limitations. They have to be taken into account

1 Resource Description Framework, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/rdf-primer/

2 OWL 2 Web Ontology Language, W3C Recommendation 27 October 2009,
http://www.w3.org/TR/owl-overview/

2

when designing systems and applications: particularly, to use more expressive
languages increases the computational complexity of inferences and significant
architectural and performance issues affect porting current OWL-based reason-
ers, designed for the Semantic Web, to handheld devices. This paper presents
Mini-ME (the Mini Matchmaking Engine), a prototypical mobile reasoner for
moderately expressive DLs, created to support semantic-based matchmaking [6],
[16]. It complies with standard Semantic Web technologies through the OWL
API [9] and implements both standard reasoning tasks for Knowledge Base (KB)
management (subsumption, classification, satisfiability) and non-standard infer-
ence services for semantic-based resource discovery and ranking (abduction and
contraction [6]). Mini-ME is developed in Java, adopting Android as target com-
puting platform.

The remaining of the paper is organized as follows. Section 2 reports on
related work, providing perspective and motivation for the proposal. Mini-ME
is presented in Section 3, where details are given about reasoning algorithms,
software architecture, data structures and supported logic languages. Section 4
relates to performance evaluation on the venue reference datasets3 and a compar-
ison with other popular Semantic Web reasoners is proposed. Finally conclusion
and future work in Section 5 close the paper.

2 Related Work

When processing semantic-based information to infer novel and implicit knowl-
edge, careful optimization is needed to achieve acceptable reasoning performance
for adequately expressive languages [3, 10]. This is specifically true in case of
logic-based matchmaking for mobile computing, which is characterized by severe
resource limitations (not only affecting processing, memory and storage, but also
energy consumption). Most mobile engines currently provide only rule processing
for entailments materialization in a KB [14, 27, 12, 18], so basically, available fea-
tures are not suitable to support applications requiring non-standard inference
tasks and extensive reasoning over ontologies [18]. More expressive languages
could be used by adapting tableaux algorithms –usually featuring reasoners run-
ning on PCs– to mobile computing platforms, but an efficient implementation
of reasoning services is still an open problem. Several techniques [10] allow to
increase expressiveness or decrease running time at the expense of main memory
usage, which is the most constrained resource in mobile systems. Pocket KRHy-
per [24] was the first reasoning engine specifically designed for mobile devices.
It supported the ALCHIR+ DL and was built as a Java ME (Micro Edition)
library. Pocket KRHyper was exploited in a DL-based matchmaking framework
between user profiles and descriptions of mobile resources/services [13]. How-
ever, its limitation in size and complexity of managed logic expressions was very
heavy due to frequent “out of memory” errors. To overcome those constraints,
tableaux optimizations to reduce memory consumption were introduced in [26]
and implemented in mTableau, a modified version of Java SE Pellet reasoner

3 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/

3

[25]. Comparative performance tests were performed on a PC, showing faster
turnaround times than both unmodified Pellet and Racer [8] reasoner. Never-
theless, the Java SE technology is not expressly tailored to the current generation
of handheld devices. In fact, other relevant reasoners, such as FaCT++ [28] and
HermiT [23], cannot run on common mobile platforms. Porting would require
a significant re-write or re-design effort, since they rely on Java class libraries
incompatible with mosto widespread mobile OS (e.g., Android). Moreover, the
above systems only support standard inference services such as satisfiability and
subsumption, which provide only binary “yes/no” answers. Consequently, they
can only distinguish among full (subsume), potential (intersection-satisfiable)
and partial (disjoint) match types (adopting the terminology in [6] and [16], re-
spectively). Non-standard inferences, as Concept Abduction and Concept Con-
traction, are needed to enable a more fine-grained semantic ranking as well as
explanations of outcomes [6]. In latest years, a different approach to implement
reasoning tools arose. It was based on simplifying both the underlying logic lan-
guages and admitted KB axioms, so that structural algorithms could be adopted,
but maintaining expressiveness enough for broad application areas. In [1], the
basic EL DL was extended to EL++, a language deemed suitable for various
applications, characterized by very large ontologies with moderate expressive-
ness. A structural classification algorithm was also devised, which allowed high-
performance EL++ ontology classifiers such as CEL [4] and Snorocket [15]. OWL
2 profiles definition complies with this perspective, focusing on language subsets
of practical interest for important application areas rather than on fragments
with significant theoretical properties. In a parallel effort motivated by similar
principles, in [22] an early approach was proposed to adapt non-standard logic-
based inferences to pervasive computing contexts. By limiting expressiveness
to AL language, acyclic, structural algorithms were adopted reducing standard
(e.g., subsumption) and non-standard (e.g., abduction and contraction) infer-
ence tasks to set-based operations [7]. KB management and reasoning were then
executed through a data storage layer, based on a mobile RDBMS (Relational
DBMS). Such an approach was further investigated in [20] and [19], by increasing
the expressiveness to ALN DL and allowing larger ontologies and more complex
descriptions, through the adoption of both mobile OODBMS (Object-Oriented
DBMS) and performance-optimized data structures. Finally, in [21] expressive-
ness was extended to ALN (D) DL with fuzzy operators. The above tools were
designed to run on Java ME PDAs and were adopted in several case studies em-
ploying semantic matchmaking over moderately expressive KBs. The reasoning
engine presented here recalls lessons learned in those previous efforts, and aims
to provide a standards-compliant implementation of most common inferences
(both standard and non-standard) for widespread mobile platforms.

3 System Description

The architecture of the proposed reasoning engine is sketched as UML diagram
in Figure 1. Components are outlined hereafter:

4

<<component>>

OwlReasoner

<<component>>

<<library>>

OWL API

<<component>>

MicroReasoner

<<component>>

KB Wrapper

<<component>>

<<service>>

Android_Service

<<component>>

High Level Data Structures
Non-standard Reasoning Tasks

Standard Reasoning Tasks

KB Management

<<use>>
<<use>>

<<use>>

<<use>>

Fig. 1: Component UML diagram

- Android Service: implements a service (i.e., a background daemon) any An-
droid application can invoke to use the engine;
- OwlReasoner: OWL API [9] implementation exposing fundamental KB op-
erations (load, parse) and standard reasoning tasks (subsumption, classification,
satisfiability); it is endorsed by the OWL API open source library;
- MicroReasoner: interface for non-standard reasoning tasks (concept abduc-
tion, contraction);
- KB Wrapper: implements KB management functions (creation of internal
data structures, normalization, unfolding) and basic reasoning tasks on ontolo-
gies (classification and coherence check);
- High Level Data Structures: in-memory data structures for concept ma-
nipulation and reasoning; they refer to reasoning tasks on concept expressions
(concept satisfiability, subsumption, abduction, contraction).

Mini-ME was developed using Android SDK Tools4, Revision 12, correspond-
ing to Android Platform version 2.1 (API level 7), therefore it is compatible with
all devices running Android 2.1 or later. Mini-ME can be used either through
the Android Service by Android applications, or as a library by calling public
methods of the OwlReasoner and MicroReasoner components directly. In the
latter form, it runs unmodified on Java Standard Edition runtime environment,
version 6 or later. The system supports OWL 2 ontology language, in all syntaxes
accepted by the OWL API parser. Supported logic constructors are detailed in
Section 3.1. Implementation details for both standard and non-standard reason-
ing services are given in Section 3.2. Data structures for internal representation
and manipulation of concept expressions are outlined in Section 3.3.

3.1 Supported Language

In DL-based reasoners, an ontology T (a.k.a. Terminological Box or TBox) is
composed by a set of axioms in the form: A ⊑ D or A ≡ D where A and D are
concept expressions. Particularly, a simple-TBox is an acyclic TBox such that:
(i) A is always an atomic concept; (ii) if A appears in the left hand side (lhs)
of a concept equivalence axiom, then it cannot appear also in the lhs of any
concept inclusion axiom. Mini-ME supports the ALN (Attributive Language
with unqualified Number restrictions) DL, which has polynomial computational
complexity for standard and non-standard inferences in simple-TBoxes, whose
depth of concept taxonomy is bounded by the logarithm of the number of axioms
in it (see [7] for further explanation). Actually, such DL fragment has been

4 http://developer.android.com/sdk/tools-notes.html

5

Table 1: Syntax and semantics of ALN constructs and simple-TBoxes

Name Syntax Semantics

Top ⊤ ∆I

Bottom ⊥ ∅

Intersection C ⊓ D CI ∩ DI

Atomic negation ¬A ∆I\AI

Universal quantification ∀R.C {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}

Number restriction ≥ nR {d1 | ♯{d2 | (d1, d2) ∈ RI} ≥ n}

≤ nR {d1 | ♯{d2 | (d1, d2) ∈ RI} ≤ n}

Inclusion A ⊑ D AI ⊆ DI

Equivalence A ≡ D AI = DI

selected for the first release of Mini-ME as it grants low complexity and memory
efficiency of non-standard inference algorithms for semantic matchmaking. ALN
DL constructs are summarized in Table 1.

3.2 Reasoning Services

Mini-ME exploits structural algorithms for standard and non-standard reasoning
and then, when a knowledge base is loaded, it has to be preprocessed perform-
ing unfolding and Conjunctive Normal Form (CNF) normalization. Particularly,
given a TBox T and a concept C, the unfolding procedure recursively expands
references to axioms in T within the concept expression itself. In this way, T
is not needed any more when executing subsequent inferences. Normalization

transforms the unfolded concept expression in CNF by applying a set of pre-
defined substitutions. Any concept expression C can be reduced in CNF as:
C ≡ CCN ⊓CLT ⊓CGT ⊓C∀, where CCN is the conjunction of (possibly negated)
atomic concept names, CLT (respectively CGT) is the conjunction of ≤ (resp.
≥) number restrictions (no more than one per role), and C∀ is the conjunc-
tion of universal quantifiers (no more than one per role; fillers are recursively
in CNF). Normalization preserves semantic equivalence w.r.t. models induced
by the TBox; furthermore, CNF is unique (up to commutativity of conjunction
operator) [7]. The normal form of an unsatisfiable concept is simply ⊥. The
following standard reasoning services on (unfolded and normalized) concept ex-
pressions are currently supported:
- Concept Satisfiability (a.k.a. consistency). Due to CNF properties, satisfia-
bility check is trivially performed during normalization.
- Subsumption test. The classic structural subsumption algorithm is exploited,
reducing the procedure to a set containment test [2].

In Mini-ME, two non-standard inference services were also implemented, al-
lowing to (i) provide explanation of outcomes beyond the trivial “yes/no” answer
of satisfiability and subsumption tests and (ii) enable a logic-based relevance
ranking of a set of available resources w.r.t. a specific query [19]:
- Concept Contraction: given a request D and a supplied resource S, if they
are not compatible with each other, Contraction determines which part of D
is conflicting with S. If one retracts conflicting requirements in D, G (for Give
up), a concept K (for Keep) is obtained, representing a contracted version of

6

the original request, such that K ⊓ S is satisfiable w.r.t. T . The solution G to
Contraction represents “why” D ⊓ S are not compatible.
- Concept Abduction: whenever D and S are compatible, but S does not
imply D, Abduction allows to determine what should be hypothesized in S in
order to completely satisfy D. The solution H (for Hypothesis) to Abduction
represents “why” the subsumption relation T |= S ⊑ D does not hold. H can
be interpreted as what is requested in D and not specified in S.

In order to use Mini-ME in more general knowledge-based applications, the
following reasoning services over ontologies were also implemented:
- Ontology Satisfiability: since Mini-ME does not currently process the ABox,
it performs an ontology coherence check rather than satisfiability check (differ-
ence is discussed e.g., in [17]). During ontology parsing, the KB Wrapper module
creates a hash table to store all concepts in the TBox T . Since CNF normaliza-
tion allows to identify unsatisfiable concepts, it is sufficient to normalize every
table item to locate unsatisfiability in the ontology.
- Classification: ontology classification computes the overall concept taxon-
omy induced by the subsumption relation, from ⊤ to ⊥ concept. In order to
reduce the subsumption tests, the following optimizations introduced in [3] were
implemented: enhanced traversal top search, enhanced traversal bottom search,
exploitation of told subsumers. The reader is referred to [3] for further details.

3.3 Data Structures

The UML diagram in Figure 2 depicts classes in the High Level Data Structures
package (mentioned before) and their relationships. Standard Java Collection
Framework classes are used as low-level data structures:
- Item: each concept in the ontology is an instance of this class. Attributes are
the name and the corresponding concept expression. When parsing an ontology,
the KB Wrapper component builds a Java HashMap object containing all con-
cepts in the TBox as String-Item pairs. Each concept is unfolded, normalized
and stored in the HashMap with its name as key and Item instance as value.
- SemanticDescription: models a concept expression in CNF as aggrega-
tion of CCN , CGT , CLT , C∀ components, each one stored in a different Java Ar-
rayList. Methods implement inference services: abduce returns the hypothesis
H expression; contract returns a two-element array with G and K expres-
sions; checkCompatibility checks consistency of the conjunction between the
object SemanticDescription and the one acting as input parameter; similarly,
isSubsumed performs subsumption test with the input SemanticDescription.
- Concept: models an atomic concept Ai in CCN ; name contains the concept
name, while denied, if set to true, allows to express ¬Ai.
- GreaterThanRole (respectively LessThanRole): models number restric-
tions in CGT and CLT . Role name and cardinality are stored in the homonym
variables.
- UniversalRole: a universal restriction ∀R.D belonging to C∀; R is stored in
name, while D is a SemanticDescription instance.

7

+abduce(request : SemanticDescription) : SemanticDescription

+contract(request : SemanticDescription) : SemanticDescription []

+checkCompatibility(request : SemanticDescription) : boolean

+isSubsumed(subsumer : SemanticDescription) : boolean

SemanticDescription

-name : String

Item

+name : String

-denied : boolean

+equals(c : Concept) : boolean

Concept

+name : String

+cardinality : int

+equals(r : GreaterThanRole) : boolean

GreaterThanRole

+name : String

+cardinality : int

+equals(r : LessThanRole) : boolean

LessThanRole+name : String

+filler : SemanticDescription

+equals(r : UniversalRole) : boolean

UniversalRole

0..*
0..*1

1

0..*

0..*

Fig. 2: Class diagram of High Level Data Structures package

In the last classes, the equals method, inherited from java.lang.Object, has
been overridden in order to properly implement logic-based comparison.

4 Experimental Evaluation

Performance evaluation was carried out for classification, class satisfiability and
ontology satisfiability, including both a comparison with other popular Semantic
Web reasoners on a PC testbed5 and results obtained on an Android smart-
phone6. The reference dataset is composed of 214 OWL ontologies with different
complexity, expressiveness and syntax. Full results are reported on the project
home page7, while main highlights are summarized hereafter. Mini-ME was com-
pared on PC with FaCT++8, HermiT9 and Pellet10. All reasoners were used via
the OWL API [9]. For each reasoning task, two tests were performed: (i) correct-
ness of results and turnaround time; (ii) memory usage peak. For turnaround
time, each test was repeated four times and the average of the last three runs
was taken. For memory tests, the final result was the average of three runs.
Performance evaluation for non-standard inferences is not provided here.

4.1 PC Tests

Classification. The input of this task was the overall ontology dataset. For each
test, one of the following possible outcomes was recorded: (i) Correct, the com-
puted taxonomy corresponds with the reference classification –if it is included
into the dataset– or results of all the reasoners are the same; in this case the total
time taken to load and classify the ontology is also reported; (ii) Parsing Error,
the ontology cannot be parsed by the OWL API due to syntax errors; (iii) Fail-
ure, the classification task fails because the ontology contains unsupported logic
language constructors; (iv) Out of Memory, the reasoner generates an exception

5 Intel Core i7 CPU 860 at 2.80 GHz (4 cores/8 threads), 8 GB DDR3-SDRAM (1333
MHz) memory, 1 TB SATA (7200 RPM) hard disk, 64-bit Microsoft Windows 7
Professional and 64-bit Java 7 SE Runtime Environment (build 1.7.0 03-b05).

6 Samsung i9000 Galaxy S with ARM Cortex A8 CPU at 1 GHz, 512 MB RAM, 8
GB internal storage memory, and Android version 2.3.3.

7 Mini-ME Home Page, http://sisinflab.poliba.it/swottools/minime/
8 FaCT++, version 1.5.3 with OWL API 3.2, http://owl.man.ac.uk/factplusplus/
9 HermiT OWL Reasoner, version 1.3.6, http://hermit-reasoner.com/

10 Pellet, version 1.3, http://clarkparsia.com/pellet/

8

!"#$%!&

!"#$%'&

!"#$%(&

!"#$%)&

!"#$%*&

!"#$%+&

!"#$%,&

!"#$%-&

!& !%& !%%& !%%%& !%%%%&

!
"#

$
%&
'
()
%

*+#,$-%./%012(($(%"3%45$%.34.1.67%

./00/1& 2/3456& 7896$$& :5;5<:#&

Fig. 3: Classification test on PC

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

'#"

#!"

$" $!" $!!" $!!!" $!!!!"

!
"#

$
%&
'
()
%

*+#,$-%./%012(($(%"3%45$%.34.1.67%

()**)+" ,)-./0" 123044" 5/6/758"

Fig. 4: Class Satisfiability on PC

due to memory constraints; (v) Timeout, the task did not complete within the
timeout threshold (set to 60 minutes). Mini-ME correctly classified 83 of 214
ontologies; 71 were discarded due to parsing errors, 58 presented unsupported
language constructors, the timeout was reached in 2 cases. Pellet classified cor-
rectly 124 ontologies, HermiT 127, FaCT++ 118. The lower “score” of Mini-ME
is due to the presence of General Concept Inclusions, cyclic TBoxes or unsup-
ported logic constructors, since parsing errors occur in the OWL API library and
are therefore common to all reasoners. Figure 3 compares the classification times
of each reference reasoner w.r.t. the number of classes in every ontology. Pellet,
HermiT and FaCT++ present a similar trend (with FaCT++ slightly faster
than the other engines), while Mini-ME is very competitive for small-medium
ontologies (up to 1200 classes) but less for large ones. This can be considered
as an effect of the Mini-ME design, which is optimized to manage elementary
TBoxes.
Class satisfiability. The reference test dataset consists of 107 ontologies and,
for each of them, one or more classes to check. However, we tested only the
69 ontologies that Mini-ME correctly classified in the previous proof. Figure
4 shows that performances are basically similar, with times differing only for
few microseconds and no reasoner consistently faster or slower. Moreover, the
chart suggests no correlation between the time and the number of classes in the
ontology.
Ontology satisfiability. Figure 5 is similar to Figure 3, because this test implies
loading, classifying and checking consistency of all concepts in the ontology; the

9

!"#$%!&

!"#$%'&

!"#$%(&

!"#$%)&

!"#$%*&

!"#$%+&

!"#$%,&

!"#$%-&

!& !%& !%%& !%%%& !%%%%&

!
"#

$
%&
'
()
%

*+#,$-%./%012(($(%"3%45$%.34.1.67%

./00/1& 2/3456& 7896$$& :5;5<:#&

Fig. 5: Ontology Satisfiability on PC

!"#

!$#

%"#

%$#

&"#

'# '"# '""# '"""#

!
"#
$
%&

#
'
(
)*
%+
#
,
-
%.
&
/
0%

12'3#)%(4%56,""#"%78%9:#%(89(6(;*%

()**)+# ,)-./0# 123044# 5/6/758#

(a) Small ontologies

!"#

!""#

!"""#

!"""# !""""#

!
"#
$
%&

#
'
(
)*
%+
#
,
-
%.
&
/
0%

12'3#)%(4%56,""#"%78%9:#%(89(6(;*%

$%&&%'# (%)*+,# -./,00# 1+2+314#

(b) Large ontologies

Fig. 6: Memory usage test on PC

first two steps require the larger part of the time. Results of all reasoners are the
same, except for ontologies with IDs 199, 200, 202, 203. In contrast to Pellet,
HermiT and FaCT++, Mini-ME checks ontology coherence regardless of the
ABox. The above ontologies include an unsatisfiable class (GO 0075043) with no
instances, therefore the ontology is reported as incoherent by Mini-ME but as
satisfiable by the other reasoners.

Memory Usage. Figure 6 reports on memory usage peak during classification,
which was verified as the most memory-intensive task. For small ontologies, used
memory is roughly similar for all reasoners; Mini-ME provides good results, with
lower memory usage than Pellet and HermiT and on par with FaCT++. Also
for large ontologies, Mini-ME results are comparable with the other reasoners,
although FaCT++ has slightly better overall performance.

4.2 Mobile Tests

Results for mobile tests have been referred to the above outcomes for PC tests in
order to put in evidence Mini-ME exhibits similar trends (so offering predictable
memory and time consumption behaviors). Anyway, figures clearly evidence the

10

performance gap, but they highlight the reasoner acceptably works also on mo-
bile platforms. When out-of-memory errors did not occur, results computed by
Mini-ME on the Android smartphone were in all cases the same as on the PC.
73 ontologies over 214 were correctly classified on the mobile device, 53 were
discarded due to parsing errors, 56 had unsupported language constructors, 30
generated out-of-memory exceptions and 2 reached the timeout. Figure 7 shows
the classification turnaround time –only for the correct outcomes– compared
with the PC test results. Times are roughly an order of magnitude higher on
the Android device. Absolute values for ontologies with 1000 classes or less are
under 1 second, so they can be deemed as acceptable in mobile contexts. Fur-
thermore, it can be noticed that the turnaround time increases linearly w.r.t.
number of classes both on PC and on smartphone, thus confirming that Mini-ME
has predictable behavior regardless of the reference platform. Similar considera-
tions apply to class and ontology satisfiability tests (which were run for the 60
ontologies that were correctly classified): the turnaround time comparisons are
reported in Figure 8 and Figure 9. Figure 10 reports on the memory allocation
peak for each ontology during the classification task. Under 1000 classes, the
required memory is roughly fixed in both cases. Instead, for bigger ontologies
the used memory increases according to the total number of classes. Moreover,
in every test memory usage on Android is significantly lower than on PC. This
is due to the harder memory constraints on smartphones, imposing to have as
much free memory as possible at any time. Consequently, Android Dalvik vir-
tual machine performs more frequent and aggressive garbage collection w.r.t.
Java SE virtual machine. This reduces memory usage, but on the other hand
can be responsible for a significant portion of the PC-smartphone turnaround
time gap that was found.

!"#$%!&

!"#$%'&

!"#$%(&

!"#$%)&

!"#$%*&

!"#$%+&

!"#$%,&

!"#$%-&

!"#$%.&

!& !%& !%%& !%%%& !%%%%&

!
"#

$
%&
'
()
%

*+#,$-%./%012(($(%"3%45$%.34.1.67%

/0& 123456789:&

Fig. 7: Classification, PC vs mobile

!"#$%%&

!"#$%!&

!"#$%'&

!"#$%(&

!& !%& !%%& !%%%& !%%%%&

!
"#

$
%&
'
()
%

*+#,$-%./%012(($(%"3%45$%.34.1.67%

)*& +,-./01234&

Fig. 8: Class Satisfiability, PC vs mobile

5 Conclusion and Future Work

The paper presented a prototypical reasoner devised for mobile computing. It
supports Semantic Web technologies through the OWL API and implements

11

!"#$%!&

!"#$%'&

!"#$%(&

!"#$%)&

!"#$%*&

!"#$%+&

!"#$%,&

!"#$%-&

!"#$%.&

!& !%& !%%& !%%%& !%%%%&

!
"#

$
%&
'
()
%

*+#,$-%./%012(($(%"3%45$%.34.1.67%

/0& 123456789:&

Fig. 9: Ont. Satisfiability, PC vs mobile

!"

#!"

$!"

%!"

&!"

'!!"

'" '!" '!!" '!!!" '!!!!"

!
"#
$
%&

#
'
(
)*
%+
#
,
-
%.
&
/
0%

12'3#)%(4%56,""#"%78%9:#%(89(6(;*%

()" *+,-./0123"

Fig. 10: Memory usage, PC vs mobile

both standard and non-standard reasoning tasks. Developed in Java, it targets
the Android platform but also runs on Java SE. Early experiments were made
both on PCs and smartphones and evidenced correctness of implementation
and competitiveness with state-of-the-art reasoners in standard inferences, and
acceptable performance on target mobile devices. Besides further performance
optimization leveraging Android Dalvik peculiarities, future work includes: sup-
port for ABox management and OWLlink protocol11; implementation of further
reasoning tasks; EL++extension of abduction and contraction algorithms.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Int. Joint Conf. on
Artificial Intelligence. vol. 19, p. 364. Lawrence Erlbaum Associates LTD (2005)

2. Baader, F., Calvanese, D., Mc Guinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press (2002)

3. Baader, F., Hollunder, B., Nebel, B., Profitlich, H., Franconi, E.: An empirical anal-
ysis of optimization techniques for terminological representation systems. Applied
Intelligence 4(2), 109–132 (1994)

4. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL – a polynomial-time reasoner for
life science ontologies. Automated Reasoning pp. 287–291 (2006)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic Web. Scientific American
284(5), 28–37 (2001)

6. Colucci, S., Di Noia, T., Pinto, A., Ragone, A., Ruta, M., Tinelli, E.: A Non-
Monotonic Approach to Semantic Matchmaking and Request Refinement in E-
Marketplaces. Int. Jour. of Electronic Commerce 12(2), 127–154 (2007)

7. Di Noia, T., Di Sciascio, E., Donini, F.: Semantic matchmaking as non-monotonic
reasoning: A description logic approach. Jour. of Artificial Intelligence Research
(JAIR) 29, 269–307 (2007)

8. Haarslev, V., Müller, R.: Racer system description. Automated Reasoning pp. 701–
705 (2001)

9. Horridge, M., Bechhofer, S.: The OWL API: a Java API for working with OWL 2
ontologies. Proc. of OWL Experiences and Directions 2009 (2009)

11 OWLlink Structural Specification, W3C Member Submission,
http://www.w3.org/Submission/owllink-structural-specification/

12

10. Horrocks, I., Patel-Schneider, P.: Optimizing description logic subsumption. Jour.
of Logic and Computation 9(3), 267–293 (1999)

11. ITU: Internet Reports 2005: The Internet of Things (November 2005)
12. Kim, T., Park, I., Hyun, S., Lee, D.: MiRE4OWL: Mobile Rule Engine for OWL.

In: Computer Software and Applications Conf. Workshops (COMPSACW), 2010
IEEE 34th Annual. pp. 317–322. IEEE (2010)

13. Kleemann, T., Sinner, A.: User Profiles and Matchmaking on Mobile Phones. In:
Bartenstein, O. (ed.) Proc. of 16th Int. Conf. on Applications of Declarative Pro-
gramming and Knowledge Management INAP2005, Fukuoka (2005)

14. Koch, F.: 3APL-M platform for deliberative agents in mobile devices. In: Proc. of
the fourth international joint conference on Autonomous agents and multiagent
systems. p. 154. ACM (2005)

15. Lawley, M., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2
EL reasoner. In: Proc. 6th Australasian Ontology Workshop (IAOA10). Conf.s in
Research and Practice in Information Technology. vol. 122, pp. 45–49 (2010)

16. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web
technology. Int. Jour. of Electronic Commerce 8(4), 39–60 (2004)

17. Moguillansky, M., Wassermann, R., Falappa, M.: An argumentation machinery to
reason over inconsistent ontologies. Advances in Artificial Intelligence–IBERAMIA
2010 pp. 100–109 (2010)

18. Motik, B., Horrocks, I., Kim, S.: Delta-Reasoner: a Semantic Web Reasoner for an
Intelligent Mobile Platform. In: Twentyfirst Int. World Wide Web Conf. (WWW
2012). ACM (2012), to appear

19. Ruta, M., Di Sciascio, E., Scioscia, F.: Concept abduction and contraction in
semantic-based P2P environments. Web Intelligence and Agent Systems 9(3), 179–
207 (2011)

20. Ruta, M., Scioscia, F., Di Noia, T., Di Sciascio, E.: Reasoning in Pervasive Envi-
ronments: an Implementation of Concept Abduction with Mobile OODBMS. In:
2009 IEEE/WIC/ACM Int. Conf. on Web Intelligence. pp. 145–148. IEEE (2009)

21. Ruta, M., Scioscia, F., Di Sciascio, E.: Mobile Semantic-based Matchmaking: a
fuzzy DL approach. In: The Semantic Web: Research and Applications. Proceed-
ings of 7th Extended Semantic Web Conference (ESWC 2010). Lecture Notes in
Computer Science, vol. 6088, pp. 16–30. Springer (2010)

22. Ruta, M., Di Noia, T., Di Sciascio, E., Piscitelli, G., Scioscia, F.: A semantic-based
mobile registry for dynamic RFID-based logistics support. In: ICEC ’08: Proc. of
the 10th Int. Conf. on Electronic commerce. pp. 1–9. ACM, New York, USA (2008)

23. Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient owl reasoner. In:
Proc. of the 5th Int. Workshop on OWL: Experiences and Directions (OWLED
2008). pp. 26–27 (2008)

24. Sinner, A., Kleemann, T.: KRHyper - In Your Pocket. In: Proc. of 20th Int. Conf.
on Automated Deduction (CADE-20). pp. 452–457. Tallinn, Estonia (July 2005)

25. Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Web Semantics: science, services and agents on the World Wide Web
5(2), 51–53 (2007)

26. Steller, L., Krishnaswamy, S.: Pervasive Service Discovery: mTableaux Mobile Rea-
soning. In: Int. Conf. on Semantic Systems (I-Semantics). Graz, Austria (2008)

27. Tai, W., Keeney, J., O‘Sullivan, D.: COROR: a composable rule-entailment owl
reasoner for resource-constrained devices. Rule-Based Reasoning, Programming,
and Applications pp. 212–226 (2011)

28. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
Automated Reasoning pp. 292–297 (2006)

WSReasoner: A Prototype Hybrid Reasoner for
ALCHOI Ontology Classification using a
Weakening and Strengthening Approach

Weihong Song1, Bruce Spencer1,2, and Weichang Du1

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
{song.weihong, bspencer, wdu}@unb.ca,

2 National Research Council, Canada

Abstract. In the ontology classification task, consequence-based reasoners are
typically significantly faster while tableau-based reasoners can process more ex-
pressive DL languages. However, both of them have difficulty to classify some
available large and complex ALCHOI ontologies with complete results in ac-
ceptable time. We present a prototype hybrid reasoning system WSReasoner,
which is built upon and takes advantages of both types of reasoners to provide
efficient classification service. In our proposed approach, we approximate the tar-
get ontology O by a weakened version Owk and a strengthened version Ostr, both
are in a less expressive DL ALCH and classified by a consequence-based main
reasoner. Classification of Owk produces a subset of subsumptions of ontology O
and the target of the classification of Ostr is to produce a superset of subsumptions
ofO. Additional subsumptions derived fromOstr may be unsound, so they are fur-
ther verified by a tableau-based assistant reasoner. For theALCHOI ontologies
in our experiment, except for one for which WSReasoner has not obtained the re-
sult, (1) the number of subsumptions derived from WSReasoner is no fewer than
from the reasoners that could finish the classification; (2) WSReasoner takes less
time than tableau-based reasoners when the ALCHOI ontologies are large and
complex.

1 Introduction

Ontology classification — computing the subsumption relationships between classes —
is one of the foundational reasoning tasks provided by many reasoners. Tableau-based
and consequence-based reasoners are two dominant types of reasoners that provide the
ontology classification service. Tableau-based reasoners, such as HermiT [8],
Fact++ [13] and Pellet [12], try to build counter-models A u ¬B for candidate sub-
sumption relations, based on sound and complete calculi such as [4] and [8]. These
reasoners are able to classify ontologies in expressive DLs like SROIQ(D).

Consequence-based reasoners classify the ontology based on specifically designed
inference rules for deriving logical consequences of the axioms in the ontology. Initial-
ly developed for the family of tractable DLs like EL++ [1], these procedures were later
extended to Horn-SHIQ [5] and ALCH [11] while preserving optimal computation-
al complexity. Reasoners belonging to this category, such as CB, ConDOR, ELK [6],
CEL [1] and TrOWL [9], are usually very fast and use less memory.

2 Weihong Song, Bruce Spencer, and Weichang Du

Fig. 1. Subsumption Diagram

We present a hybrid reasoning system that takes the advantages of both types of
reasoners for efficient classification on large and complex ontologies in expressive
DLs. Here “complex ontologies” refers to the ontologies which contains a consider-
able amount of cyclic definitions, which usually causes large models constructed by the
tableau procedures. In our approach, for the main reasoner we choose one that supports
a less expressive language, which we call the base language. From the original onto-
logy O, we first remove the axioms that are beyond the base language, and so construct
a weakened ontology Owk. In the second stage, we then inject into Owk additional ax-
ioms to simulate the effects of those removed axioms in a model expansion process,
constructing the strengthened ontology Ostr. These injected axioms are expressed in
the base language so they may not perfectly represent the original axioms. We call the
stages weakening and strengthening, respectively. After applying these changes to the
ontology, we still would like the subsumptions in Ostr to contain all the subsumptions
in O. In Fig. 1, the results of classification, named the class hierarchy, for ontology O,
Owk, and Ostr are denoted by HO, Hwk and Hstr respectively. The subsumptions pairs
in Hstr may be unsound with respect to O. If this occurs, we will need again to verify
these suspected pairs by reasoning in the language of the given ontology to remove any
unsound subsumptions and other maintenance tasks. We name the reasoner that accept-
s the full language of O, the assistant reasoner; it is potentially slower than the main
reasoner.

Our main contributions are as follows:
Hybrid Reasoning using Weakening and Strengthening Approach: We propose

a new hybrid reasoning approach by combining the tableau-based and consequence-
based reasoning procedures for efficient classification on large and complex ontologies.
Concretely, the hybrid reasoning is based on a weakening and strengthening approach
and applied to classifying ALCHOI ontologies, for which we choose ALCH as the
base language to take advantage of the recently developed consequence-based reasoning
technique which is able to classify non-Horn ontologies [11].

Implementation and Evaluation: Our system is able to classify ontologies in DL
ALCHOI, which is not fully supported by any current consequence-based reasoner.
We evaluate our procedure with nine available, practicalALCHOI ontologies. Except
for one ontology we have not gotten the classification result, we are able to achieve
soundness with no fewer subsumptions and a better performance than the tableau-based
reasoners on large ontologies.

2 Preliminaries and Related Work

The syntax of ALCHOI uses mutually disjoint sets of atomic concepts NC , atomic
roles NR and individuals NI . The set of roles is NR ∪ {R− | R ∈ NR}. The set of concepts
contains A, >, ⊥, ¬C, C u D, C t D, ∃R.C, ∀R.C, {a}, for > the top concept, ⊥ the

WSReasoner: A Prototype Hybrid Reasoner 3

bottom concept, A an atomic concept, C and D concepts, R a role, a an individual. We
define N>C = NC ∪ {>} and N>,⊥C = N>C ∪ {⊥}. An ontology O consists of a set of general
concept inclusions C v D and role inclusions R v S . A concept equivalence C = D is
a shortcut for C v D and D v C.

An interpretation I of O is a pair (∆I, ·I) where ∆I is a non-empty set, ·I maps each
A ∈ NC to a set AI ⊆ ∆I, each R ∈ NR to a relation RI ⊆ ∆I × ∆I and each a ∈ NI an
element aI ∈ ∆I. The interpretation of concepts are defined in [2]. An interpretation I
satisfies axioms C v D and R v S if CI ⊆ DI and RI ⊆ S I, respectively. I is a model
of O if I satisfies every axiom in O. If every model of O satisfies an axiom α, we say O
entails α and write O |= α.

An ontology classification task is to compute the class hierarchy HO containing all
the pairs 〈A, B〉 such that A, B ∈ N>,⊥C and O |= A v B. We define the role hierarchy Hop

as the pairs 〈R, S 〉 such that R, S ∈ NR ∪ {R− | R ∈ NR} and O |= R v S .
Our work can be placed in the Theory Approximation setting [10], where a theory

Σ is approximated by a lower bound Σlb, whose models are a subset of the models of
Σ, and an upper bound Σub whose models are a superset. Our weakening step creates
Owk which is an upper bound Σub. Instead of creating a lower bound Σlb, the target of
our strengthening step is to generate an Ostr of which some “important” models can
be transformed to models of O so that completeness can be achieved. The details will
be explained in Section 4.2. Subsumption results from Owk are guaranteed to be sound,
exactly as queries asked of Σub that return “yes” can be taken also as “yes” from Σ. New
candidate subsumption results from Ostr need to be checked, analogously as queries Σlb

that return “yes” need to be checked.
TrOWL [9] is a soundness-preserving approximate reasoner offering tractable clas-

sification for SROIQ ontologies by an encoding into EL++ with additional data struc-
tures. Instead of merely preserving soundness, our algorithm also aims to achieve com-
pleteness, although we have not yet proven it. Another difference lies in that the classi-
fication procedure of TrOWL is an extension of [1], while our procedure treats both the
main and the assistant reasoners as black boxes without changing them.

3 System Overview

The diagram of our system is shown in Fig. 2. The input is an OWL 2 ontology in any
syntax supported by the OWL API.3 The output is the class hierarchy HO that can be
accessed through the OWL API reasoning interfaces. We explain all the components in
the following, among which the ones in white boxes are mainly implemented by us:

– The preprocessor rewrites some axioms containing constructors that are not sup-
ported by the main reasoner.

– The indexer normalizes the ontology O and builds an internal representation of it
which is suitable for finding axioms and concept expressions. The index speeds up
search for strengthening axioms.

– The axiom injector calculates the strengthening axioms that approximate the ax-
ioms in O \ Owk. The algorithm will be illustrated in Section 4.

3 Since our algorithm is designed for DLALCHOI, the unsupported anonymous concepts are
replaced with artificial atomic concepts and the unsupported axioms are ignored.

4 Weihong Song, Bruce Spencer, and Weichang Du

Fig. 2. Key components of WSReasoner

– The main and assistant reasoners perform the main reasoning tasks. They can be
customized by the settings in the configuration instance of each WSReasoner object.

– The comparer calculates the difference between two concept hierarchies produced
by the first and second round of classifications, Hwk and Hstr respectively.

The arrows in the Fig. 2 represent the data flow of the overall reasoning procedure. The
numbers on the arrow denote the execution order, and the symbols represent the data.
The arrows between the axiom injector and the main reasoner indicates their interac-
tions with each other.

4 The Hybrid Classification Procedure

In this section we give details of the hybrid classification procedure used in WSReasoner.
The major phases include preprocessing, normalization and reasoning. Section 4.1 ex-
plains preprocessing and normalization. Section 4.2 gives a model-theoretic illustration
of the weakening and strengthening approach using an example. And section 4.3 pro-
vides the details of the overall procedure and strengthening algorithms.

4.1 Preprocessing and Normalization

In the preprocessing phase, we rewrite the original ontology to make nominals and in-
verse roles occur only in the axioms of the forms Na = {a} and R = R′−, respectively.
For nominals, we first rewrite the related OWL 2 DL class expressions and axioms by
their equivalent forms containing only singleton nominal concepts, according to Ta-
ble 1. After that, for each {a}, we replace all its occurrences by a new concept Na and
add an axiom Na = {a}. We call Na a nominal placeholder for a in the following sec-
tions. For inverse roles, we replace each occurrence of R′− in an axiom by a named role
R and add an axiom R = R′−.

After preprocessing, apart from the axioms of the forms Na = {a} and R = R′−,
the remaining axioms in the ontology are in DLALCH . These axioms are normalized
using a procedure identical to [11]. The result ontology O contains axioms of the formsd

Ai v
⊔

B j, A v ∃R.B, ∃R.A v B, A v ∀R.B, R v S , Na = {a} and R = R′−, where
A, B are atomic concepts and R, S ,R′ are atomic roles.

WSReasoner: A Prototype Hybrid Reasoner 5

Table 1. Rewriting Nominals in OWL 2

OWL 2 Syntax Equivalent Forms
Class Expressions
ObjectHasValue (R a) ∃R.{a}
ObjectOneOf (a1 . . . an) {a1} t . . . t {an}

Axioms
ClassAssertion (C a) {a} v C
SameIndividual (a1 . . . an) {a1} = . . . = {an}

DifferentIndividuals (a1 . . . an) {ai} u {a j} = ⊥

1 ≤ i < j ≤ n
ObjectPropertyAssertion (R a b) {a} v ∃R.{b}
NegativeObjectPropertyAssertion (R a b) {a} u ∃R.{b} v ⊥

4.2 Model-Theoretic View of the Strengthening Step

Before going into the details of the reasoning procedure, we give a model-theoretic
explanation of the motivation of the strengthening step. Given an ontology O, we want
to create its strengthened version Ostr which satisfies HO ⊆ Hstr. To achieve it, we try
to ensure that for each 〈A, B〉 < Hstr, there is a certain model I’ of Ostr for Au¬B which
can be transformed to a model I of O and (A u ¬B)I , ∅, so that 〈A, B〉 < HO. Such
models I’ and I can be constructed using the hypertableau calculus (abbreviated as HT-
calculus) [8]. In the following we first describe strengthening for nominals, followed by
strengthening for inverse roles.

4.2.1 Strengthening for Nominals

Example 1. Consider a normalized ontology O containing the following axioms:

A v ∃R.E (1) A v C (2) C v ∀R.D (3) E v Na (4) Na = {a} (5)
A v ∃S .Na (6) ∃S .D v F (7) F v B′ t B (8) D v G (9)

In Fig. 3 – 5 we give models ofO,Owk andOstr for the concept Au¬B constructed by
the HT-calculus. In the figures, each node x denotes an individual and its tags represent
the concepts that it belongs to, which we call labels of x. Each edge 〈x, y〉 denotes a role
relation between two individuals x and y, and its labels are the roles that it belongs to.
We say that a label B of x is added by an axiom α in a normalized ontology if B(x) is
added into the model by a derivation corresponding to α in the HT-calculus, e.g. A v B
corresponds to A(x)→B(x) and ∃R.A v B corresponds to R(x, y) ∧ A(x)→B(x), etc.

Fig. 3 is a model of Owk, which removes the axiom (5) from O. In the model both of
the individuals x2, x3 have the label Na. To build a model ofO based on the HT-calculus,
x2 and x3 need to be merged into one instance to satisfy the axiom (5). After that, labels
F and B′ of x1 will be added by the axioms (7) and (8), yielding the model I in Fig. 4.

Our strengthening step adds additional axioms Na v E and Na v D to Owk to
simulate the main effect of the merge operation in the HT-calculus, i.e. making all the
instances of Na have the same labels. With these axioms added, labels D, E and G are
added to x3, and labels F and B′ of x1 can be further introduced by the HT-calculus

6 Weihong Song, Bruce Spencer, and Weichang Du

Fig. 3. Model of Owk Fig. 4. Model of O Fig. 5. Model of Ostr

without the nominal axiom (5). The resulting model I’ in Fig. 5 can be transformed to
I by simply merging the instances x2 and x3 without extra derivations.

To achieve the above-mentioned effect, we calculate the “important” labels appear-
ing on the instances of Na in the model of Owk, which we call major coexisting labels
of Na. For each instance x, such an important label is the label when x is created by
the HT-calculus or a label added by an axiom A v ∀R.B. In other words, these labels
are added at initialization time or through a derivation which takes a label on a prede-
cessor of x as a premise, thus they cannot be introduced based on x’s own labels. Note
that the label G of x2 in Fig. 3 is not a major coexisting label since it is added by the
axiom D v G. For each major coexisting label X of Na, we choose either Na v X or
Na u X v ⊥ as the strengthening axiom, so that X is either added to or prohibited on all
the instances of Na in the model I’ of Ostr. With these axioms added, all the instances
of Na in I’ are likely to have identical labels so that I’ can be easily transformed to I
to prove O 6|= A v B.

4.2.2 Strengthening for Inverse Roles Regarding inverse roles, the corresponding
derivation of an axiom R = R′− in HT-calculus adds R(x, y) if R′(y, x) exists, or vice
versa. The new assertion R(x, y) may lead to the following types of further derivations:
(1) a label B is added to x by ∃R.A v B; (2) a label B is added to y by axioms A v ∀R.B;
(3) labels are added to edges through axioms R v S and S = S ′−. To simulate these
effects without deriving R(x, y) using R = R′−, the following types of axioms are added
respectively: (1) A v ∀R′.B; (2) ∃R′.A v B; (3) all the role subsumptions based on the
computed role hierarchy Hop. Similar axioms need to be added for the assertion R′(y, x).
With these axioms added, the model I’ of Ostr can be transformed to a model I of O
by simply satisfying R = R′− without extra derivations. Notice that all the strengthening
axioms to handle inverse roles are implied by O, so we have O |= Ostr and Hstr ⊆ HO,
thus Hstr = HO holds and no verifications are needed.

4.3 Classification Procedure

Algorithm 1 gives the overall classification procedure for anALCHOI ontology using
the weakening and strengthening approach. In the procedure, MR is the main reasoner
that provides efficient classification on an ALCH ontology, while AR is the assistant
reasoner, which is slower but capable of classifying the original ALCHOI ontology
O. Function classify computes the class hierarchy.

After normalization, the algorithm computes the role hierarchy Hop. Line 3 and 4
compute the strengthened ontology Oistr for inverse roles, which has the same hierar-
chy asO. To classify theALCHO ontologyOistr, we get its weakened and strengthened

WSReasoner: A Prototype Hybrid Reasoner 7

versions Owk and Ostr for nominals and classify them with MR, as shown in lines 5 to 8.
Computations of O+

I
and O+

N will be explained in Sections 4.3.1 and 4.3.2. Subsump-
tions in Hstr \ Hwk are verified by AR in line 11 to 15. Note that if some A v ⊥ is
disproved in line 12, A v B needs to be verified for almost every B in NC . In this case
the workload of verification for AR may exceed that of classifying O, thus we choose
to use AR to get HO directly. Our approach does not add value in this case. Line 14
to 15 verifies each pair in Hstr \Hwk one by one. The verification process can be further
improved using a procedure similar to the optimized KP alorithm [3].

Algorithm 1: Classify anALCHOI ontology O using the hybrid approach
Input: AnALCHOI ontology O
Output: The classification hierarchy HO

1 preprocess and normalize O;
2 Hop := AR.classifyObjectProperties(O);
3 O+

I
:= getStrAxiomsForInverseRoles(O, Hop);

4 Oistr := O ∪ O+
I

with inverse role axioms R = R′− removed;
5 Owk := Oistr with nominal axioms Na = {a} removed;
6 O+

N := getStrAxiomsForNominals(Oistr, Hop);
7 Hwk := MR.classify(Owk);
8 Hstr := MR.classify(Owk ∪ O

+
N);

9 remove any 〈A, B〉 from Hwk and Hstr if A < N>,⊥C or B < N>,⊥C ;
10 HO := Hwk;
11 foreach 〈A,⊥〉 ∈ Hstr \ Hwk do
12 if AR.isSatisfiable(O, A) then return AR.classify(O);
13 else add 〈A,⊥〉 into HO;
14 foreach 〈A, B〉 ∈ Hstr \ Hwk do
15 if not AR.isSatisfiable(O, A u ¬B) then add 〈A, B〉 into HO;
16 return HO

4.3.1 Strengthening for Inverse Roles Based on the discussions in Section 4.2, we
calculate the strengthening axiomsO+

I
for inverse roles according to the following steps:

1. For each 〈R′, S −〉 ∈ Hop where S − does not have an equivalent named role, intro-
duce a new named role S ′ for S − and update Hop.

2. Initialize O+
I

with all the subsumptions between named roles in Hop

3. for each 〈R,R′〉 such that R = R′− is implied by Hop, if either of the following two
equivalent forms is used, add the other to O+

I
:

A v ∀R.B⇔ ∃R′.A v B

Here 〈R,R′〉 and 〈R′,R〉 are treated as different pairs.

4.3.2 Strengthening for Nominals This section explains the calculation of strength-
ening axioms O+

N for nominals. According to Section 4.2, for each nominal placeholder

8 Weihong Song, Bruce Spencer, and Weichang Du

Na, we need to compute its major coexisting label set LS Na , and choose to add Na v X
or Na u X v ⊥ into O+

N for each X ∈ LS Na .

Algorithm 2: Calculate the potential major coexisting label set of Na in O
Input: NormalizedALCHOI ontology O and a concept Na ∈ NC

Output: Major coexisting label set LS Na

1 Initialize a queue Q with label Na;
2 CoreNa := ∅; visited := ∅;
3 repeat
4 poll a label X from Q;
5 if X is not introduced by some

d
Ai v M

⊔
X and X < visited then

6 add X to proc;
7 foreach

d
Ai v M

⊔
X ∈ O do add each Ai into Q;

8 foreach ∃S .Y v X ∈ O and 〈R, S 〉 ∈ Hop and B v ∃R.Z ∈ O do
9 add B into Q;

10 foreach Y v ∀S .X ∈ O and 〈R, S 〉 ∈ Hop and B v ∃R.Z ∈ O do
11 add Z to CoreNa ;
12 if X ∈ N>C or some B v ∃R.X ∈ O then add X to CoreNa ;
13 until Q is empty;
14 LS Na := CoreNa ;
15 foreach X ∈ CoreNa do
16 foreach B v ∃R.X ∈ O and 〈R, S 〉 ∈ Hop and Y v ∀S .Z ∈ O do
17 add Z to LS Na ;
18 return LS Na

Algorithm 2 illustrates the computation of LS Na in Example 1. From line 3 to 13
we search for the potential core label set CoreNa of Na, i.e., the concepts that may label
an individual of Na when it is created by the HT-calculus. CoreNa is a subset of LS Na .
We search in the converse direction of the model construction process for the labels X
that may cause the appearance of label Na, which we denote by X 7→ Na. and put the
potential core labels into CoreNa . There are three cases that X is added to an individual
x according to the calculus:

Case 1: (Line 7) If X is added to x by the axiom
d

Ai v MtX, then for every conjunct
condition Ai we have Ai 7→ X.

Case 2: (Line 8-9) If X is added to x to by the axiom ∃S .Y v X, then x has an S -
successor, which must be introduced by some B v R.Z provided that 〈R, S 〉 ∈ Hop.
For every such B there is a potential that B 7→ X.

Case 3: (Line 10) X is added to x by the axiom Y v ∀S .X, then it must have an
S -predecessor in the model. Thus when x is created, the incoming role R satisfies
〈R, S 〉 ∈ Hop, and for all B v ∃R.Z, Z is a potential core label of x.

Line 12 checks whether X itself can be a core label. A core label can only be in-
troduced through: (1) the initialization step, for which X must be atomic in O; (2) an
individual-adding derivation, for which there must be some B v ∃R.X ∈ O.

WSReasoner: A Prototype Hybrid Reasoner 9

On line 15 to 17 we follow the model construction process to find other major
coexisting labels. Similarly to case 3 above, if x has a core label X added by the axiom
B v ∃R.X and 〈R, S 〉 ∈ Hop, then Z may be added to X by the axiom Y v ∀S .Z.

The test on line 5 prunes a search branch X in either of two cases: (1) X has been
visited. (2) An axiom

d
Ai v M t X has been used on the search path from Na to X. In

case (2), when the model expands, the axiom
d

Ai v M t X has been satisfied and no
new labels that potentially introduces Na will be added.

We show the calculation of the strengthening axioms for Na in Example 1. Q is
initialized with Na. E is added to Q according to Case 1 based on the axiom E v Na.
When E is processed, it is added to CoreNa in line 12 and also to LS Na in line 14. D is
added to LS Na in the next loop from line 15 to 17, based on the axioms A v ∃R.E and
C v ∀R.D. Finally we choose to add Na v D and Na v E based on some heuristic rules.

Termination of the outer loop from line 3 to 13 is ensured by keeping a visited set
so that any label will only be processed at most once in the loop. Let nc and nax be the
number of concepts and axioms in O. One can see that the inner loop on line 7 runs
at most nax times, while the number of runs of the next two inner loops is bounded by
the number n2

ax of pairs of axioms. So the worst-case complexity of the outer loop is
O(nc · n2

ax). The case is similar for the loop from 15 to 17. This procedure needs to be
invoked for each concept Na, the number of invocations is less than nc. Since nc ≤ nax

in the normalized ontology, the worst-case number of executions is polynomial in nax.

5 Evaluation

We have implemented our proposed approach in a prototype reasoner WSReasoner. We
use the consequence-based reasoner ConDOR r.12 as the main reasoner and the hyper-
tableau-based reasoner HermiT 1.3.64 as the assistant reasoner. ConDOR supports DL
SH (ALCH + transitivity axioms), and HermiT supports DL SROIQ(D), which is
more expressive than the ALCHOI. We compared the performance of WSReasoner
with the latest versions of mainstream reasoners, including tableau-based reasoners
HermiT 1.3.6, Fact++ 1.5.3 and Pellet 2.3.0, as well as a consequence-based reasoner
TrOWL 0.8.2. All the experiments were run on a laptop with an Intel Core i7-2670QM
2.20GHz quad core CPU and 16GB RAM running Java 1.6 under Windows 7. We set
the Java heap space to 12GB. We did not set the time limit.

We tried all the commonly used, widely available large and complex ontologies that
we have access to. Since none of these expressive ontologies are modeled inALCHOI,
we had to make some adjustments. Galen5 and FMA-constitutionalPartForNS (FMA-
cPFNS) are currently available large and complex ontologies. We use three different
version of Galen, which are Full-Galen, Galen-Heart, and Galen-EL.6 We modify them
by introducing nominals. In Galen, the concepts starting with a lower case letter and
subsumed by SymbolicValueType could be nominals which are modeled as concepts.
For Galen-Heart and Galen-EL, we used published methods [7] to produce two versions
for each of them, which are Galen-Heart-YN1, Galen-Heart-YN2, Galen-EL-YN1, and

4 HermiT 1.3.6 build 1054, 04/18/2012 release
5 http://www.co-ode.org/galen/
6 http://code.google.com/p/condor-reasoner/downloads/list/

10 Weihong Song, Bruce Spencer, and Weichang Du

Galen-EL-YN2. In addition, we produced Galen-EL-LN1 by introducing norminals on-
ly for leaf N-concepts of Galen-EL; and also add disjunction into Full-Galen and pro-
duced Galen-Full-UnionN2.

We also used two smaller complex ontologies, Wine and DOLCE. All our onto-
logies were reduced toALCHOI and can be downloaded from our website.7

Table 2. Comparison of classification performance

T: Time(seconds); MS: (# of subsumption pairs missing) / (# of total subsumption pairs)

Ontology Criteria (Hyper) tableau Consequence-based WSReasoner
HermiT Pellet FaCT++ TrOWL com-role fast-role

T 29.11 377.88 7.33 0.81 7.34 1.22
Wine MS 0/968 0/968 0/968 1/968 0/968 0/968

T 5.64 8.40 0.92 0.55 8.84 2.09
DOLCE MS 0/2595 0/2595 0/2595 390/2595 0/2595 0/2595
Galen- T 115.10 - - - 7.59 6.94

Heart-YN1 MS 0/45,513 - - - 0/45,513 0/45,513
Galen- T 63.52 - - - 9.50 7.19

Heart-YN2 MS 0/45,914 - - - 0/45,914 0/45,914
Galen-EL T 197,090 - - - 345,600+ 345,600+

-YN1 MS 0/431,990 - - - / /

Galen-EL T 289,637 - - - 38,350 38,272
-YN2 MS 0/457,779 - - - 0/457,779 0/457,779

Galen-EL T 188,018 - - - 771 755
-LN1 MS 0/431,990 - - - 0/431,990 0/431,990

Galen-Full T 604,800+ - - - 1625 1478
-UnionN2 MS / - - - x/(431,255+x) x/(431,255+x)

T 667,430 - - 429.65 21,362 45
FMA-cPFNS MS 0/481,967 - - 70/481,967 0/481,967 0/481,967
Note: “-” entry means that the reasoner was unable to classify the ontology due to some problems.
“/” entry means the number is not available.

The results of our experiment are shown in Table 2. Since the time limit is not
set, some tasks may take several days or more to finish. The ‘+’ sign indicates the
tasks are not finished within the time shown before ‘+’. We also report the number of
missed subsumptions, since some of the reasoners are not complete, such as TrOWL
and possibly ours. # represents number in Table 2 and 3. The total number includes all
pairs of subsumptions between any A, B ∈ N>,⊥C except for ⊥ v A and A v >. The
complete result is obtained from HermiT. For Galen-Full-UnionN2, HermiT does not
get the results, while WSReasoner gets 431,255 subsumptions, but we do not know the
number of missed pairs, so we denote it by x.

Since computing complete role hierarchy Hop takes a considerable amount of time
for our assistant reasoner HermiT, we implement two versions of WSReasoner. The
version ‘fast-role’ simply computes the reflexive-transitive relations between roles,8

while the version ‘com-role’ request HermiT for a complete Hop on O.

7 http://isew.cs.unb.ca/wsreasoner/resources/ontologies/
8 to simplify implementation, we extract all object property axioms and request HermiT for Hop

WSReasoner: A Prototype Hybrid Reasoner 11

As we can see in Table 2, WSReasoner is able to classify eight of nine ontologies,
and get no fewer subsumptions than any other reasoners. On various FMA-cPFNS and
versions of Galen ontologies, WSReasoner outperforms all the other reasoners consid-
erably except for Galen-EL-YN1, on which the verification stage has more than 320,000
pairs to verify, however, it takes only several minutes to determine that WSReasoner is
likely to be slower than HermiT. For the two smaller ontologies Wine and DOLCE, the
fast-role approach still outperforms HermiT and Pellet and even com-role outperforms
the two reasoners on Wine.

Table 3. Statistics of WSReasoner

Added-axioms: # of axioms in O+
N Add-pairs: # of pairs in Hstr \ Hwk

True-pairs: # of pairs verified to be correct Verify-time: verification time
fast-role-T: The role classification time using the fast-role approach (Seconds)
com-role-T: The role classification time using the comp-role approach (Seconds)

Ontology Wine DOLCE Galen- Galen- Galen- Galen- Galen- Galen-Full FMA
Heart-YN1 Heart-YN2 EL-YN1 EL-YN2 EL-LN1 -UnionN2 -cPFNS

Added-Axioms 36 95 2 50 79,594 981 12 1100 0
Add-Pairs 0 0 2 403 323,294 28,287 45 259 0
True-Pairs 0 0 2 403 - 25,789 0 0 0
fast-role-T 0.16 0.77 0.639 0.56 1.60 1.25 1.63 2.82 0.39
com-role-T 6.50 7.37 2.09 2.53 22.99 19.57 19.37 15.30 21322.54
Verify-Time 0 0 3.39 3.84 - 38,252 649.24 793.26 0

Table 3 shows some statistics of our reasoner on different phases. FMA-cPFNS only
needs one round of classification. Wine and DOLCE need two rounds of classification
but no verifications are needed, which indicates the nominals does not bring any new
subsumptions. The number of strengthening axioms added for these ontologies varies a
lot. The verification time becomes larger as the size of Hstr \Hwk increases. Comparing
the role classification time, fast-role is considerably faster than com-role, especially for
the ontology FMA-cPFNS on which the com-role approach takes 5 hours to finish. In
summary, the main factors affecting the reasoning time are: (1) The approach to choose
for role hierarchy calculation. (2) the number of pairs in Hstr \ Hwk.

To evaluate the performance on other existing ontologies, we also ran WSReasoner
on a test suite provided by ORE 2012.9 We used the RDF version of the ontologies
in the OWL DL and OWL EL datasets, which contains 107 and 8 real-world onto-
logies respectively. We set the maximum Java heap space to 1GB and add an additional
JVM setting -DentityExpansionLimit=480000 to ensure successful loading of all
the ontologies using OWL API. The time limit is set to 1 hour.

The results are shown in Table 4. The columns “OWL DL” and “OWL EL” refer
to the two datasets, while “DL-ALCHOI” and “EL-ALCHOI” refer to the ALCHOI
ontologies in these datasets, respectively. As seen in the table, all theALCHOI onto-
logies have been correctly classified. Complete hierarchies of 5 ontologies in the OWL

9 http://www.cs.ox.ac.uk/isg/conferences/ORE2012/datasets/classification.zip

12 Weihong Song, Bruce Spencer, and Weichang Du

DL dataset are not obtained because their languages are beyondALCHOI. The largest
ontology gazetteer in the OWL DL dataset (containing 150979 classes) causes a out-
of-memory exception.

Table 4. Evaluation results on the ORE test suite

ALT: Average Loading Time ART: Average Reasoning Time
TOTAL: # of ontologies in the dataset

CORRECT: # of correctly classified ontologies
INCORRECT: # of incorrectly classified ontologies
NO-REF: # of ontologies with no reference results

EXCEPTION: # of ontologies that cause an exception
TIMEOUT: # of ontologies that cause a timeout

Outcomes DL-ALCHOI OWL DL EL-ALCHOI OWL EL
ALT (ms) 105 323 320 454
ART (ms) 632 1263 277 503
TOTAL 34 107 6 8

CORRECT 18 47 5 6
INCORRECT 0 5 0 0

NO-REF 16 54 1 2
EXCEPTION 0 1 0 0

TIMEOUT 0 0 0 0

6 Conclusions and Future Work

We present an approach combining two reasoners based on ontology weakening and
strengthening to classify large and complex ontologies, for which tableau-based rea-
soners may take a long time or use much memory while consequence-based reasoners
cannot support all the constructors in the target language. We use a consequence-based
reasoner supporting a DL less expressive than the target language as the main reason-
er to do the majority (sometimes all) of the work, and a more expressive but slower
tableau-based reasoner to assist it in verifying the results. In the experiment dataset
shown in Table 2, WSReasoner’s results show better efficiency than the tableau-based
reasoners in most large and complex ontologies, and no fewer subsumptions than other
reasoners except for one ontology for which the result is not obtained by WSReasoner.

The weaknesses of this WSreasoner forALCHOI are: (1) the complete role hier-
archy classification may take a lot of time; (2) if the number of pairs verified is large,
the procedure still takes a lot of time in the verification stage. The advantages of the WS
approach are: (1) it may achieve better classification efficiency than tableau-based rea-
soners; (2) it extends the capability of consequence-based reasoners; (3) the reasoners
underneath can be customized to classify different ontologies.

In the future, we will try to prove the theoretical completeness of this weakening
and strengthening approach forALCHOI ontology classification while optimizing the

WSReasoner: A Prototype Hybrid Reasoner 13

algorithm. We will further try to apply the weakening and strengthening approach based
on different reasoners and address more constructors for more expressive languages.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI 2005, Proceedings of
the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
July 30-August 5, 2005. pp. 364–369 (2005)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge Univ Pr (2010)

3. Glimm, B., Horrocks, I., Motik, B., Stoilos, G.: Optimising ontology classification. In: Patel-
Schneider, P., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J., Horrocks, I., Glimm, B. (eds.)
The Semantic Web - ISWC 2010, Lecture Notes in Computer Science, vol. 6496, pp. 225–
240. Springer Berlin / Heidelberg (2010)

4. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. Journal of Automated
Reasoning 39, 249–276 (October 2007)

5. Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena,
California, USA, July 11-17, 2009. pp. 2040–2045 (2009)

6. Kazakov, Y., Krötzsch, M., Simanc̆ı́k, F.: Concurrent classification of EL ontologies. In:
ISWC 2011, 10th International Semantic Web Conference, Bonn, Germany, October 23-27,
2011. Lecture Notes in Computer Science, vol. 7031, pp. 305–320. Springer (2011)

7. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Practical reasoning with nominals in the EL family
of description logics. In: Proceedings of the 13th International Conference on Principles of
Knowledge Representation and Reasoning (KR’12) (2012)

8. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. Journal
of Artificial Intelligence Research 36, 165–228 (September 2009)

9. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox reasoning. In:
AAAI 2010, Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta,
Georgia, USA, July 11-15, 2010. AAAI Press 2010 (2010)

10. Selman, B., Kautz, H.: Knowledge compilation and theory approximation. Journal of the
ACM (JACM) 43(2), 193–224 (1996)

11. Simanc̆ı́k, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond horn onto-
logies. In: IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, 2011. pp. 1093–1098 (July 2011)

12. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical OWL-DL Rea-
soner. Web Semantics: Science, Services and Agents on the World Wide Web 5(2), 51–53
(2007)

13. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. Auto-
mated Reasoning pp. 292–297 (2006)

Mastro: A Reasoner for Effective
Ontology-Based Data Access

Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella Poggi,
Riccardo Rosati, Marco Ruzzi, Domenico Fabio Savo

Dip. di Ing. Informatica, Automatica e Sistemistica
Sapienza Università di Roma

lastname@dis.uniroma1.it

Abstract. In this paper we present Mastro, a Java tool for ontology-
based data access (OBDA) developed at Sapienza Università di Roma.
Mastro manages OBDA systems in which the ontology is specified in
a logic of the DL-Lite family of Description Logics specifically tailored
to ontology-based data access, and is connected to external data man-
agement systems through semantic mappings that associate SQL queries
over the external data to the elements of the ontology. Advanced forms
of integrity constraints, which turned out to be very useful in practical
applications, are also enabled over the ontologies. Optimized algorithms
for answering expressive queries are provided, as well as features for in-
tensional reasoning and consistency checking. Mastro has been success-
fully used in several projects carried out in collaboration with important
organizations, on which we briefly comment in this paper.

1 Introduction

In this paper we present the current version of Mastro, a system for ontology-
based data access (OBDA) developed at Sapienza Università di Roma. Mastro
allows users for accessing external data sources through an ontology expressed
in a fragment of the W3C Web Ontology Language (OWL).

As in data integration systems [11], mappings are used in OBDA to specify
the semantic correspondence between a unified view of the domain (called global
schema in data integration terminology) and the data stored at the sources.
The distinguishing feature of the OBDA approach, however, is the fact that
the global unified view is specified using an ontology language, which typically
allows to provide a rather rich conceptualization of the domain of interest, that is
independent from the representation adopted for the data stored at the sources.
This choice provides several advantages: it allows for a declarative approach to
data access and integration and provides a specification of the domain that is
independent from the data layer; it realizes logical/physical independence of the
information system, which is therefore more accessible to non-experts of the
underlying databases; the conceptual approach to data access does not impose
to fully integrate the data sources at once, as it often happens in data integration
mediator-based system, but the design can be carried out in an incremental way;

the conceptual model available on the top of the system provides a common
ground for the documentation of the data stores and can be seen as a formal
specification for mediator design.

Mastro has solid theoretical basis [3, 4]. In the current version of Mas-
tro, ontologies are specified in DL-LiteA,id,den , a logic of the DL-Lite family of
tractable Description Logics (DLs), which are specifically tailored to the man-
agement and querying of ontologies in which the extensional level, i.e., the data,
largely dominates the intensional level. From the point of view of the expres-
sive power, DL-LiteA,id,den captures the main modeling features of a variety of
representation languages, such as basic ontology languages and conceptual data
models. Furthermore, it allows for specifying advanced forms of identification
constraints [5] and denials [10], that are not part of OWL 2, the current W3C
standard language for specifying ontologies.

Answering unions of conjunctive queries in OBDA systems managed by Mas-
tro can be done through a very efficient technique that reduces this task to
standard SQL query evaluation. Indeed, conjunctive query answering has been
shown to be in LogSpace (in fact in AC0) w.r.t. data complexity [4], i.e., the
complexity measured only w.r.t. the extensional level, which is the same com-
plexity of evaluating SQL queries over plain relational databases. One key feature
of the current version of Mastro, wrt previous ones [2], is that it adopts the
Presto algorithm [15] for first-order query rewriting.

Mastro is developed in Java and can be connected to any data management
system allowing for a JDBC connection, e.g., a relational DBMS. In those cases
in which several, possibly non-relational, sources need to be accessed, Mastro
can be coupled with a relational data federation tool1, which wraps sources and
represents them as a single (virtual) relational database.

The rest of the paper is organized as follows. In Section 2, we briefly describe
the framework of ontology-based data access. In Section 3, we describe the query
answering algorithm of the Mastro system. In Section 4, we report on some real
world information integration applications where Mastro has been successfully
trialed. In Section 5, we conclude the paper by discussing related work.

2 Ontology-based data access

In OBDA, the aim is to give users access to a data source or a collection thereof,
by means of a high-level conceptual view specified as an ontology. The ontology
is usually formalized in Description Logics (DLs) [1], which are at the basis of
OWL. These logics allow one to represent the domain of interest in terms of
concepts, denoting sets of objects (corresponding to OWL classes), roles, denot-
ing binary relations between objects (OWL object properties), and attributes,
denoting relations between objects and values from predefined domains (OWL
data properties).

1 E.g., IBM WebSphere Application Server (http://www.ibm.com/software/
webservers/appserv/was/), Oracle Data Service Integrator (http://www.oracle.
com/us/products/middleware/data-integration/).

A DL ontology is a pair 〈T ,A〉 [1] where T , called TBox, is a finite set of
intensional assertions, and A, called ABox, is a finite set of instance assertions,
i.e, assertions on individuals. Different DLs allow for different kinds of TBox
and/or ABox assertions.

The semantics of an ontology is given in terms of first-order interpreta-
tions [1]. An interpretation I is a model of an ontology O = 〈T ,A〉 if it satisfies
all assertions in T ∪A, where the notion of satisfaction depends on the constructs
and axioms allowed by the specific DL in which O is expressed.

Among the extensional reasoning tasks w.r.t. a given ontology 〈T ,A〉, the
most relevant ones are ontology satisfiability and query answering.

In particular, we are interested in the class of conjunctive queries (CQ). A
CQ q over an ontology O (resp. TBox T) is an expression of the form q(x) ←
∃y.conj(x,y) where x are the so-called distinguished variables, y are existentially
quantified variables called the non-distinguished variables, and conj(x,y) is a
conjunction of atoms of the form A(z), P (z, z′), U(z, z′) where A is a concept
name, P is a role name and U is an attribute name, and z, z′ are either variables
in x or in y or constants. The arity of q is the arity of x. A CQ of arity 0 is
called a boolean conjunctive query. A union of conjunctive queries (UCQ) is a
query of the form q(x)←

∨
i ∃yi.conj(x,yi).

Given a query q(x) (either a conjunctive query or an union of conjunc-
tive queries) and an ontology O, the certain answers to q(x) over O is the
set cert(q,O) of all tuples t of constants appearing in O, such that, when substi-
tuted for the variables x in q(x), we have that O |= q(t), meaning that tI ∈ qI
for every I ∈ Mod(O). Notice that the answer to a boolean query is either the
empty tuple, considered as true, or the empty set, considered as false.

In OBDA, the extensional level is not represented directly by an ABox, but
rather by a database that is connected to the TBox by means of suitable mapping
assertions2. Such mapping assertions have the form Φ ; Ψ , where Φ, called the
body of the assertion, is an arbitrary SQL query over the underlying database,
and Ψ , called the head, is a CQ over the TBox T . Intuitively, a mapping assertion
specifies that the tuples returned by the SQL query Φ are used to generate the
facts that instantiate the concepts, roles, and attributes in Ψ .

All the notions given above can be easily generalized to OBDA systems,
where a TBox T is connected to an external database D through mappings M,
denoted 〈T ,M,D〉. In particular, the models of 〈T ,M,D〉 are those interpreta-
tions of T that satisfy the assertions in T and that are consistent with the tuples
retrieved byM from D (see [13] for the formal details). Satisfiability amounts to
checking whether 〈T ,M,D〉 admits at least one model, while answering a query
Q amounts to computing the tuples that are in the evaluation of Q in every
model of 〈T ,M,D〉.

Mastro is able to deal with DL TBoxes that are expressed in DL-
LiteA,id,den , a member of the DL-Lite family of lightweight DLs [4]. In such
DLs, a good tradeoff is achieved between the expressive power of the TBox lan-

2 Note that, in the following, with some abuse of terminology, when we use the term
“ontology” in the context of OBDA, we implicitly refer to the TBox only.

guage used to capture the domain semantics, and the computational complexity
of inference, in particular when such a complexity is measured w.r.t. the size of
the data.

Basic DL-LiteA,id,den expressions are defined as follows:

B −→ A | ∃Q | δ(U)
C −→ B | ¬B
V −→ U | ¬U

Q −→ P | P−
R −→ Q | ¬Q

E −→ ρ(U)
F −→ T1 | · · · | Tn

where, A, P , and P− denote an atomic concept, an atomic role, and the inverse
of an atomic role respectively; δ(U) (resp. ρ(U)) denotes the domain (resp. the
range) of an attribute U , i.e., the set of objects (resp. values) that U relates
to values (resp. objects); T1, . . . , Tn are unbounded pairwise disjoint predefined
value-domains; B is called basic concept.

A DL-LiteA,id,den TBox is a finite set of the following assertions:

B v C (concept inclusion assertion)
Q v R (role inclusion assertion)
U v V (attribute inclusion assertion)
E v F (value-domain inclusion assertion)
(funct Q) (role functionality assertion)
(funct U) (attribute functionality assertion)
(id B π1, . . . , πn) (identification assertion)
∀y.conj(t)→ ⊥ (denial assertion)

In identification assertions [5], πi is a path, i.e., an expression built according
to the following syntax: π −→ S | D? | π1 ◦ π2, where S denotes an atomic
role, the inverse of an atomic role, an attribute, or the inverse of an attribute,
π1 ◦π2 denotes the composition of paths π1 and π2, and D?, called test relation,
represents the identity relation on instances of D, which can be a basic concept or
a value-domain. Test relations are used to impose that a path involves instances
of a certain concept or value-domain. In DL-LiteA,id,den , identification assertions
are local, i.e., at least one πi ∈ {π1, ..., πn} has length 1, i.e., it is an atomic
role, the inverse of an atomic role, or an attribute. Intuitively, an identification
assertion of the above form asserts that for any two different instances o, o′ of
B, there is at least one πi such that o and o′ differ in the set of their πi-fillers,
that is the set of objects that are reachable from o by means of πi.

In denial assertions [10], conj(y) is defined as for boolean CQs. Intuitively, a
denial assertion of the above form states that there must not exist any tuple y
satisfying conj(y), i.e., that the answer to the boolean query q() ← ∃y.conj(y)
must be empty.

Finally, in a DL-LiteA,id,den TBox T , the following condition must hold: each
role or attribute that either is functional in T or appears (in either direct or
inverse direction) in a path of an identification assertion in T is not specialized,
i.e., it does not appear in the right-hand side of assertions of the form Q v Q′

or U v U ′.
Mapping assertions handled by Mastro are assertions of the form Φ ; Ψ ,

where Φ is an arbitrary SQL query over the underlying database, and Ψ is a con-
junction of atoms whose predicates are the concepts, roles, and attributes of the

TBox. Notice that, due to the fact that Ψ is a conjunction of atoms (as opposed
to a query, possibly with existentially quantified variables), such mappings can
be considered as a special form global-as-view (GAV) mappings [11].

In order to overcome the so-called impedance mismatch between the
database, storing values, and the TBox, to be interpreted over a domain of
objects, the mapping assertions are used in Mastro to specify how to construct
abstract objects from the tuples of values retrieved from the database. This is
done by allowing one to use function symbols in the atoms in Ψ : together with
the values retrieved by Φ, such function symbols generate so called object terms,
which serve as object identifiers for individuals in the ontology. We notice that
the semantics we adopt in Mastro establishes that different terms denote differ-
ent objects (unique name assumption), so that different terms never need to be
equated during reasoning, which is coherent with the assumption of not having
existentially quantified variables in the body of mappings.

For the logics of the DL-Lite family it has been shown that for unions of
conjunctive queries (UCQs), under the unique name assumption, query answer-
ing can be carried out efficiently in the size of the data, by reducing it to SQL
query evaluation over the ABox seen as a database [4]. Also satisfiability, which
is easily reducible to query answering, can be solved through the same mecha-
nism. Such techniques are implemented in Mastro, we refer to [4, 13] for a more
complete treatment.

As an example, consider the OBDA system 〈T ,M,D〉, where the TBox T
is constituted by the following set of intensional assertions: {NationalF light v
Flight, InternationalF light v Flight}, D is a database constituted by a set of
relations with the following signature:

FL TB[fl num:string, departure:integer, arrival:integer],
AIRPORT TB[airpt code:integer, name:string, country:string],

and M contains the following mapping assertions:

SELECT fl num

FROM FL TB,AIRPORT TB A1,AIRPORT TB A2

WHERE departure = A1.airpt code and

arrival = A2.airpt code and

A1.country = ’IT’ and A2.country = ’IT’

; NationalFlight(fl(fl num))

SELECT fl num

FROM FL TB,AIRPORT TB A1,AIRPORT TB A2

WHERE departure = A1.airpt code and

arrival = A2.airpt code and

(A1.country != ’IT’ or A2.country != ’IT’)

; InternationalFlight(fl(fl num))

which specify how to construct instances of the ontology concepts
NationalF light and InternationalF light starting from the database relations
FL TB and AIRPORT TB.

3 Query Answering

In this section we describe the query rewriting process of the Mastro system.
The technique is purely intensional and is performed in three steps (see Figure 1):

1. TBox rewriting: The first step rewrites the input UCQ according to the
knowledge expressed by the TBox. The rewriting, performed using the Presto
algorithm [15], produces as output a non-recursive Datalog program, which
encodes the knowledge expressed by the TBox and the user query. The out-
put Datalog program contains the definition of auxiliary predicates, not be-
longing to the alphabet of the ontology.

2. Datalog Unfolding: The output of the first step is then unfolded into a new
UCQ by means of the Datalog Unfolding algorithm. It consists of a classic
rule unfolding technique which eliminates all the auxiliary predicate symbols
introduced by the Presto algorithm and produces a final UCQ expressed in
terms of ontology concepts, roles, and attributes.

3. Mapping Unfolding: The last step takes the unfolded UCQ and the mapping
assertions as input and produces an SQL query which can be directly eval-
uated over the data sources. In particular, the mapping assertions are first
split into assertions of a simpler form, in which the head of every mapping
assertion contains only a single ontology predicate; then, the final reformu-
lation is produced through a mapping unfolding step, as described in [13].

More specifically, the Presto algorithm is an optimization of the well-known
PerfectRef [4]. The latter, depending on the particular TBox being used, may
lead to huge UCQs, consisting of many possibly redundant queries which can be
eliminated from the final result. Presto tries to overcome such issue, rewriting the
user query into a Datalog program whose rules encode only necessary expansion
steps, thus preventing the generation of useless queries. It is important to note
that after the Datalog unfolding program, one can have again an exponential
number of queries, but Mastro experiences on real world application showed a
dramatic performance improvement w.r.t. to the performance of PerfectRef.

Fig. 1. The Mastro rewriting process

4 The system at work: experiences on real cases

The usefulness of OBDA and the efficiency of the Mastro system were proved
by several real world applications in which it has been experimented. In the fol-
lowing, we report on the experiments carried out with Banca Monte dei Paschi
di Siena (MPS), the Italian Ministry of Economy and Finance (MEF) and the
Telecom Italia, the main Italian telephone company. Other experiments have
been recently carried out with SELEX Sistemi Integrati (SELEX-SI), and Ac-
centure [2].

Monte dei Paschi di Siena. Within a joint project with Banca Monte dei Paschi
di Siena (MPS)3, Free University of Bozen-Bolzano, and Sapienza Università di
Roma, we used Mastro for accessing a set of data sources from the actual MPS
data repository by means of an ontology [16]. In particular, we focused on the
data exploited by MPS personnel for risk estimation in the process of granting
credit to bank customers. A 15 million tuple database, stored in 12 relational ta-
bles managed by the IBM DB2 RDBMS, has been used as data source collection
in the experimentation. Such source data are managed by a dedicated applica-
tion, which is in charge of guaranteeing data integrity (in fact, the underlying
database does not force constraints on data). Not only the application performs
various updates, but data is updated on a daily basis to identify connections
between customers that are relevant for the credit rating estimation.

The main challenge that we tackled within the experimentation was the ontol-
ogy and mapping design. This was a seven man-months process that required to
both inspect the data source and interview domain experts, and was complicated
by the fact that the source was managed by a specific application. The resulting
OBDA system is defined in terms of approximately 600 DL-LiteA,id assertions
over 79 concepts, 33 roles and 37 attributes, and 200 mapping assertions.

The experimentation showed that the usefulness of the Mastro system goes
beyond data integration applications and embraces data quality management. In
particular, it confirmed the importance of several distinguished features of our
system, namely, identification constraints and denial constraints, which have
been used extensively to model important business rules. Notably, checking that
such rules were satisfied by data retrieved from the sources through mappings led
to highlight unexpected incompleteness and inconsistency in the data sources.

Our work has also pointed out the importance of the ontology itself, as a
precious documentation tool for the organization. Indeed, the ontology developed
in our project is adopted in MPS as a specification of the relevant concepts in
the organization. At present we are still working with MPS in order to extend
the work to cover the core domain of the MPS information system, with the idea
that the ontology-based approach could result in a basic step for the future IT
architecture evolution.
3 MPS is one of the main banks, and the head company of the third banking group in

Italy (see http://english.mps.it/).

Italian Ministry of Economy and Finance. Mastro has been used within a
joint project between Sapienza Università di Roma and the Italian Ministry of
Economy and Finance (MEF). The main objectives of the project have been: the
design and specification in DL-LiteA of an ontology for the domain of the Italian
public debt; the realization of the mapping between the ontology and relational
data sources that are part of the management accounting system currently in
use at the ministry; the definition and execution of queries over the ontology
aimed at extracting data of core interest for MEF users. In particular, the infor-
mation returned by such queries relates to sales of bonds issued by the Italian
government, maturities of bonds, monitoring of various financial products, etc.,
and are at the basis of various reports on the overall trend of the national public
debt.

The Italian public dept ontology is over an alphabet containing 164 atomic
concepts, 47 atomic roles, 86 attributes, and comprises around 1440 DL-LiteA

assertions. The 300 mapping assertions involve around 60 relational tables man-
aged by Microsoft SQLServer. We tested a very high number of queries and
produced through Mastro several reports of interest for the ministry. We point
out that around 80% of the queries we tested could be executed only thanks to
a series of further optimizations introduced in the system that, due to lack of
space, we cannot describe here.

Telecom Italia. We finally describe a project we are carrying out in the domain
of network inventory systems, together with Telecom Italia, the main Italian
company for telecommunication services, which is also a world leading company
in this field. The main objectives of the project are (i) the specification of an
ontology that formalizes the entire telecommunication network owned by Tele-
com Italia and (ii) the analysis through the ontology of the information systems
that are currently used for network management. The ontology we are going to
develop can be partitioned into four layers: Infrastructures and territory layer,
which represents main infrastructures used to realize the network, the way in
which network elements (e.g., cables, apparatus, connection points) are localized
into such infrastructures, and how both infrastructures and network elements are
localized with respect to the territory; network topology layer, which represents
how connections are realized into the network, essentially representing it as a
graph in which edges represent elementary connections among apparatus, and
nodes represent apparatus which realizes signal permutations between elemen-
tary connections; service layer, which represents all telecommunication services
that are deployed on the network and offered to customer (e.g., voice communi-
cation, ADSL, voip); data layer, which represents the actual data exchanged on
the network (e.g., data on telephone calls, internet access). In each such layer,
the ontology provides the means to precisely represent the current state of the
world, and, when considered of interest, also captures past situations, for ex-
ample to provide tracks to all changes to which certain in the network have
undergone. The use of identification assertions and epistemic constraints turned
out to be crucial for faithful representation of such aspects.

5 Discussion

Accessing (possibly disperse) data through a virtual global schema has been
deeply investigated in the last two decades in the field of data integration [11,
8]. From the modeling perspective, however, the main systems produced by this
research suffer from some weakness, mainly due to the limited expressive power
of the languages provided to model the global schema of the integration sys-
tem. In this respect, Mastro aims at overcoming this limitation by providing
the best expressive power allowed while preserving tractability of conjunctive
query answering and of the integration tasks. As for the mappings, Mastro
adopts a powerful form of the so-called Global-As-View (GAV) mappings [11],
and provides optimized algorithms for rewriting global queries with respect their
specification.

To the best of our knowledge, the only existing system designed for the same
aims of Mastro is Quest [14], which has indeed common roots with our tool.
Quest is a system for query answering over DL-LiteA ontologies, which can work
in both “classical” (i.e., with a local ABox) and “virtual” mode (i.e., as an OBDA
system). Quest implements specific optimizations for query answering, which in
particular exploit completeness of the ABox with respect to the TBox. Although
first experiments show effectiveness of Quest in the classical scenario [14], its us-
age in the virtual mode is in a still preliminary stage. In particular, we tried
to compare Quest with Mastro in the OBDA scenario of the Italian Ministry
of Economy and Finance described described in the previous section. Unfortu-
nately, we have not been able to perform such experiments for two reasons: (i)
the data source of this application is an SQL Server database; since Quest does
not support this DBMS, we could not compare query answering in the two sys-
tems; (ii) Quest was not actually able to compute the TBox rewriting of the 23
queries used in our experiments, which are very long conjunctions of atoms, so
we could not even compare the query rewriting performances of the two systems.

Nyaya [6] is a novel system which allows for query answering over ontolo-
gies specified into linear Datalog±, a language that essentially corresponds to
DLR-Lite [3] (i.e., to the extension of DL-Lite with n-ary predicates), and al-
lows for FOL-rewritable query answering of UCQs. In Nyaya, Datalog± ontolo-
gies are mapped through plain Datalog rules to a specific centralized storage
system which maintains both data and meta-data according to the Nyaya meta-
model. As in Mastro, answering a query posed over such an ontology is done
by first rewriting the query according to the ontology, using an algorithm which
can be seen as a variation of the PerfectRef algorithm of [4], and then rewriting it
according to the mapping, which is done in Nyaya through standard unfolding.
Nyaya does not present particular optimizations for both the rewriting steps,
whereas it concentrates in optimizing centralized data storage. In this respect,
it is not specifically tailored to data integration and cannot be directly applied
in an efficient way to this setting.

Other DL-Lite-based approaches and reasoners have been developed, which,
however, are not able to deal with full OBDA scenarios. In [9] an alternative ap-
proach to query answering is presented. Besides a (less complex) query reformu-

lation step, such an approach requires to suitably “extend” the ABox (managed
by a RDBMS) with the aim of reducing the amount of rewritten queries produced
by the reformulation step. The experimental results support well this approach
(notice that in Mastro the size of the reformulation may be exponential in the
size of the input query). However, the ABox manipulation that it requires makes
it extremely difficult to apply this approach in an OBDA scenario.

The Requiem reasoner [12] implements a rewriting algorithm which reduces
the number of queries in the final reformulation, still being purely intensional
like Mastro. However, it currently supports none of the Mastro advanced
features, such as identification or EQL constraint management, nor mappings to
external databases.

The OWLGres prototype [19], which allows for TBox specification in DL-
Lite, uses the PostgreSQL DBMS for the storage of the ABox, and provides
conjunctive query processing. The algorithm for query answering implemented
in OWLGres, however, is not complete with respect to the computation of the
certain answers to user queries.

Mastro can also be compared with ontology reasoners which support DLs
different from DL-Lite, and in particular with their query answering capabili-
ties. In this respect, well-known DL reasoners such as RacerPro [7], Pellet [18],
Fact++ [20], and HermiT [17] provide only limited forms of query answering, i.e.,
instance checking/retrieval or grounded conjunctive query answering (c.f. [2]),
since they are essentially focused on standard DL reasoning services. Although
some optimizations have been implemented, such systems are not able to deal
with very large ABoxes (e.g., with several millions of membership assertions) as
the ones we considered in our experiments. This is mainly due to the inherent
computational complexity of answering queries in the expressive DL languages
supported by the above mentioned systems.

Acknowledgments. This research has been partially supported by the EU un-
der FP7 project ACSI – Artifact-Centric Service Interoperation (grant n. FP7-
257593), and by Regione Lazio under the project “Integrazione semantica di dati
e servizi per le aziende in rete”.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, and D. F. Savo. The Mastro system for ontology-based
data access. Semantic Web J., 2(1):43–53, 2011.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of KR 2006, pages
260–270, 2006.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Path-based
identification constraints in description logics. In Proc. of KR 2008, pages 231–241,
2008.

6. R. de Virgilio, G. Orsi, L. Tanca, and R. Torlone. Semantic data markets: a flexible
environment for knowledge management. In Proc. of CIKM 2011, pages 1559–1564,
2011.

7. V. Haarslev, R. Möller, and M. Wessel. Description logic inference technology:
Lessions learned in the trenches. In Proc. of DL 2005, volume 147 of CEUR,
ceur-ws.org, 2005.

8. A. Y. Halevy, A. Rajaraman, and J. Ordille. Data integration: The teenage years.
In Proc. of VLDB 2006, pages 9–16, 2006.

9. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The com-
bined approach to query answering in DL-Lite. In Proc. of KR 2010, pages 247–257,
2010.

10. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-
tolerant first-order rewritability of dl-lite with identification and denial assertions.
In Proc. of DL 2012, volume 846 of CEUR, ceur-ws.org, 2012.

11. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002,
pages 233–246, 2002.

12. H. Pérez-Urbina, B. Motik, and I. Horrocks. A comparison of query rewriting
techniques for DL-lite. In Proc. of DL 2009, volume 477 of CEUR, ceur-ws.org,
2009.

13. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.

14. M. Rodriguez-Muro and D. Calvanese. High performance query answering over
dl-lite ontologies. In Proc. of KR 2012, 2012. To appear.

15. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies.
In Proc. of KR 2010, pages 290–300, 2010.

16. D. F. Savo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodŕıguez-Muro, V. Romagnoli,
M. Ruzzi, and G. Stella. Mastro at work: Experiences on ontology-based data
access. In Proc. of DL 2010, volume 573 of CEUR, ceur-ws.org, pages 20–31,
2010.

17. R. Shearer, B. Motik, and I. Horrocks. HermiT: A highly-efficient OWL reasoner.
In Proc. of OWLED 2008, volume 432 of CEUR, ceur-ws.org, 2008.

18. E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Proc. of DL 2004, volume
104 of CEUR, ceur-ws.org, 2004.

19. M. Stocker and M. Smith. Owlgres: A scalable OWL reasoner. In Proc. of
OWLED 2008, volume 432 of CEUR, ceur-ws.org, 2008.

20. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of IJCAR 2006, pages 292–297, 2006.

A Rigorous Characterization of Classification
Performance – A Tale of Four Reasoners

Yong-Bin Kang†, Yuan-Fang Li†, Shonali Krishnaswamy†,§

† Faculty of IT, Monash University, Australia
{yongbin.kang,yuanfang.li,shonali.krishnaswamy}@monash.edu

§ Institute for Infocomm Research, A*STAR, Singapore

Abstract. A number of ontology reasoners have been developed for rea-
soning over highly expressive ontology languages such as OWL DL and
OWL 2 DL. Such languages have, as a consequence of high expressivity,
high worst-case complexity. Therefore, reasoning tasks such as classifica-
tion sometimes take considerable time on large and complex ontologies.
In this paper, we carry out a comprehensive comparative study to ana-
lyze classification performance of four widely-used reasoners, FaCT++,
HermiT, Pellet and TrOWL, using a dataset of over 300 real-world on-
tologies. Our investigation on correlating reasoner performance with on-
tology metrics using machine learning techniques also provides additional
insights into the hardness of individual ontologies.

1 Introduction

Ontology reasoning tasks such as classification and consistency checking are fun-
damental to semantics-enabled applications. Very expressive ontology languages
that can model complex domain knowledge have been designed and are widely
used in a number of domains. Such languages include OWL DL [14] and its
successor, OWL 2 DL [11]. High expressivity, however, incurs high computa-
tional complexity. For the core reasoning tasks of classification and consistency
checking, OWL DL is NExpTime-complete, while OWL 2 DL is 2NExpTime-
complete. Hence, terminological reasoning over such languages is a challenging
task, especially for very large ontologies.

Highly efficient TBox reasoning algorithms such as those based on tableaux [4,
15] and hypertableaux [19] have been proposed to tackle this formidable problem.
Various optimization techniques such as absorption, backtracking and blocking
have been developed [13] to reduce search space, therefore speeding up the pro-
cessing and reducing memory footprint. Based on these algorithms, a number
of efficient ontology reasoners such as FaCT++ [26], HermiT [19], Pellet [23]
and TrOWL [25] have been implemented. These reasoners can handle some very
large ontologies such as GALEN, Gene Ontology and NCI Thesaurus Ontology.
However, it has also been pointed out that further studies are still needed for
improving terminological reasoning [9].

In a lot of situations such as in the mobile context [24], it is very valuable to
obtain a (rough) estimate of reasoning performance before reasoning is actually

carried out. Although theoretical worst-case complexity has been established for
these languages, such complexity is not necessarily a reliable indication of real-
world, typical-case performance. Part of the reason is that different reasoners im-
plement different algorithms and optimization techniques, hence they may have
widely different performance for a same ontology. In other words, the hardness
of reasoning on individual ontologies is a product of the intrinsic characteristics
of the ontologies (i.e., metrics [28]) and that of the reasoner employed.

Therefore, we believe it is of both theoretical and practical importance to
adequately measure, benchmark and characterize performance of different rea-
soners. Many existing works on (TBox) reasoner benchmarking [20, 5, 7, 9, 10]
have used relatively small to medium-sized datasets, which do not provide suffi-
cient grounds for rigorously analysis of performance characteristics. These works
also only focused on comparing and benchmarking performance of different rea-
soners – they did not provide insights into such performance.

In this paper, we attempt to conduct a rigorous and comprehensive study that
characterizes performance of the above four reasoners, for the task of ontology
classification, on a set of over 300 ontologies of varying sizes and hardness. We
also study the relationship of the hardness of individual ontologies and their
intrinsic syntactic and structural metrics [28] by applying a machine learning
approach. Our preliminary results are very encouraging, showing a high accuracy
of correctly predicting (discretized) performance of all the four reasoners.

2 Background and Related Work

Tremendous progress has been made in recent years in designing and implement-
ing highly optimised inference algorithms and reasoners. Tableau- and hypertableau-
based algorithms [3, 6, 19] have dominated DL inference research and many rea-
soners are based on these algorithms, including FaCT++ [26], Pellet [22] and
HermiT [21]. With the introduction of OWL 2 and its profiles, other approaches,
including completion rule-based and consequence-based algorithms have been de-
veloped to tackle inference problems on less expressive DLs such as EL++ (the
OWL 2 EL profile) and DL-Lite (the OWL 2 QL profile), for which polynomial-
time algorithms exist for standard DL inference tasks such as subsumption check-
ing [1, 8]. Reasoners including CEL [2], CB [16] and Snorocket [17] are based
on this approach. TrOWL [25] is an inference infrastructure that takes a hybrid
approach: it applies syntactic and semantic approximation to transform OWL
2 DL ontologies to less expressive profiles (QL and EL) for different reasoning
tasks, and it uses a variety of underlying reasoners for different languages.

Quite a few works have been done on benchmarking ontology reasoners. Ear-
lier works primarily focused on OWL 1 and DAML+OIL ontologies. Bock et
al. [7] benchmarked the time performance of 5 reasoners, KAON2, OWLIM, Pel-
let, RacerPro and Sesame, over a dataset generated from four small ontologies
by varying the number of ABox assertions. Two reasoning tasks were evalu-
ated: classification and conjunctive query answering. Because of the size of the
ontologies, the majority of reasoners achieve a subsecond response time for clas-

sification on the four ontologies. On the other hand, they exhibit a more varying
behavior for conjunctive query answering. Pan [20] compared three reasoners,
FaCT++, Pellet and RacerPro, on a dataset of 135 (OWL 1) ontologies for the
task of classification, and commented on the relative strengths and weaknesses of
the reasoners. These ontologies are relatively small too: with an average of 43.7
classes and 19.3 relations per ontology. Gardiner [10] et al. also compared four
reasoners, FaCT++, KAON2, Pellet and RacerPro, on 172 (OWL 1) ontologies.
Their experiments showed that different reasoners have different characteristics,
but did not discuss these differences in detail.

A new benchmarking framework based on justifications has recently been
proposed by Bail et al. [5]. Justifications are small minimal subsets of logical
axioms and assertions sufficient for an entailment to hold. The authors argued
that a justification-based, but not classification-based, benchmarking approach
provides better fault isolation capabilities and is useful in reasoner development.

More recently, Dentler et al. [9] conducted a comprehensive comparative
study of three dimensions of eight reasoners, CB, CEL, FaCT++, HermiT, Pellet,
RacerPro, Snorocket and TrOWL, that support the OWL 2 EL profile. A num-
ber of TBox reasoning tasks are performed on three large OWL 2 EL ontologies
(Gene Ontology, NCI Thesaurus and SNOMED CT) and it was observed that
the reasoners exhibit a significant difference in performance, and that further
research is required to better understand this phenomenon.

In the SEALS project1, the Storage and Reasoning Systems Evaluation Cam-
paign 2010 aimed at evaluating DL-based reasoners. In the evaluation, the per-
formance of three reasoners FaCT++, HermiT, and jcel were measured and
compared in terms of a suite of standard inference services such as classification,
class/ontology satisfiability, and logical entailment. This evaluation results in a
framework revealing a good performance comparison of different reasoners. How-
ever, it does not seem to tackle the problem of performance prediction. Hence,
our work presented here is complementary to the SEALS project.

3 Methodology

The principal aims of this paper are (1) to benchmark the performance of rea-
soning tasks of a number of reasoners over a large and diverse dataset, and (2)
to experimentally determine whether a combination of ontology metrics can be
leveraged to effectively predict the response time for specific reasoning tasks.
Thus there are four dimensions which need to be considered:

Reasoning task - For our evaluation, we focus on classification. Classification
is the process of making all class subsumption relations explicit in an ontology
and it is one of fundamental TBox reasoning tasks. Another main reasoning
task, consistency checking, is not chosen because of a pragmatic reason: that
different reasoners perform consistency checking at different times. It is some-
times performed together with ontology loading in some reasoners, while some

1 http://www.seals-project.eu

other reasoners perform consistency checking in a separate step after loading
the ontology.

Ontology features - The evaluation needs to focus on a diverse set of publicly
available ontologies which have different sizes (ranging from a few KB, to sev-
eral MB), vocabulary sizes, structural characteristics and most importantly,
different performance characteristics.

Reasoner benchmarking - The evaluation must perform classification on a
number of ontologies using different publicly available reasoners. In this work,
we will compare those reasoners that are actively-maintained, open-source
and are able to support expressive languages such as OWL 2 DL.

Predictive models - The supervized machine learning technique, classifica-
tion,2 is used in the experiments to develop a predictive model to estimate in-
ference time from metric values. Our goal is to be able to predict the member-
ship of an ontology within a number of categories, defined over (discretized)
reasoning time. A number of classifiers will be investigated to achieve the
most effective prediction for different reasoners, since it is well-known that
different classifiers will produce results of differing accuracies for different
datasets.

For our specific problems of reasoner benchmarking and predictive model
construction, we therefore first need to collect reasoning runtime data and met-
rics data. Secondly, we then need to leverage these metrics to develop a predictive
model to determine the reasoning task time given the ontology metric values (for
the subset of metrics that have the capacity to determine reasoning task time)
and the reasoner. There are the following key steps in our approach:

1. Data collection. We need to collect a number of ontologies with a variety of
characteristics, which may include recency, the application domain, file size,
metric values, underlying ontology language, and most importantly, reasoning
time. We also need to compute, for each ontology collected, its metric values,
and an average time for the task of ontology classification. The classification
reasoning task is performed on each ontology and the average reasoning time
is recorded.
Furthermore, since our goal is to learn predictive classifiers, we also need to
discretize the continuous reasoning time in order to assign ontologies into
separate groups based on their reasoning time.

2. Building the predictive model. The third stage of our approach constructs
classifiers that classify ontologies into categories based on discretized reason-
ing time. The classifier typically builds a predictive model in the form of a
Bayesian model, a decision tree, a regression model, or a set of rules. The
prediction model is then evaluated for accuracy based on the widely-used 10-
fold cross-validation. In this validation practice, each dataset is partitioned
into k subsets. Each time, one of the k subsets is used as testing data, and
the remaining (k-1) subsets form training data. The cross-validation process

2 Note that this is an entirely different concept than ontology classification.

is then repeated k times with each of the k subsets used exactly once as the
testing data. All k results from the folds can then be used as performance
statistics. We use k = 10 as 10 is very often used in such validation practice.

4 Experiments and Analysis

Reasoners and reasoning task. We select four widely-used, actively-maintained
and open-source reasoners that support OWL 2 DL, namely FaCT++ [26], Her-
miT [19], Pellet [23] and TrOWL [25] for our analysis of classification time. Note
that TrOWL is incomplete because of the approximation it applies. In our ex-
periment, CEL [2] is the underlying reasoner that TrOWL uses. The other three
reasoners are complete OWL 2 DL reasoners. Table 1 below provides a brief
summary of these reasoners.

Table 1. A brief summary of the four reasoners benchmarked.

FaCT++ HermiT Pellet TrOWL

Version 1.5.3 1.3.5 2.3.0 0.8

Expressivity OWL 2 DL OWL 2 DL OWL 2 DL OWL 2 DL (partial)

Reasoning algorithm Tableaux Hypertableaux Tableaux Completion rules (CEL)

Consistency checking, another TBox reasoning task, is not selected. We ob-
serve that for some reasoners, consistency checking takes very short time on
average (0.29s for HermiT and 0.05s for Pellet). At the same time, there is a
very large discrepancy in consistency checking time between the four reasoners
(mean: 4.02s for FaCT++ and 131.7s for TrOWL). Such a difference may be
attributed to the different ways the reasoners report consistency checking (with
or after ontology loading). Moreover, HermiT, Pellet and TrOWL all have a
relatively normal distribution of consistency checking time. On the other hand,
FaCT++ has quite a skewed distribution, where a single ontology takes more
than 1,020 seconds while no other ontology takes more than 15 seconds. Hence,
we believe it is not a fair comparison and we cannot draw useful conclusions
from it.

The dataset. 358 real-world ontologies are collected, a large proportion of
which are collected from the Manchester Tones Ontology Repository and NCBO
BioPortal.3 These ontologies vary significantly in file size, ranging from less than
4KB to almost 300MB. All ontologies collected from BioPortal are large ontolo-
gies with at least 10,000 terms. The expressivity of these ontologies spans simpler
languages such as OWL 2 EL and QL, through OWL DL to OWL 2 DL and
OWL Full, with a large number being in OWL 2 DL. At the same time, this
collection also includes some well-known hard ontologies such as DOLCE, FMA,
Galen, the Gene Ontology, the NCI Thesaurus and the Cell Cycle Ontology.

3 http://owl.cs.manchester.ac.uk/repository/ and http://www.bioontology.

org/

Metrics As stated previously, we are interested in studying ontology metrics [28]
and their capability in predicting classification time. Based on the metrics defined
in [28], we propose a set of 27 metrics that we believe can characterize the
structure and complexity of a given ontology. This set of metrics are derived
from asserted logical axioms in an ontology are are divided into the following
four categories:

– Ontology-level (ONT) metrics measure the size and structural character-
istics of an ontology as a whole. Four ONT metrics are defined in [28]: SOV
(size of vocabulary), ENR (edge node ratio), TIP (tree impurity) and EOG
(entropy of graph). We define two additional metrics: CY C, that measures
the Cyclomatic complexity of the ontology graph, and RCH, that measures
the ratio between the number of anonymous class expressions and the total
number of class expressions.

– Class-level (CLS) metrics measure the characteristics of OWL classes, which
are first-class citizens in an ontology. Four such metrics are defined in [28],
including NOC (number of children), DIT (depth of inheritance), CID (in-
degree) and COD (out-degree).

– Anonymous class expressions (ACE) metrics count the total occurrences
of each kind of anonymous class expressions that are available in OWL 2 DL.
There are altogether 9 metrics: enumeration (ENUM), negation (NEG), con-
junction (CONJ), disjunction (DISJ), universal/existential quantification
(UF/EF) and min/max/exact cardinality (MNCAR/MXCAR/CAR).

– Properties (PRO) metrics measure the total occurrences of each kind of
property declarations/axioms. The 8 PRO metrics records the number of oc-
currences of property declarations and axioms. There are 8 metrics, one each
for: object/datatype property declaration (OBP/DTP), functional (FUN),
symmetric (SYM), transitive (TRN), inverse functional (IFUN), property
equivalence (EQV) and inverse (INV).

Data collection. For each ontology, values for the 27 metrics are collected. For
each ontology and each reasoner, CPU time on ontology classification (but not
loading) is averaged over 10 independent runs and recorded. All the experiments
are performed on a high-performance server running OS Linux 2.6.18 and Java
1.6 on an Intel (R) Xeon X7560 CPU at 2.27GHz with a maximum of 40GB
allocated (to accommodate potential memory leaks) to the 4 reasoner. OWL
API [12] (version 3.2.4) is used to communicate with all four reasoners. Some
hard ontologies take an extremely long time to classify. Hence, we apply a 50,000-
second cutoff for all the reasoners.

4.1 Reasoner Performance Characteristics

The distributions of the raw reasoning time for the four reasoners can be found
in Figure 1, where reasoning time is plotted in log scale due to its wide range
(0s ≤ R ≤ 50,000s), against ontologies sorted by their reasoning time. Note that

10-3

10-2

10-1

100

101

102

103

104

105

 0 50 100 150 200 250 300 350

R
ea

so
ni

ng
 ti

m
e

(s
)

Ontologies

FaCT++
HermiT

Pellet
TrOWL

Fig. 1. Raw classification time of the four reasoners.

all reasoners except TrOWL time out (50,000 seconds) on a number of large and
complex ontologies. As can be seen in the figure below, the distributions are
highly skewed for all four reasoners.

Table 2 below provides some more details about the classification perfor-
mance of the four reasoners, with the lowest value for each measure in boldface
and the highest in italic. It can be seen in the second row that each reasoner fails
to perform classification on a number of ontologies due to parsing or processing
errors or the ontology being inconsistent.

It can be seen that for each reasoner, its mean is much higher than the
median, indicating that the distribution is heavily skewed towards the right
and that it may be the result of a small number of large values, which can
be seen quite easily in Figure 1. It should also be noted that having a mean
much larger than the median suggests that a distribution may be quite steep.
This observation is confirmed by the high values of the skewness (Equation 1)
and Kurtosis (Equation 2) measures in the table, which measure the (lack of)
symmetry and the peakedness, respectively (s is the standard deviation of the
sample). A skewness close to zero indicates roughly evenly distributed values.
A positive skewness value indicates that the right-side tail of the distribution is
longer than that of the left side, which is the case for all the four reasoners. A
normal distribution has a Kurtosis measure of 0. A high Kurtosis value indicates
that the data has a high peak, which is the case for all the four reasoners.

G1 =
n

(n− 1)(n− 2)

N∑
i=1

(
xi − x

s

)2

(1)

G2 =

(
n(n + 1)

(n− 1)(n− 2)(n− 3)

N∑
i=1

(
xi − x

s

)4
)
− 3(n− 1)2

(n− 2)(n− 3)
(2)

It can also be seen that the reasoners exhibit quite different performance
characteristics. TrOWL and Pellet successfully complete on more ontologies than
FaCT++ and HermiT. FaCT++, HermiT and Pellet all time out on a number

Table 2. Summary of raw classification time of the four reasoners.

FaCT++ HermiT Pellet TrOWL

Number of ontologies re-
sulted in error

89 67 28 21

Number of ontologies
timed out (> 50, 000s)

6 5 8 0

Mean (s) 1,366.4 879 1,400.3 65.41

Standard deviation (s) 7,967.41 6765.28 8,121.11 490.07

Median (s) 0.002 0.037 0.02 0.007

Skewness 3.5 7.46 5.81 9.56

Kurtosis 10.63 49.68 32 95.53

of ontologies, but not TrOWL. As a result of the clipping, the true performance
value distributions for the former three reasoners may be even more skewed and
peaked.

The performance of the four reasoners can be further characterized below.
FaCT++ has the lowest median, its distribution is the least skewed and

also the least steep (lowest skewness and Kurtosis values) among the four. From
Figure 1 it can be seen that FaCT++ performs the best on a large number of
ontologies. However, it also fails on the most number (89) of ontologies (not
due to clipping). HermiT has the highest median. However, its mean is the
second lowest, after TrOWL. It also fails on quite many (67) ontologies. Pellet
times out on the most number (8) of ontologies, indicating that Pellet may have
trouble handling extremely large and difficult ontologies. Moreover, it has the
highest mean and standard deviation, both of which are quite close to those of
FaCT++. TrOWL has the lowest mean and standard deviation, both of which
are much lower than those of the other three reasoners. This is due in part to
the fact that TrOWL does not time out on any ontology. We note that TrOWL
applies syntactic and semantic approximation, and hence is incomplete. Hence,
the better performance may be the result of such incompleteness and requires
further analysis. It is also noteworthy to point out that TrOWL has the most
skewed and the steepest distribution among the four reasoners.

4.2 Predictive Model Construction

As stated previously, being able to predict reasoning performance using ontolo-
gies metrics is highly desirable for ontology engineering and ontology-enabled
applications. In this work, we use classification in machine learning to build
predictive models that accurately estimate reasoning performance of ontology
classification. This section presents a major contribution of the paper. Namely,
for each reasoner, we identify an accurate predictive model for reasoning time for
the classification reasoning task, and a classifier used for determining the model.

As stated in the previous section, discretization is a necessary first step be-
fore classifiers can be trained. After raw run time values are collected, trivially
simple ontologies (with reasoning time ≤ 0.01s) are removed from the dataset.

Experiments on the entire dataset without removal are also performed, where
trained classifiers have even higher accuracy. However, this is due to the fact
that the entire dataset is much more skewed towards simple ontologies. Hence
the high accuracy is not really an improvement.

Reasoning time is then discretized into 4 bins uniformly, with unit interval
width. The interval width is used as exponent of the reasoning time, i.e., 10i is
the cutoff point between bin i and bin i+ 1, for 1 ≤ i ≤ 4. The bins are labelled
‘A’, ‘B’, ‘C’ and ‘D’. A summary of the discretization and the size of the dataset
for each reasoner in each bin is shown in Table 3.

Table 3. Discretization of reasoning time and number of ontologies in each bin.

Discretized label Classification time Fact++ HermiT Pellet TrOWL

A A < 1s 75 154 126 105

B 1s ≤ B <10s 16 35 38 17

C 10s ≤ C < 100s 6 12 12 13

D 100s ≤ D 11 13 16 14

Total discretized 108 214 192 149

Trivial ontologies 161 77 138 188

Ontologies in error 89 67 28 21

It is well-known that reasoning performance is affected by the intrinsic char-
acteristics of individual ontologies and that of the reasoner applied (underlying
algorithms and optimization techniques). Hence, a single classifier may not be
able to accurately model classification performance for all four reasoners. Hence,
we employ a number of classifiers and identify the most effective one to build a
predictive model for a given reasoner.

We use classification accuracy (simply accuracy) [18] to evaluate the effec-
tive of a classifier. Classification accuracy measures the percentage of correctly
classified ontologies over all ontologies, and it is often considered to be the best
performance indicator for evaluating classifiers in test data. As mentioned be-
fore, 10-fold cross validation is used to evaluate the classifiers and measure their
performance in accuracy.

In total, we choose ten well-known classifiers available in Weka [27], with the
aim of finding the best predictive models within an extensive spectrum. These
classifiers are representative of six categories of classifiers: Bayesian classifiers
(BayesNet and NäıveBayes), decision tree-based classifiers (J48 and Random-
Forest), rule-based classifiers (DecisionTable and OneR), a Support Vector Ma-
chine algorithm (SMO), a logistic regression-based classifier (SimpleLogistic),
and instance-based classifiers (kNN, 1 ≤ k ≤ 10, and K*).

Fig. 2 shows the accuracy of all ten classifiers for the four reasoners, using
all 27 metrics as features. A number of important observation can be made.

– Three classifiers produce the best accuracy results for the four reasoners, with
RandomForest performing the best for two reasoners, HermiT and Pellet.

70

75

80

85

90

95

FaCT++ HermiT Pellet TrOWL

A
cc
u
ra
cy

(%
)

Reasoner

BayesNet
NaiveBayes

SMO
SimpleLogistic

kNN

K*
DecisionTable

OneR
RandomForest

J48

Fig. 2. Accuracy of all classifiers for the four reasoners.

– All the best classifiers for each reasoner achieve high accuracy, ranging from
80.56% for FaCT++ to 88.85% for TrOWL. Hence, it suggests that we can use
such classifiers to predict classification performance with even higher accuracy.

– Overall, all classifiers produce consistently high accuracy, all higher than 70%
with an average of 79.08%. This provides further evidence that (1) the pre-
dictive models found using our proposed approach can be effectively used for
predicting classification performance; and (2) that ontology metrics can be
used to learn predictive models for the classification task.

5 Conclusion

Our contributions in this paper are summarised are two-fold. Firstly, we study
the classification performance of four widely-use, state-of-the-art OWL 2 DL
reasoners, FaCT++, HermiT, Pellet and TrOWL (incomplete), comparatively.
To the best of our knowledge, this is the most comprehensive of such studies in
terms of the size and variability of the dataset (more than 300 ontologies with
reasoning time ranging from subseconds to over 50,000 seconds). Some unique
characteristics are discovered through our detailed study. Such charatceristics
can be used in comparing and selecting reasoners for a given set of performance
criteria.

Secondly, we further investigate the hardness of classification performance as
a product of individual ontologies and reasoners. By applying machine learning
techniques, we construct a model that can accurately predict performance with
ontology metrics as features. Again, to the best of our knowledge, this is the

first known study to apply machine learning techniques to predicting reasoning
time for inference tasks. Experimental results confirm the effectiveness of our
approach as the classifiers that are learned produce high (> 80%) accuracy for
all the four reasoners.

Our future work will focus on further understanding the role individual met-
rics play in the predictive models and investigating their relative strength in
predicting classification performance. We also plan to study a wider set of met-
rics in predicting reasoning performance. Though classification result is not the
focus of this paper, we will compare that across reasoners to investigate their
correctness. Moreover, we will investigate the feasibility of using metrics as a
guide to generate synthetic ontologies that possess certain performance charac-
teristics.

References

1. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In K. Clark
and P. F. Patel-Schneider, editors, In Proceedings of the OWLED 2008 DC Work-
shop on OWL: Experiences and Directions, 2008.

2. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for
life science ontologies. In U. Furbach and N. Shankar, editors, Proceedings of the
3rd International Joint Conference on Automated Reasoning (IJCAR’06), volume
4130 of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-Verlag,
2006.

3. F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. Patel-Schneider, editors, The description logic
handbook: theory, implementation, and applications, pages 43–95. Cambridge Uni-
versity Press, 2003.

4. F. Baader and U. Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69(1):5–40, 2001.

5. S. Bail, B. Parsia, and U. Sattler. JustBench: a framework for OWL benchmarking.
In Proceedings of the 9th international semantic web conference on The semantic
web - Volume Part I, ISWC’10, pages 32–47, Berlin, Heidelberg, 2010. Springer-
Verlag.

6. P. Baumgartner, U. Furbach, and I. Niemelä. Hyper tableaux. In J. J. Alferes,
L. M. Pereira, and E. Orlowska, editors, JELIA, volume 1126 of Lecture Notes in
Computer Science, pages 1–17. Springer, 1996.

7. J. Bock, P. Haase, Q. Ji, and R. Volz. Benchmarking OWL reasoners. In ARea2008
- Workshop on Advancing Reasoning on the Web: Scalability and Commonsense,
June 2008.

8. D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reason., 39:385–429, October 2007.

9. K. Dentler, R. Cornet, A. ten Teije, and N. de Keizer. Comparison of reasoners
for large ontologies in the OWL 2 EL profile. Semantic Web Journal, 2(2):71–87,
2011.

10. T. Gardiner, D. Tsarkov, and I. Horrocks. Framework for an automated comparison
of description logic reasoners. In Proceedings of the 5th international conference on
The Semantic Web, ISWC’06, pages 654–667, Berlin, Heidelberg, 2006. Springer-
Verlag.

11. B. C. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, and U. Sattler.
OWL 2: The next step for OWL. Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, 6:309–322, November 2008.

12. M. Horridge and S. Bechhofer. The OWL API: A java API for working with OWL
2 ontologies. In R. Hoekstra and P. F. Patel-Schneider, editors, OWLED, volume
529 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

13. I. Horrocks. Implementation and optimization techniques. In F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, Description
Logic Handbook, pages 306–346. Cambridge University Press, 2003.

14. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The Making of a Web Ontology Language. Journal of Web Semantics,
1(1):7–26, 2003.

15. I. Horrocks and U. Sattler. A tableaux decision procedure for SHOIQ. In Proc. of
the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages 448–453,
2005.

16. Y. Kazakov. Consequence-driven reasoning for horn SHIQ ontologies. In
C. Boutilier, editor, IJCAI, pages 2040–2045, 2009.

17. M. Lawley and C. Bousquet. Fast classification in Protégé: Snorocket as an
OWL 2 EL reasoner. In Australasian Ontology Workshop 2010 (AOW 2010):
Advances in Ontologies, pages 45–50, Adelaide, Australia, 2010. ACS.

18. T. Mitchell. Machine Learning. Mcgraw-Hill International, 1997.
19. B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description

Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009.
20. Z. Pan. Benchmarking DL reasoners using realistic ontologies. In B. C. Grau,

I. Horrocks, B. Parsia, and P. F. Patel-Schneider, editors, OWLED, volume 188 of
CEUR Workshop Proceedings. CEUR-WS.org, 2005.

21. R. Shearer, B. Motik, and I. Horrocks. HermiT: A Highly-Efficient OWL Rea-
soner. In Proceedings of the 5th International Workshop on OWL: Experiences
and Directions (OWLED 2008), 2008.

22. E. Sirin and B. Parsia. Pellet: An OWL DL Reasoner. In R. M. Volker Haaslev,
editor, Proceedings of the International Workshop on Description Logics (DL2004),
June 2004.

23. E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-
DL reasoner. Web Semantics: Science, Services and Agents on the World Wide
Web, 5(2):51–53, June 2007.

24. L. Steller, S. Krishnaswamy, and M. M. Gaber. Enabling scalable semantic rea-
soning for mobile services. Int. J. Semantic Web Inf. Syst., 5(2):91–116, 2009.

25. E. Thomas, J. Z. Pan, and Y. Ren. TrOWL: Tractable OWL 2 Reasoning Infras-
tructure. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, and T. Tudorache, editors, ESWC (2), volume 6089 of Lecture Notes in
Computer Science, pages 431–435. Springer, 2010.

26. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
pages 292–297. Springer, 2006.

27. I. H. Witten and E. Frank. Data mining: Practical machine learning tools and
techniques with Java implementations. Morgan Kaufmann, San Francisco, 2000.

28. H. Zhang, Y.-F. Li, and H. B. K. Tan. Measuring Design Complexity of Semantic
Web Ontologies. Journal of Systems and Software, 83(5):803–814, 2010.

On the Feasibility of Using OWL 2 DL Reasoners for
Ontology Matching Problems

Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Ian Horrocks

Department of Computer Science, University of Oxford
{ernesto,berg,ian.horrocks}@cs.ox.ac.uk

Abstract. In this paper we discuss the feasibility of using OWL 2 DL reasoners
to diagnose the integration of large-scale ontologies via mappings. To this end,
we have extended our ontology matching system LOGMAP with complete OWL
2 DL reasoning and diagnosis capabilities. We have evaluated the new system,
which we call LOGMAP-FULL, with the largest matching problems of the Ontol-
ogy Alignment Evaluation Initiative, and we have compared its performance with
LOGMAP, which currently relies on a highly-scalable (but incomplete) reasoner.

1 Introduction

The Ontology Alignment Evaluation Initiative(OAEI) is an international campaign for
the systematic evaluation of ontology matching systems —software programs capable
of finding simple correspondences (called mappings) between the vocabularies of a
given set of input ontologies [25, 5, 6, 26]. The matching problems in OAEI are organ-
ised in several tracks, with each track involving different kinds of test ontologies [5];
for example, the ontologies in the largest tracks of OAEI 2011.5 are the Systematized
Nomenclature of Medicine Clinical Terms (SNOMED CT), the Foundational Model of
Anatomy (FMA), the National Cancer Institute Thesaurus (NCI), and the Adult Mouse
Anatomical Dictionary (MOUSE) —all of which are semantically rich bio-medical on-
tologies with thousands of classes.

Ontology mappings are commonly represented as OWL subclass or equivalence
axioms. Hence, the ontology O1 ∪ O2 ∪M resulting from the integration of the input
ontologies O1 and O2 via the mappings M automatically computed by a matching
system may entail axioms that do not follow from O1, O2, or M alone. Many such
entailments correspond to logical inconsistencies caused by either erroneous mappings
in M, or by inherent disagreements between O1 and O2. Recent work has shown that
even the integration of ontologies via manually curated mappings can lead to thousands
of such inconsistencies [11, 12, 10].

Most matching systems do not implement any kind of reasoning technique, and
hence are unable to detect and repair such inconsistencies. In recent years, however,
there has been a growing interest in the development of “built-in” reasoning and diagno-
sis algorithms for ontology matching systems. Systems like CODI [22, 9] and LOGMAP
[14, 10, 13] implement efficient techniques that substantially reduce the number of in-
consistencies derived from O1 ∪O2 ∪M. To achieve favourable scalability behaviour,
however, the reasoning algorithms in CODI and LOGMAP are incomplete, and hence
cannot guarantee that the output mappings will not lead to logical inconsistencies.

In this paper we evaluate the feasibility of integrating a fully-fledged OWL 2 DL
reasoner in the ontology matching system LOGMAP, and hence of guaranteeing that
the set of output mappings will not lead to unsatisfiable classes; we call the new system
LOGMAP-FULL. Although current reasoners can easily cope with the aforementioned
OAEI ontologies individually, the diagnosis of ontology mappings poses very interest-
ing challenges for the evaluation of OWL 2 DL reasoners.

2 LOGMAP in a nutshell

LOGMAP is a highly scalable ontology matching system with “built-in” reasoning and
diagnosis capabilities. The latest version of LOGMAP’s algorithm [13] can be roughly
divided into the stages briefly described next.

I. Computation of candidate mappings. LOGMAP efficiently computes a set of can-
didate mappings M using lexical techniques only. Those candidate mappings Mr in-
volving classes that are lexically very similar are additionally identified as reliable.

II. Reasoning-based diagnosis of reliable mappings. The input ontologies O1 and
O2 and the reliable mappings Mr are encoded in Horn propositional logic. This en-
coding is sound (but incomplete) for checking the unsatisfiability of each class with re-
spect to O1∪O2∪Mr. LOGMAP’s propositional reasoner implements the well-known
Dowling-Gallier algorithm [4, 7] and extends it to record all conflicting mappings that
may be involved in each unsatisfiability. LOGMAP then implements a greedy diagno-
sis algorithm that tries to delete as few such recorded mappings as possible in order to
resolve the identified unsatisfiabilities.

III. Pruning non-reliable mappings. LOGMAP efficiently indexes the propositional
representations of O1, O2 and Mr using an interval labelling schema [1]. This type
of semantic index has shown to significantly reduce the cost of computing taxonomic
queries over large class hierarchies [3, 21]. LOGMAP exploits this semantic index to
efficiently discard those conflicting candidate mappings that, if added to the reliable
mappings (after diagnosis), will make some class unsatisfiable.

IV. Final diagnosis. LOGMAP uses the same technique as in Step II to perform diagno-
sis over all the remaining candidate mappings (reliable and non-reliable). The resulting
set of mappings Mout is returned as output.

3 Reasoning and diagnosis in LOGMAP-FULL

As already mentioned, LOGMAP implements a sound but incomplete reasoning algo-
rithm for checking class unsatisfiability. Consequently, there is no guarantee that all
classes in O1 ∪ O2 ∪ Mout will be satisfiable. Furthermore, LOGMAP might fail to
detect conflicting candidate mappings in Steps II-IV, which might lead to incorrect
choices when discarding mappings.

These limitations stem from the fact that reasoning in LOGMAP is incomplete, and
hence they could be addressed by integrating a complete OWL 2 DL reasoner R into
LOGMAP. A straightforward possibility is to extend LOGMAP’s algorithm with a final

Input: O1, O2: input ontologies. M: set of mappings.
Output: M: set of mappings
1: repeat
2: Unsat := unsatisfiable classes w.r.t. O1 ∪ O2 ∪M
3: Just := ∅
4: for each C ∈ Unsat do
5: Just := Just ∪ SingleJustification(C,O1 ∪ O2 ∪M)
6: end for
7: M := M\ ConflictiveMappings(Just)
8: until Unsat 6= ∅
9: return M

Table 1. Diagnosis in LOGMAP-FULL.

step in which R is used to check the satisfiability of each class w.r.t. O1 ∪ O2 ∪Mout.
Standard justification-based diagnosis techniques (e.g., [16, 15, 23, 8, 28]) can then ex-
ploited to fix the identified inconsistencies.1 This approach, which guarantees a “clean”
output, is adopted by systems such as CONTENTMAP [11] and ALCOMO [19]; however,
the detection of conflicting mappings in Steps II-IV would still rely on an incomplete
reasoner.

In LOGMAP-FULL we have implemented a different approach, where each call to
the Dowling and Gallier algorithm in Steps II and IV and to the semantic index in
Step III is replaced with a call to the complete reasoner R. The (obvious) technical is-
sue with this approach is scalability, with the main scalability bottleneck being not so
much in the detection of unsatisfiable classes, but rather in performing diagnosis us-
ing justification-based technologies. For example, when running LOGMAP-FULL with
FMA and SNOMED as input ontologies, we obtain 3,351 unsatisfiable classes in Step
II; computing all justifications for each unsatisfiable class required, on average, more
than 9 minutes,2 which implies that LOGMAP-FULL would need more than 3 weeks to
complete Step II (when LOGMAP does it in under 82 seconds).

To address these scalability issues, LOGMAP-FULL implements the “greedy” di-
agnosis algorithm in Table 1, which avoids computing all justifications for each un-
satisfiable class. The algorithm uses R to check for unsatisfiable classes (Line 2) and
to compute a single justification for each unsatisfiable class (Line 5); this is feasi-
ble since computing only one justification is much easier in practice than computing
all of them [16, 15]. In Line 7, the algorithm heuristically selects a set of mappings
ConflictiveMappings(Just) containing at least one mapping per justification in Just.
A single iteration of this process does not guarantee that all unsatisfiabilities will be
resolved, so the process needs to be repeated until no more unsatisfiable classes can
be found. This algorithm is quite different from the one used in LOGMAP, where the
computation of justifications was not an issue (see [10] for details).

1 Given a class A that is unsatisfiable w.r.t. an ontology O, a justification O′
A is a subset of O

such that (i) A is unsatisfiable w.r.t. O′
A and (ii) A is satisfiable w.r.t. each strict subset of O′

A.
2 Using HermiT reasoner [24, 20] and the optimisation proposed in [28].

Table 2. LOGMAP and LOGMAP-FULL diagnosis times (s)

Diagnosis of MOUSE-NCI Anatomy
System Step II Step III Step IV
LOGMAP 0.7 0.3 0.2
LOGMAP-FULL HermiT 10.6 1.8 2.0
LOGMAP-FULL Pellet 7.7 0.4 0.2
LOGMAP-FULL FaCT++ 16.4 0.6 1.9

Diagnosis of FMA-NCI
System Step II Step III Step IV
LOGMAP 14.6 3.4 11.6
LOGMAP-FULL HermiT 469.7 54.3 1,550
LOGMAP-FULL Pellet 392.5 25.8 2,787

Diagnosis of FMA-SNOMED
System Step II Step III Step IV
LOGMAP 81.4 21.3 87.7
LOGMAP-FULL HermiT 2,628 479.6 11,018
LOGMAP-FULL Pellet 21,477 1,351 >105

Diagnosis of SNOMED-NCI
System Step II Step III Step IV
LOGMAP 182.9 142.7 237

4 Evaluation

We have tested LOGMAP and LOGMAP-FULL with the largest ontologies of the OAEI
2011.5 campaign: SNOMED CT (306, 591 classes), NCI (66, 724 classes), FMA (78, 989
classes), MOUSE (2, 744 classes), and the anatomy fragment of NCI (3, 304 classes).
For the experiments we have used a high performance server with 15 Gb of RAM. Table
2 summarises the computation times for the Steps II-IV in LOGMAP and LOGMAP-
FULL. LOGMAP-FULL has been tested with three well-known OWL 2 DL reasoners:3

Pellet [27], FaCT++ [29] and HermiT [24, 20].
LOGMAP-FULL was able to efficiently handle MOUSE and NCI Anatomy for each

of the three tested reasoners and reported times in line with LOGMAP. LOGMAP-FULL,
however, did not terminate when given SNOMED and NCI as input for any of the evalu-
ated reasoners. Furthermore, FaCT++ could not process any input involving FMA, and
hence failed to produce an output for FMA-NCI and FMA-SNOMED.

When using HermiT and Pellet, LOGMAP-FULL did successfully compute output
mappings for FMA-NCI and the computation times, although much higher than those
reported by LOGMAP, were in line with many of the tools participating in the OAEI
2011.5 campaign.4 Note that many of these matching tools do not perform any kind
of reasoning, and hence LOGMAP-FULL’s computation times are surprisingly good.
Times for FMA-SNOMED, however, increased dramatically (especially when using Pel-

3 LOGMAP-FULL was not tested with the OWL 2 EL reasoner ELK [17, 18] because it does not
implement yet the axiom pinpointing service.

4 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/index.html

let, where Step II required almost 6 hours and Step IV did not finish after 4 days); these
results are in contrast to the low computation times obtained by LOGMAP.

Finally, it is worth mentioning that LOGMAP output mappings only led to two un-
satisfiable classes for the FMA-NCI case.5 As expected, LOGMAP-FULL produced a
clean output for all cases it could successfully process.

5 Conclusions

In this paper we have evaluated the feasibility of using full OWL 2 DL reasoning
capabilities for “on-the-fly” mapping diagnosis. For this purpose, we have developed
LOGMAP-FULL as an extension of our ontology matching systems LOGMAP.

Our empirical results suggest that the use of LOGMAP-FULL is feasible for medium-
sized ontologies such as MOUSE and NCI Anatomy. For larger and semantically richer
ontologies, however, computation times increase considerably; thus, LOGMAP seems
to be a better choice than LOGMAP-FULL for applications with strict scalability de-
mands (i.e., applications where user intervention is required to obtain high precision
mappings); note, however, that LOGMAP-FULL’s computation times are still competi-
tive with (and in many cases faster than) most existing matching tools.

Finally, we have shown that reasoning with the integration of large-scale ontologies
via mappings still poses serious problems to current OWL 2 DL reasoners. Hence, these
integrated ontologies seem ideal as reasoning benchmarks.

Acknowledgements

This work was supported by the Royal Society, the EU FP7 project SEALS and by the
EPSRC projects ConDOR, ExODA and LogMap. We also thank the organisers of the
SEALS and OAEI evaluation campaigns for providing test data and infrastructure.

References

1. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in
large data and knowledge bases. SIGMOD Rec. 18, 253–262 (1989)

2. Armas Romero, A., Cuenca Grau, B., Horrocks, I.: Modular combination of reasoners for
ontology classification. In: Proc. of the 25th Description Logics workshop (2012)

3. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes for the
Semantic Web. In: Proc. of WWW. pp. 544–555. ACM (2003)

4. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. J. Log. Program. pp. 267–284 (1984)

5. Euzenat, J., Meilicke, C., Stuckenschmidt, H., Shvaiko, P., Trojahn, C.: Ontology Alignment
Evaluation Initiative: six years of experience. J Data Semantics (2011)

5 To the best of our knowledge, no OWL 2 DL reasoner can cope with SNOMED-NCI (not even
with the optimization proposed in [2]) and thus, we were not able to check if LOGMAP’s
output was ‘clean” for this case. The OWL 2 EL reasoner ELK could classify SNOMED-NCI

and reported no unsatisfiable classes; the version of NCI we are using, however, is not in OWL
2 EL and hence ELK might be incomplete.

6. Euzenat, J., Ferrara, A., van Hage, W.R., Hollink, L., Meilicke, C., Nikolov, A., Ritze, D.,
Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Sváb-Zamazal, O., Trojahn dos Santos, C.:
Results of the Ontology Alignment Evaluation Initiative 2011. 6th OM workshop (2011)

7. Gallo, G., Urbani, G.: Algorithms for testing the satisfiability of propositional formulae. The
Journal of Logic Programming 7(1), 45 – 61 (1989)

8. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL. In: Proc. of
International Semantic Web Conference. pp. 323–338 (2008)

9. Huber, J., Sztyler, T., Nößner, J., Meilicke, C.: CODI: Combinatorial optimization for data
integration: results for OAEI 2011. In: Proc. of the 6th OM Workshop (2011)

10. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: Proc. of the 10th International Semantic Web Conference (ISWC). pp. 273–288 (2011)

11. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integration using
mappings: Towards getting the right logical consequences. In: Proc. of ESWC (2009)

12. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based assessment of
the compatibility of UMLS ontology sources. J Biomed. Sem. 2 (2011)

13. Jiménez-Ruiz, E., Cuenca Grau, B., Zhou, Y., Horrocks, I.: Large-scale interactive ontology
matching: Algorithms and implementation. In: Proc. of ECAI (2012)

14. Jiménez-Ruiz, E., Morant, A., Cuenca Grau, B.: LogMap results for OAEI 2011. In: Proc. of
the 6th OM Workshop (2011)

15. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In: ISWC 2007. pp. 267–280 (2007)

16. Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes in OWL
ontologies. J. Web Sem. 3(4), 268–293 (2005)

17. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of EL ontologies. In: Pro-
ceedings of the 10th International Semantic Web Conference (ISWC). pp. 305–320 (2011)

18. Kazakov, Y., Krötzsch, M., Simancik, F.: ELK reasoner: Architecture and evaluation. In:
Proceedings of the 1st International OWL Reasoner Evaluation Workshop (ORE) (2012)

19. Meilicke, C.: Alignment Incoherence in Ontology Matching. Ph.D. thesis, University of
Mannheim, Chair of Artificial Intelligence (2011)

20. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal
of Artificial Intelligence Research 36, 165–228 (2009)

21. Nebot, V., Berlanga, R.: Efficient retrieval of ontology fragments using an interval labeling
scheme. Inf. Sci. 179(24), 4151–4173 (2009)

22. Niepert, M., Meilicke, C., Stuckenschmidt, H.: A probabilistic-logical framework for ontol-
ogy matching. In: Proc. of AAAI (2010)

23. Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent terminologies.
J. Autom. Reasoning 39(3), 317–349 (2007)

24. Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-efficient OWL reasoner. In: Proceed-
ings of the Fifth OWLED Workshop on OWL: Experiences and Directions (2008)

25. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: On the Move to Mean-
ingful Internet Systems (OTM Conferences) (2008)

26. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE
Trans. Knowl. Data Eng. 99 (2011)

27. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. J. Web Sem. 5(2), 51–53 (2007)

28. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach to finding
all justifications for OWL DL entailments. In: 3rd Asian Semantic Web Conference (2008)

29. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Description. In:
Third International Joint Conference on Automated Reasoning, IJCAR. pp. 292–297 (2006)

ELK Reasoner: Architecture and Evaluation

Yevgeny Kazakov1, Markus Krötzsch2, and František Simančík2

1 Institute of Artificial Intelligence, Ulm University, Germany
2 Department of Computer Science, University of Oxford, UK

Abstract. ELK is a specialized reasoner for the lightweight ontology
language OWL EL. The practical utility of ELK is in its combination
of high performance and comprehensive support for language features.
At its core, ELK employs a consequence-based reasoning engine that can
take advantage of multi-core and multi-processor systems. A modular ar-
chitecture allows ELK to be used as a stand-alone application, Protégé
plug-in, or programming library (either with or without the OWL API).
This system description presents the current state of ELK and experi-
mental results with some difficult OWL EL ontologies.

1 The System Overview

The logic-based ontology language OWL is becoming increasingly popular in
application areas, such as Biology and Medicine, which require dealing with a
large number of technical terms. For example, medical ontology SNOMED CT
provides formal description of over 300,000 medical terms covering various topics
such as diseases, anatomy, and clinical procedures. Terminological reasoning,
such as automatic classification of terms according to subclass (a.k.a. ‘is-a’)
relations, plays one of the central roles in applications of biomedical ontologies.
To effectively deal with large ontologies, several profiles of the W3C standard
OWL 2 have been defined [11]. Among them, the OWL EL profile aims to provide
tractable terminological reasoning. Specialized OWL EL reasoners, such as CEL
[1], Snorocket [9], and jCEL [10], can offer a significant performance improvement
over general-purpose OWL reasoners.

This paper describes the ELK system.3 ELK is developed to provide high
performance reasoning support for OWL EL ontologies. The main focus of the
system is (i) extensive coverage of the OWL EL features, (ii) high performance of
reasoning, and (iii) easy extensibility and use. In these regards, ELK can already
offer advantages over other OWL EL reasoning systems mentioned above. For
example, as of today, ELK is the only system that can utilize multiple proces-
sors/cores to speed up the reasoning process, which makes it possible to classify
SNOMED CT in less than 10 seconds on a commodity hardware [4]. This paper
presents an overview of the implementation techniques used in ELK to achieve
high performance of classification, and provides an experimental evaluation of
classification using ELK and related reasoners on some of the largest available
OWL EL ontologies.
3 http://elk-reasoner.googlecode.com/

Command-line Client ReasonerOWL FSS Parser

Protégé Plugin OWL API Bindings

OWL
Object

Interfaces

Indexing

Saturation

Taxonomy

Job
Manager

Fig. 1. Main software modules of ELK and information flow during classification

ELK is a flexible system that can be used in a variety of configurations. This
is supported by a modular program structure that is organized using the Apache
Maven build manager for Java. Maven can be used to automatically download,
configure, and build ELK and its dependencies, but there are also pre-built pack-
ages for the most common configurations. The modular structure also separates
the consequence-based reasoning engine from the remaining components, which
facilitates extension of the system with new language features. The latest sta-
ble release ELK 0.2.0 supports conjunction (ObjectIntersectionOf), existential
restriction (ObjectSomeValuesFrom), the top class (owl:Thing), complex role
inclusions (property chains), and syntactic datatype matching. Support for dis-
jointness axioms, ABox facts (assertions), and datatypes is under development.

The main software modules of ELK are shown in Fig. 1. The arrows illustrate
the information flow during classification. The two independent entry points are
the command-line client and the Protégé plug-in to the left. The former extracts
OWL ontologies from files in OWL Functional-Style Syntax (FSS), while the
latter uses ELK’s bindings to the OWL API4 to get this data from Protégé.5 All
further processing is based on ELK’s own representation of OWL objects (axioms
and expressions) that does not depend on the (more heavyweight) OWL API.
The core of ELK is its reasoning module, which will be discussed in detail.

Useful combinations of ELK’s modules are distributed in three pre-built pack-
ages, each of which includes the ELK reasoner. The standalone client includes
the command-line client and the FSS parser for reading OWL ontologies. The
Protégé plugin allows ELK to be used as a reasoner in Protégé and compatible
tools such as Snow Owl.6 The OWL API bindings package allows ELK to be
used as a software library that is controlled via the OWL API interfaces.

2 The Reasoning Algorithm of ELK

The ELK reasoning component works by deriving consequences of ontological
axioms under inference rules. The improvement and extension of these rules is
an important part of the ongoing development of ELK [4, 7, 5]. To simplify the
presentation, in this paper we focus on inference rules for a small yet non-trivial
fragment of OWL EL, which is sufficient to illustrate the work of the main
reasoning component of the ELK system.
4 http://owlapi.sourceforge.net/
5 http://protege.stanford.edu/
6 http://www.b2international.com/portal/snow-owl

R0
init(C)

C v C
R+
>

init(C)

C v >
: > occurs negatively in O Rv

C v D

C v E
: D v E ∈ O

R−u
C v D1 uD2

C v D1 C v D2

R+
u

C v D1 C v D2

C v D1 uD2

: D1 uD2 occurs negatively in O

R−∃
C v ∃R.D

init(D) C v ∃R.D
R+
∃

D v ∃R.C C v E

D v ∃R.E
: ∃R.E occurs negatively in O

Fig. 2. Inference rules for reasoning in EL

We use the more concise description logic (DL) syntax to represent OWL
axioms (see, e.g., [2] for details on the relationship of OWL and DL, and [8] for DL
syntax and semantics). The DL used here is EL, which supports concept inclusion
axioms (TBoxes) but no assertions (ABoxes). EL concepts are either atomic
concepts or of the form > (top), C u D (conjunction), and ∃R.C (existential
restriction), where C and D are concepts and R is a role. An EL ontology O is a
set of axioms of the form C v D (subsumption) where C and D are EL concepts.
We say that a concept C occurs negatively (resp. positively) in an ontology O if
C is a syntactic subexpression of D (resp. E) for some axiom D v E ∈ O.

Inference rules for EL are shown in Fig. 2. They can be seen as a restriction
of the rules for ELH [4]. The rules operate with expressions of the form init(C)
and subsumptions of the form C v D and D v ∃R.C. The bars in C and D
have no effect on the logical meaning of the axioms; they are used to control the
application of rules, which will be explained in detail in Section 4. The expression
init(C) is used to initialize the derivation of superconcepts for C. The rules are
sound, i.e., the conclusion subsumptions follow from the premise subsumptions
and O. The rules are complete for classification in the sense that, for each EL
concept C and each atomic concept A occurring in O, if O entails C v A, then
C v A is derivable from init(C). Note that the axioms in O are never used as
premises of the rules, but only as side-conditions of the rule Rv.

Example 1. Consider the ontology O consisting of the following axioms:

A v ∃R.(B u C), (1)
A u ∃R.B v C. (2)

To compute all atomic superconcepts of A, we start with the goal init(A) and
compute all conclusions under the inference rules in Fig. 2.

init(A) initial goal (3)

A v A by R0 to (3) (4)

A v ∃R.(B u C) by Rv to (4) using (1) (5)

init(B u C) by R−∃ to (5) (6)

A v ∃R.(B u C) by R−∃ to (5) (7)

B u C v B u C by R0 to (6) (8)

B u C v B by R−u to (8) (9)

B u C v C by R−u to (8) (10)

A v ∃R.B by R+
∃ to (7) and (9) (11)

A v A u ∃R.B by R+
u to (4) and (11) (12)

init(B) by R−∃ to (11) (13)

A v ∃R.B by R−∃ to (11) (14)

A v C by Rv to (12) using (2) (15)

B v B by R0 to (13) (16)

Since A v C has been derived but not, say, A v B, we conclude that C is a
superconcept of A but B is not. The application of rules R+

∃ and R+
u in lines (11)

and (12) uses the fact that the concepts ∃R.B and Au∃R.B occur negatively in
(2). Intuitively, these rules are used to “build up” the subsumption A v Au∃R.B,
so that rule Rv with side condition (2) can be applied to derive A v C.

In order to classify an ontology O, it is sufficient to compute the deductive
closure of init(A) for every atomic concept A occurring in O using the rules in
Fig. 2. Note that in this case the rules can derive only subsumptions of the form
C v D and D v ∃R.C where C and D occur in O. Therefore, the deductive
closure can be computed in polynomial time.

In the following three sections we give details of the indexing, saturation,
and taxonomy construction phases, which are the main components of the core
reasoning algorithm implemented in ELK (see Fig. 1).

3 Indexing

The indexing phase is used to build datastructures that can be used to effectively
check the side conditions of the rules in Fig. 2. Specifically, given an ontology
O, the index assigns to every (potentially complex) concept C and every role R
occurring in O the following attributes.

C.toldSups = {D | C v D ∈ O}
C.negConj = {〈D,C uD〉 | C uD occurs negatively in O} ∪

{〈D,D u C〉 | D u C occurs negatively in O}
C.negExis = {〈R,∃R.C〉 | ∃R.C occurs negatively in O}
R.negExis = {〈C,∃R.C〉 | ∃R.C occurs negatively in O}

The sets C.negConj, C.negExis, and R.negExis consisting of pairs of elements are
represented as key-value (multi-) maps from the first element to the second.

Example 2. Consider the ontology O from Example 1. The following attributes
in the index of O are nonempty.

A.toldSups = {∃R.(B u C)} (A u ∃R.B).toldSups = {C}
A.negConj = {〈∃R.B,A u ∃R.B〉} (∃R.B).negConj = {〈A,A u ∃R.B〉}
B.negExis = {〈R,∃R.B〉} R.negExis = {〈B, ∃R.B〉}

Indexing is a lightweight task that can be performed by a single recursive
traversal through the structure of each axiom in the ontology. Since it can con-
sider one axiom at a time, it can be started even before the whole ontology is
known to the reasoner. In ELK, indexing is executed in a second thread in par-
allel to loading of axioms. In addition, ELK keeps track of the exact counts of
negative and positive occurrences of concepts in order to enable fast incremental
updates of the index structure without having to reload the whole ontology.

4 Saturation

The saturation phase computes the deductive closure of the input axioms under
the inference rules in Fig. 2. This is where most time is spent in typical cases,
and the optimization of this phase is key to overall efficiency.

The saturation algorithm is closely related to the “given clause” algorithm
for saturation-based theorem proving and semi-naive (bottom-up) evaluation of
logic programs. The algorithm maintains two collections of axioms: the set of
processed axioms between which the rules have been already applied (initially
empty) and the to-do queue of the remaining axioms (initially containing the
input axioms). The algorithm repeatedly polls an axiom from the to-do queue; if
the axiom is not yet in the processed set, it is moved there and the conclusions
of all inferences involving this axiom and the processed axioms are added at the
end of the to-do queue (regardless of whether they have been already derived).

Example 3. The derivation in Example 1 already presents the axioms in the or-
der they are processed by the saturation algorithm. For example, after processing
axiom (8), the processed set contains axioms (3)–(8), and the to-do queue con-
tains axioms (9) and (10). The algorithm then polls axiom (9) from the queue,
adds it to the processed set, and applies all inferences involving (9) and the pre-
viously processed axioms (3)–(8). In particular, to apply rule R+

∃ with (9) as the
second premise, the algorithm iterates over B.negExis to find possible ways of
satisfying the side condition. Since B.negExis contains 〈R,∃R.B〉, the algorithm
looks for processed axioms of the form D v ∃R.(B u C) for some D, which can
be used as the first premise of R+

∃ . Axiom (7) is of this form, so conclusion (11)
is added to the to-do queue. Note that (a pointer to) the concept ∃R.B used in
the conclusion (11) can be taken directly from the pair 〈R,∃R.B〉 in B.negExis,
so the concept does not have to be reconstructed (and reindexed) during the
saturation phase. This illustrates that conclusions of the inference rules can be
constructed by simply following the pointers in the index.

Algorithm 1: Processing of to-do axioms
process(D v ∃R.C):
if C.predecessors.add(〈R,D〉) then // the axiom was not processed

// the axiom can only be used as the first premise of R+
∃

for E ∈ (R.negExis.keySet() ∩ C.superConcepts) do
F ← R.negExis.get(E);
todo.add(D v F);

process(C v E):
if C.superConcepts.add(E) then // the axiom was not processed

// use the axiom as the second premise of R+
∃

for R ∈ (E.negExis.keySet() ∩ C.predecessors.keySet()) do
F ← E.negExis.get(R);
for D ∈ C.predecessors.get(R) do

todo.add(D v F);

// use the axiom as premises of other rules

To speed up the search for matching premises of binary rules, there is not
just one global set of processed axioms in ELK. Instead, axioms are assigned
to different contexts, one context per each initialized concept C (one for which
init(C) has been derived). The bar over C in the presentation of inference rules
in Fig. 2 indicates that the axiom is assigned to the context of C. For example,
C v ∃R.D is assigned to the context of C and C v ∃R.D is assigned to the
context of D, even though the two axioms have the same logical meaning. Our
assignment of contexts ensures that the two premises of each binary rule belong
to the same context. Thus, when processing an axiom in some context, it is
possible to restrict the search for relevant premises to this context.

In Example 3, the premises of the formD v ∃R.(B u C) can only occur in the
context for BuC. Thus, one only needs to inspect axioms (7)–(10). Yet iterating
over all processed axioms of a context may still be inefficient. To optimize the
search even further, we save information about the (two types of) processed
axioms within each context C in the following sets:

C.superConcepts = {D | C v D is processed},
C.predecessors = {〈R,D〉 | D v ∃R.C is processed}.

The latter set is implemented as a key-value multimap from R toD. Thus, to find
all axioms of the form D v ∃R.(B u C) with the given R in the context (BuC),
it is sufficient to retrieve all values D for the key R in (B u C).predecessors.
Algorithm 1 demonstrates how these sets are used for processing of axioms.

The separation of axioms into contexts also helps in parallelizing the sat-
uration phase because multiple workers can independently process axioms in
different contexts at the same time [4]. To ensure that no two workers are con-
currently processing axioms in the same context, the to-do queue in ELK is split
into a two-level hierarchy of queues: each context of C maintains a local queue

C.todo of to-do axioms that are assigned to the context of C, and there is a
global queue of active contexts whose to-do queues are nonempty. Using concur-
rency techniques, such as Boolean flags with atomic compare-and-set operations,
the queue of active contexts is kept duplicate free. Each worker then repeatedly
polls an active context C from the queue and processes all axioms in C.todo.

5 Taxonomy Construction

The saturation phase computes the full transitively closed subsumption relation.
However, the expected output of classification is a taxonomy which only contains
direct subsumptions between nodes representing equivalence classes of atomic
concepts (if the taxonomy contains A v B and B v C then it should not
contain A v C, unless some of these concepts are equivalent). Therefore, the
computed subsumptions between atomic concepts must be transitively reduced.

In the first step, we discard all subsumptions derived by the saturation algo-
rithm that involve non-atomic concepts. Thus, in the remainder of this section,
we can assume that all concepts are atomic.

A naive solution for computing the direct superconcepts of A is shown in
Algorithm 2. The algorithm iterates over all superconcepts C of A, and for each
of them checks if another superconcept B of A exists with A v B v C. If no
such B exists, then C is a direct superconcept of A. This algorithm is inefficient
because it performs two nested iterations over the superconcepts of A (it also
does not work correctly in the presence of equivalent concepts). In realistic on-
tologies, the number of all superconcepts of A can be sizeable, while the number
of direct superconcepts is usually much smaller, often just one. A more efficient
algorithm would take advantage of this and perform the inner iteration only
over the set of direct superconcepts of A that have been found so far, as shown
in Algorithm 3. Given A, the algorithm computes two sets A.equivalentConcepts
and A.directSuperConcepts. The first set contains all concepts that are equivalent
to A, including A itself. The second set contains exactly one element from each
equivalence class of direct superconcepts of A. Note that it is safe to execute
Algorithm 3 in parallel for multiple concepts A.

Having computed A.equivalentConcepts and A.directSuperConcepts for each
A, the construction of the taxonomy is straightforward. We introduce one tax-

Algorithm 2: Naive Transitive Reduction
for C ∈ A.superConcepts do

isDirect ← true;
for B ∈ A.superConcepts do

if B 6= A and B 6= C and C ∈ B.superConcepts then
isDirect ← false;

if isDirect and C 6= A then
A.directSuperConcepts.add(C)

Algorithm 3: Better Transitive Reduction
for C ∈ A.superConcepts do

if A ∈ C.superConcepts then
A.equivalentConcepts.add(C);

else
isDirect ← true ; // so far C is a direct superconcept of A
for B ∈ A.directSuperConcepts do

if C ∈ B.superConcepts then
isDirect ← false ; // C is not a direct superconcept of A
break;

if B ∈ C.superConcepts then
// B is not a direct superconcept of A
A.directSuperConcepts.remove(B);

if isDirect then
A.directSuperConcepts.add(C);

onomy node for each distinct class of equivalent concepts, and connect the nodes
according to the direct superconcepts relation. Finally, we put the top and the
bottom node in the proper positions, even if > or ⊥ do not occur in the ontology.

6 Evaluation

In this section we evaluate the performance of ELK for classification of large
existing ontologies, and compare it to other commonly used DL reasoners.

Our test ontology suite contains the SNOMED CT ontology obtained from
the official January 2012 international release by converting from the native
syntax (RF2) to OWL functional syntax using the supplied converter. We also
include the EL version of GALEN which is obtained from the version 7 of Open-
GALEN7 by removing all inverse role, functional role, and role chain axioms.
Both ontologies have been used extensively in the past for evaluating EL rea-
soners. To obtain additional test data, we selected some of the largest ontologies
listed at the OBO Foundry [14] and the Ontobee [16] websites that were in OWL
EL but were not just plain taxonomies, i.e., included some non-atomic concepts.
This gave us the Foundational Model of Anatomy (FMA), the e-Mouse Atlas
Project (EMAP), Chemical Entities of Biological Interest (ChEBI), the Molecule
Role ontology, and the Fly Anatomy. We also used two versions of the Gene On-
tology which we call GO1 and GO2. The older GO1, published in 2006, has
been used in many performance experiments. GO2 is the version of Mar 23 2012
and uses significantly more features than GO1, including negative occurrences of
conjunctions and existential restrictions, and even disjointness axioms. Table 1

7 http://www.opengalen.org/sources/sources.html

Table 1. Ontology metrics

Ontology Atomic concepts Atomic roles Axioms
SNOMED CT 294,469 62 294,479
GALEN 23,136 950 36,489
GO1 20,465 1 28,896
GO2 36,215 7 139,485
FMA 80,469 15 126,547
ChEBI 31,470 9 68,149
EMAP 13,731 1 13,730
Molecule Role 9,217 4 9,627
Fly Anatomy 7,797 40 19,208

shows the number of concepts, roles, and axioms in each of these ontologies.
Links to their sources can be found on the ELK website.8 We plan to maintain
and extend this list with further interesting EL ontologies in the future.

We compared the performance of the public development version of ELK
(r577) to the specialized EL reasoners jcel 0.17.0 [10] and Snorocket 1.3.4.alpha4
[9], and to general OWL 2 reasoners FaCT++ 1.5.3 [15], HermiT 1.3.6 [12], and
Pellet 2.3.0 [13]. We accessed all reasoners uniformly through the OWL API
3.2.4 [3] in their default settings. All experiments were executed on a laptop
(Intel Core i7-2630QM 2GHz quad core CPU; 6GB RAM; Java 1.6; Microsoft
Windows 7). On this architecture, ELK defaults to using 8 concurrent workers in
the saturation phase; the other reasoners run in a single thread. We set time-out
to 30 minutes and allowed Java to use 4GB of heap space. All figures reported
here were obtained as the average over 5 runs of the respective experiments.

We loaded the ontologies using the OWL API and, in our first experiment,
we measured the wall-clock time each reasoner spent executing the classifica-
tion method precomputeInferences(InferenceType.CLASS_HIERARCHY). The
results are shown in Table 2. In all the 5 runs of the experiment, Pellet threw
a ConcurrentModificationException on ChEBI. The measured classification
times for Snorocket were 0 in all the test cases: the reasoner appears to trigger
classification automatically after loading the ontology without waiting for the
above method call. Therefore, for a more meaningful comparison of Snorocket
with the remaining reasoners, in our second experiment we measured the overall
time for loading and classification. These results are shown in Table 3.

The results show that, on all tested ontologies, ELK and Snorocket far out-
perform all the remaining reasoners. On the smaller ontologies (GO1, ChEBI,
EMAP, Molecule Role, and Fly Anatomy), ELK and Snorocket show similar
performance, while on the larger ontologies (SNOMED CT, GALEN, GO2, and
FMA) ELK is 2–3 times faster than Snorocket. In particular, ELK can load
and classify SNOMED CT in under 15 seconds. Since ELK can update its index
structure incrementally without having to reload the whole ontology, subsequent

8 http://code.google.com/p/elk-reasoner/wiki/Test_Ontologies

Table 2. Classification times in seconds

ELK jcel Snorocket FaCT++ HermiT Pellet
SNOMED CT 6.2 1041.6 0 408.9 time-out mem-out
GALEN 1.3 48.2 0 time-out mem-out mem-out
GO1 0.4 2.6 0 7.2 2.5 2.3
GO2 1.0 12.8 0 time-out 41.0 63.5
FMA 0.9 19.4 0 5.8 19.6 714.9
ChEBI 0.9 8.5 0 3.8 13.5 exception
EMAP 0.4 1.1 0 20.9 1.9 0.9
Molecule Role 0.3 1.0 0 5.6 1.3 0.9
Fly Anatomy 0.4 2.34 0 0.7 1.8 22.9

Table 3. Loading + classification times in seconds

SNOMED CT GALEN GO1 GO2 FMA ChEBI EMAP Molecule Role Fly Anatomy
0.1

1

10

100

1000

10000 Reasoners (left to right):

ELK
jcel
Snorocket
FaCT++
HermiT
Pellet

ELK jcel Snorocket FaCT++ HermiT Pellet
SNOMED CT 13.4 1100.6 46.2 414.9 time-out mem-out
GALEN 2.1 52.6 5.5 time-out mem-out mem-out
GO1 0.9 4.3 1.2 7.7 3.5 3.4
GO2 2.3 18.6 5.7 time-out 43.5 67.2
FMA 2.2 25.3 4.5 7.2 22.0 720.2
ChEBI 1.6 13.2 2.0 4.5 14.9 exception
EMAP 0.8 2.4 0.7 21.3 2.9 1.6
Molecule Role 0.8 2.2 0.6 5.9 2.0 1.6
Fly Anatomy 0.8 3.6 0.9 1.0 2.6 23.8

reclassification of SNOMED CT due to small changes in the ontology is likely
to take only about 6 seconds as reported in Table 2.

To judge the correctness of reasoning, we compared the taxonomies computed
by different reasoners. We found that, whenever a reasoner succeeded in comput-
ing a taxonomy at all, the result agreed with the results of all other successful
reasoners. Although this does not exclude the possibility that all reasoners made
the same errors, such a situation seems unlikely since each ontology was suc-
cessfully classified by at least three (and often more) reasoners. Therefore, we
conclude that in all test cases all reasoners computed the correct taxonomy.

Finally, we wanted to find out if the test ontologies entail any subsumptions
that are not already “told”, i.e., which do not follow by a simple transitive closure
of the subsumptions explicitly present in the ontology. For this experiment we
ran ELK disabling all inference rules except the initialization rules and rule Rv,

and we compared the taxonomies obtained in this way to the correct taxonomies.
It turned out that the two taxonomies differed only for SNOMED CT, GALEN,
and GO2. The remaining ontologies entail only told subsumptions.

Note that the fact that all entailed subsumptions are told does not immedi-
ately imply that the ontologies are trivial for classification because a reasoner
still needs to prove that no other subsumptions hold, which usually requires full
reasoning with all axioms in the ontology. This, however, is not the case here. A
closer inspection revealed that, apart from SNOMED CT, GALEN, and GO2, all
our test ontologies contain only axioms of the form A v B and A v ∃R.B, where
A and B are atomic concepts. In such case, the axioms of the form A v ∃R.B
cannot possibly lead to new subsumptions between atomic concepts, and there-
fore can be discarded for classification. This can be shown easily, for example,
using our calculus in Fig. 2: a positive occurrence of an existential restriction
can lead to a new subsumption only through the interaction with a negative
occurrence of some other existential restriction in rule R+

∃ ; since there are no
negative occurrences of existential restriction in these ontologies, axioms of the
form A v ∃R.B cannot lead to new subsumptions.

Since our experiments suggest that ontologies without negative existentials
are relatively common, it might be worthwhile to further optimize classification
by disregarding positive existentials in such cases. Looking at the classification
times, we believe that no reasoner currently takes advantage of this optimization.
In its current implementation, ELK will also blindly apply rule R−∃ even when
there are no negative existentials in the ontology.

7 Conclusions

This paper outlines some major implementation techniques that contribute to
the overall efficiency of ELK, and evaluates the classification performance of sev-
eral reasoners on large OWL EL ontologies. As can be seen from the evaluation
results, despite their relatively large size, most ontologies were not difficult for
ELK and can be classified in less than 1 second. Furthermore, we have observed
that for many ontologies the classification problem is trivial due to their very
limited use of the language features. It is worth noting, however, that although
some axioms do not have any impact on classification, they can be used in some
other reasoning tasks, such as finding subclasses of complex class expressions.

Since we had to present evaluation results, we were not able to discuss some
further interesting optimization details in ELK, including, concurrent processing,
efficient implementation of set intersections, such as those in Algorithm 1, and
pruning of redundant inferences. These details can be found in the extended
technical report [6]. Most of these methods are not specific to OWL EL, or even
to description logics, and can thus benefit other (reasoning) tools that compute
a deductive closure by exhaustive application of inference rules.

Acknowledgments This work was supported by the EU FP7 project SEALS and
by the EPSRC projects ConDOR, ExODA and LogMap. The first author is
supported by the German Research Council (DFG).

References

1. Baader, F., Lutz, C., Suntisrivaraporn, B.: CEL—a polynomial-time reasoner for
life science ontologies. In: Proc. 3rd Int. Joint Conf. on Automated Reasoning
(IJCAR’06). LNCS, vol. 4130, pp. 287–291. Springer (2006)

2. Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & Hall/CRC (2009)

3. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL
2 ontologies. In: Proc. OWLED 2009 Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

4. Kazakov, Y., Krötzsch, M., Simančík, F.: Concurrent classification of EL ontolo-
gies. In: Proc. 10th Int. Semantic Web Conf. (ISWC’11). LNCS, vol. 7032, pp.
305–320. Springer (2011)

5. Kazakov, Y., Krötzsch, M., Simančík, F.: Unchain my EL reasoner. In: Proc. 24th
Int. Workshop on Description Logics (DL’11). CEUR Workshop Proceedings, vol.
745, pp. 202–212. CEUR-WS.org (2011)

6. Kazakov, Y., Krötzsch, M., Simančík, F.: ELK: a reasoner for OWL EL on-
tologies. Tech. rep. (2012), available from http://code.google.com/p/elk-reasoner/
wiki/Publications

7. Kazakov, Y., Krötzsch, M., Simančík, F.: Practical reasoning with nominals in
the EL family of description logics. In: Proc. 13th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR’12) (2012), to appear, available
from http://code.google.com/p/elk-reasoner/wiki/Publications

8. Krötzsch, M., Simančík, F., Horrocks, I.: A description logic primer. CoRR
abs/1201.4089 (2012)

9. Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL
2 EL reasoner. In: Proc. 6th Australasian Ontology Workshop (IAOA’10). Con-
ferences in Research and Practice in Information Technology, vol. 122, pp. 45–49.
Australian Computer Society Inc. (2010)

10. Mendez, J., Ecke, A., Turhan, A.Y.: Implementing completion-based inferences for
the EL-family. In: Proc. 24th Int. Workshop on Description Logics (DL’11). CEUR
Workshop Proceedings, vol. 745, pp. 334–344. CEUR-WS.org (2011)

11. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.):
OWL 2 Web Ontology Language: Profiles. W3C Recommendation (27 October
2009), available at http://www.w3.org/TR/owl2-profiles/

12. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. of Artificial Intelligence Research 36, 165–228 (2009)

13. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical
OWL-DL reasoner. J. of Web Semantics 5(2), 51–53 (2007)

14. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg,
L.J., Eilbeck, K., Ireland, A., Mungall, C.J., Consortium, T.O., Leontis, N., Rocca-
Serra, P., Ruttenberg, A., Sansone, S.A., Scheuermann, R.H., Shah, N., Whetze-
land, P.L., Lewis, S.: The OBO Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nature Biotechnology 25, 1251–1255 (2007)

15. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Proc. 3rd Int. Joint Conf. on Automated Reasoning (IJCAR’06). LNCS, vol.
4130, pp. 292–297. Springer (2006)

16. Xiang, Z., Mungall, C., Ruttenberg, A., He, Y.: Ontobee: A linked data server and
browser for ontology terms. In: International Conference on Biomedical Ontologies
(ICBO). pp. 279–281 (2011)

Evaluating Reasoners Under Realistic Semantic
Web Conditions

Yingjie Li, Yang Yu and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

{yil308, yay208, heflin}@cse.lehigh.edu

Abstract. Evaluating the performance of OWL Reasoners on ontolo-
gies is an ongoing challenge. LUBM and UOBM are benchmarks to
evaluate Reasoners by using a single ontology. They cannot effectively
evaluate systems intended for multi-ontology applications with ontology
mappings, nor can they evaluate OWL 2 applications and generate data
approximating realistic Semantic Web conditions. In this paper we ex-
tend our ongoing work on creating a benchmark that can generate user-
customized ontologies together with related mappings and data sources.
In particular, we have collected statistics from real world ontologies and
used these to parameterize the benchmark to produce more realistic syn-
thetic ontologies under controlled conditions. The benchmark supports
both OWL and OWL 2 and applies a data-driven query generation al-
gorithm that can generate diverse queries with at least one answer. We
present the results of initial experiments using Pellet, HermiT, OWLIM
and DLDB3. Then, we show the approximation of our synthetic data set
to real semantic data.

Keywords: Benchmark, Ontology generation, Query generation

1 Introduction

Various semantic applications based on ontologies have been developed in re-
cent years. They differ in the ontology expressivity such as RDF, OWL, OWL
2 or some fragment of these languages or the number of ontologies such as
single-ontology systems or multi-ontology federated systems. One of the major
obstacles for these system developers is that they cannot easily find a real world
experimental data set to evaluate their systems in terms of the ontology ex-
pressivity, the number of ontologies and data sources, the ontology mappings
and so on. In order to bridge this gap, LUBM [5] and UOBM [9] were devel-
oped to evaluate Semantic Web knowledge base systems (KBSs) by using a
single domain ontology. But they cannot effectively evaluate systems intended
for multi-ontology applications with ontology mappings, nor can they evaluate
OWL 2 applications and generate data approximating realistic Semantic Web
conditions. To solve these problems, we extend our early work [8] on creating a
benchmark that can generate user-customized ontologies together with related

2 Y. Li, Y. Yu and J. Heflin

mappings and data sources. In particular, we have collected statistics from real
world ontologies and data sources and used these to parameterize the benchmark
to produce realistic synthetic ontologies under controlled conditions. Unlike our
previous work, this benchmark allows us to speculate about different visions of
the future Semantic Web and examine how current systems will perform in these
contrasting scenarios. Although Linking Open Data and Billion Triple Challenge
data is frequently used to test scalable systems on real data, these sources typ-
ically have weak ontologies and little ontology integration (i.e., few OWL and
OWL 2 axioms). The benchmark can be also used to speculate about similar
sized (or larger) scenarios where there are more expressive ontologies and richer
mappings.

Based on our previous work [8], in this paper, we first extend the two-level
customization model including the web profile (to customize the distribution
of different types of desired ontologies) and the ontology profile (to customize
the relative frequency of various ontology constructors in each desired ontol-
ogy) to support any sublanguage of both OWL and OWL 2 by taking OWL 2
constructors as our constructor seeds instead of OWL constructors. Then, we
demonstrate that our benchmark can be used to evaluate OWL/OWL 2 reason-
ers such as Pellet [12], HermiT [10], OWLIM [7] and DLDB3 [11]. Finally, we
show how well our synthetic data approximates real semantic data, specifically
using the Semantic Web Dog Food corpus.

The remainder of the paper is organized as follows: Section 2 reviews the
related work. Section 3 describes the benchmark algorithms. Section 4 presents
the experiments. Finally, in Section 5, we conclude and discuss future work.

2 Related Work

The LUBM [5] is an example of a benchmark for Semantic Web knowledge base
systems with respect to large OWL applications. It makes use of a university
domain workload for evaluating systems with different reasoning capabilities and
storage mechanisms. L. Ma et al. [9] extended the LUBM to make another bench-
mark - UOBM so that OWL Lite and OWL DL can be supported. However, both
of them use a single domain/ontology and did not consider the ontology mapping
requirements that are used to integrate distributed domain ontologies in the real
Semantic Web. In addition, they do not allow users to customize requirements
for their individual evaluation purposes. S. Bail et al. proposed a framework
for OWL benchmarking called JustBench [1], which presents an approach to
analyzing the behavior of reasoners by focusing on justifications of entailments
through selecting minimal entailing subsets of an ontology. However, JustBench
only focuses on the ontology TBoxes and does not consider the ABoxes (data
sources) and the TBox mappings. C. Bizer et al. proposed a Berlin SPARQL
Benchmark (BSBM) for comparing the SPARQL query performance of native
RDF stores with the performance of SPARQL-to-SQL rewriters [2]. This bench-
mark aims to assist application developers in choosing the right architecture and
the right storage system for their requirements. However, the BSBM can only

Evaluating Reasoners Under Realistic Semantic Web Conditions 3

output benchmark data in an RDF representation and a purely relational repre-
sentation and does not support users’ customizations on OWL and OWL 2 for
different applications. I. Horrocks and P. Schneider [6] proposed a benchmark
suite comprising four kinds of tests: concept satisfiability tests, artificial TBox
classification tests, realistic TBox classification tests and synthetic ABox tests.
However, this approach neither creates OWL ontologies and SPARQL queries
nor ontology mappings, and only focuses on a single ontology at a time. Also, it
did not consider users’ customizability requirements.

3 The Benchmark Algorithms

In this section, we first introduce our extended two-level customization model
consisting of a web profile and several ontology profiles for users to customize
ontologies, then briefly describe the axiom construction and data source gen-
eration, and finally give an introduction to the data-driven query generation
algorithm.

3.1 The Extended Two-level Customization Model

In order to support both OWL and OWL 2, our extended two-level customization
model chooses the set of OWL 2 DL constructors as our constructor seeds and
is designed to be flexible in expressivity by allowing users to customize these
constructors in range of OWL 2 DL. Similar to our previous work [8], we still
use ontology profiles to allow users to customize the relative frequency of various
ontology constructors in the generated ontologies and web profile to allow users
to customize the distribution of different types of ontologies. However, in this
paper, besides user customized ontology profile, our extended benchmark can
also automatically collect statistics of Table 1 listed types of axioms from real
world ontologies and use them to parmeterize our ontology profile in order to
generate realistic synthetic ontologies.

Compared to OWL, OWL 2 offers new constructors for expressing additional
restrictions on properties such as property self restriction, new characteristics of
properties such as data property cardinality, property chains such as property
chain inclusions and keys such as property key. OWL 2 also provides new data
type capabilities such as data intersection, data union, etc. In order to support
these new additions in OWL 2, we categorized all OWL 2 DL constructors into
five groups: axiom types, class constructors, object property constructors, data
type property constructors and data type constructors. Since the data type prop-
erty constructors contain one and only one constructor (DatatypeProperty), in
each ontology profile, we let users fill in four tables with their individual config-
urations: the axiom type (AT) table, the class table (CT), the object property
constructor table (OPT) and the datatype constructor table (DTT). The new
constructor table is shown in Table 1. Compared to the old one in [8], the new ta-
ble extends AT with constructors of disjointUnionOf , ReflexiveProperty, etc.
and CT with constructors of dataAllV aluesFromRestriction, dataSomeV alues

4 Y. Li, Y. Yu and J. Heflin

FromRestriction, etc. The new DTT contains data constructors such as dataCo
mplementOf , dataUnionOf , etc. As a result, Table 1 contains eleven types of
operands in total: class type (C), named class type (NC), object property type
(OP), datatype property type (DP), instance type (I), named object property
(NOP), named datatype property (NDP), which is not listed in the table be-
cause it is only for DatatypeProperty, facet type (F), data type (D), a literal
(L) and an integer number (INT). The C means the operand is either an atomic
named class or a complex sub-tree that has a class constructor as its root. The
NC means the operand is a named class. The OP , DP means the operand can
be one of constructors listed in the table of object property and a datatype
property, respectively. The NOP , NDP means the operand is not a complex
constructor but a named object property or a named datatype property respec-
tively. The I means the operand can be a single instance. The F is the facet
type borrowed from XML Schema Datatypes. The D is the data type. The L is
a literal. The INT stands for an integer number for the cardinality restriction.
In these types, NC, NOP , NDP , F , I, L and INT are leaf node types.

In Table 1, {x} stands for a set of instances, whose cardinality is set by
a uniform distribution. For cardinality constructors such as minCardinality,
maxCardinality, Cardinality, minQualifiedCardinality, maxQualifiedCard
inality, qualifiedCardinality, since the involved integer value should be posi-
tive and 1 is the most common value in the real world, we apply the Gaussian
distribution with mean being 1, standard deviation being 0.5 (based on our
experiences) and each generated value required to be greater than or equal to 1.

Table 1. Axiom type constructors, class constructors and property constructors.

Axiom Type Constructor Class Constructor

Constructors DL Syntax Op1 Op2 Op3 Constructors DL Syntax Op1 Op2 Op3

rdfs:subClassOf C1 ⊑ C2 C C allValuesFrom ∀P.C OP C
rdfs:subPropertyOf P1 ⊑ P2 OP OP someValuesFrom ∃P.C OP C

equivalentClass C1 ≡ C2 C C intersectionOf C1 ⊓ C2 C C
equivalentProperty P1 ≡ P2 OP OP one of {x1,...,x2} {I}

disjointWith C1 ⊑ ¬C2 C C unionOf C1 ⊔ C2 C C

TransitiveProperty P+ ⊑ P NOP complementOf ¬C C

SymmetricProperty P≡(P−) NOP minCardinality ≥ nP OP INT

FunctionalProperty T ⊑ ≤1P+ NOP maxCardinality ≤ nP OP INT
InverseFunctionalP. T ⊑ ≤1P NOP Cardinality = nP OP INT

rdfs:domain ≥1P ⊑C NOP,DP NC hasValue ∃ P.{x} OP I
rdfs:range T ⊑ ∀U.D NOP,DP NC,D namedClass

disjointUnionOf C {C} dataAllValuesFromR. DP D
ReflexiveProperty NOP dataSomeValuesFromR. DP D
IrreflexiveProperty NOP minQualifiedCardinality OP,DP INT C,D

AsymmetricProperty NOP maxQualifiedCardinality OP,DP INT C,D
propertyDisjointWith OP,DP OP,DP qualifiedCardinality OP,DP INT C,D
propertyChainAxiom NOP NOP NOP dataHasValue DP L

hasKey C {C} hasSelf OP TRUE

Object Property Constructor Datatype Constructor

inverseOf P− OP dataComplementOf D
namedProperty dataUnionOf D D

xsdDatatype
namedDatatype F

dataIntersectionOf D D
dataOneOf L

A sample input of the new ontology profiles and web profile is shown in
Fig.1. In this sample input, the web profile contains eight ontology profiles:
RDFS, OWL Lite, OWL DL, Description Horn Logic (DHL), OWL 2 EL, OWL

Evaluating Reasoners Under Realistic Semantic Web Conditions 5

OWL2QL SWRC DHL

RDFS 0.2 OWL Lite 0.1 OWL DL 0.2

DHL 0.1 OWL 2 EL 0.1 OWL 2 RL 0.1

OWL2QL 0.1 SWRC 0.1

subClassOf 0.4

subPropertyOf0.1

……
allValuesFrom 0.0

intersectionOf 0.0

……
namedProperty 1

inverseOf 0

subClassOf 0.3

subPropertyOf 0.1

……
allValuesFrom 0.2 0.5

complementOf 0.1 0.1

……
namedProperty 0.9

inverseOf 0.1

subClassOf 0.08

subPropertyOf 0.0

……
allValuesFrom

Restriction 0.6

……
namedProperty 0.0

inverseOf 0.007

……

Ontology

Profiles
……

subPropertyOf 0.2

PropertyDisjointWith 0.1

……
dataSomeValuesFromRes

triction 0.2

intersectionOf 0.1

……
dataIntersectionOf 0.1

namedDatatype 0.1

Web

Profile

……

RDFS

Fig. 1. Two-level customization model.

2 RL, OWL 2 QL and SWRC (Semantic Web Dog Food). Their distribution
probabilities are set to be 0.2, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1 and 0.1 respectively.
This configuration means that in our final generated ontologies, 20% ontologies
use RDFS, 10% ontologies use OWL Lite, 20% ontologies use OWL DL, 10% use
DHL, 10% use each of the three OWL 2 profiles and 10% use SWRC ontology.
For each ontology profile, the distributions of different ontology constructors
used in the generated ontology are displayed. Each cell in the input tables is a
number between 0 and 1 inclusive, which means the percentage of this construc-
tor appearing in a generated ontology. Note, the SWRC profile is learned from
the statistics of the real SWRC ontology instead of user customization. Also, in
ontology languages such as DHL, an axiom has different restrictions on its left
hand side (LHS) and right hand side (RHS). To support this, users can specify
two probabilities for a constructor, as shown in the DHL profile of Fig. 1.

3.2 Axiom Construction and Data Source Generation

Since each ontological axiom can be seen as a parse tree with the elements in
the axiom as tree nodes, the table AT actually contains those elements that can
be used as the root. The tables CT , OPT and DTT provide constructors that
can be used to create class, object property and datatype property expressions
respectively as non-root nodes. From this perspective, the axiom construction
can be seen a parse tree construction. During this process, the web profile is first
used to select the configured ontology profile(s). Second, we use the distribution
in the selected ontology profile to randomly select one constructor from AT
table as the root node. Then, according to operand type of the selected root
constructor, we use the CT , OPT or DTT tables to randomly select one class,
one object property or one data type constructor to generate our ontological
axioms. This process is repeated until either each branch of the tree ends with a
leaf node type or the depth of the parse tree exceeds the given depth threshold.
For ontology mappings, since each mapping is essentially an axiom, we apply
the same procedure. Thus, the mapping ontologies have the same expressivity
as the domain ontologies. Besides, we also need to consider the linking strategy
of different ontologies, which is described in detail in our previous work [3].

6 Y. Li, Y. Yu and J. Heflin

For every domain ontology, we generate a specified number of data sources.
In our configuration, this number can be set by the benchmark users according
to their individual needs. For every source, a particular number of classes and
properties are used for creating triples. They can be also controlled by specifying
the relevant parameters in our configuration. To determine how many triples each
source should have, we collected statistics from 200 randomly selected real-world
Semantic Web documents. Since we found that the average number of triples in
each result document is around 54.0 with a standard deviation of 163.9, we set
the average number of triples in a generated source to be 50 by using a Gaussian
distribution with mean 50 and standard deviation 165. In addition, based on
our statistics of the ratio between the number of different URIs and the number
of data sources in the Hawkeye knowledge base [4], we set the total number of
different URIs in the synthetic data set to equal to the number of data sources
times a factor around 2 in order to avoid the instance saturation during the source
generation. In order to make the synthetic data set much closer to real world
data, we ensure that each source is a connected graph, which more accurately
reflects most real-world RDF files. To achieve this point, in our implementation,
those instances that have already been used in the current source are chosen to
generate new triples with higher priority.

In our benchmark, we also generate some owl:sameAs triples. Based on our
Sindice statistics of randomly issuing one term query and took the top 1000 re-
turned sources as samples, we found 27.1% of them contain owl:sameAs state-
ments. Thus, our benchmark generates owl:sameAs triples in a ratio of 27.1%
of the total number of triples. Furthermore, for each instance involved into the
owl:sameAs triple, according to our experiences, we take a probability of 0.1
to select it from the set of all generated instances in the whole data set and a
probability of 0.9 to select it from the set of all generated instances in the cur-
rent source. As a result, all of owl:sameAs triples in our data set are categorized
into different equivalence classes. Each equivalence class is defined to be a set of
instances that are equivalent to each other (explicitly or implicitly connected by
owl:sameAs). The average cardinality of the equivalence class is around 3.7.

3.3 Data-driven Query Generation Algorithm

It is well-known that the RDF data format is by its very nature a graph. There-
fore, a given semantic web knowledge base (KB) can be essentially modeled as
one big possibly disconnected graph. On the other hand, each SPARQL query
is basically a subgraph and in order to guarantee each query has at least one
answer, our SPARQL queries can be generated from the subgraphs over the big
KB graph. Therefore, we proposed a data-driven query generation algorithm in
our work [8]. Here, we only summarize this algorithm in order to make the paper
complete.

According to the algorithm, we first identify a subgraph meeting the initial
query configuration from the big KB graph. Within the identified subgraph,
we randomly select one node as the starting node to construct a query pattern
graph (QPG). Begin with the starting node, we randomly select one edge that

Evaluating Reasoners Under Realistic Semantic Web Conditions 7

is starting with the starting node and not contained in QPG and then add
this edge into QPG. If the selected edge is already in QPG, we need to select
another edge that is not selected before. Then, we replace the ending node of
the newly added edge with a new variable in the probability P . Currently, the
default value of P is set 0.5. This process is iterated until the QPG qualifies
the initial query configuration. By this step, we have successfully constructed
one QPG. Then, we need to check if each edge in QPG contains at least one
variable. If not, we randomly replace one node of the edge without variable nodes
with a new variable. Based on the variable-assigned QPG, a SPARQL query can
be generated and returned. Note, if the junction node of QPG is replaced by
a query variable, this variable is counted as a join variable. For more details,
please read our paper [8].

4 Evaluation

In order to demonstrate how our benchmark can be used to evaluate very dif-
ferent semantic reasoners, in this section, we describe two group of experiments.
The first is to use our benchmark to evaluate four representative semantic rea-
soners: Pellet [12], HermiT [10], OWLIM [7] and DLDB3 [11]. The second is to
show the approximation of our synthetic data set to real semantic data under the
control of collected statistics from real world ontologies. For each experiment in
each group, we issued 100 random queries, which are grouped by the number of
QTPs that ranges from one to ten. Each group has ten queries. Each query has
at most twenty query variables. Each QTP of each query satisfies the join condi-
tion with at least one sibling QTP. We denote an experimental configuration as
follows: (nO-nD-Ont), where nO is the number of ontologies, nD is the number
of data sources and Ont is the ontology profile type. In order to eliminate the
outlier results, we applied the probabilistic statement of Chebyshev’s inequality:
Pr(|X − µ| ≥ kσ) ≤ 1

k2 , where X stands for a random variable, µ stands for
the mean, σ stands for the standard deviation and k = 3, which counts at most
10% of each group of metric values as outliers. We applied this inequation to
all metrics and for each system, any value that did not satisfy the inequation
would be thrown out. The reason is that these outliers will greatly distort our
experimental statistics. All our experiments are done on a workstation with a
Xeon 2.93G CPU and 6G memory running UNIX.

4.1 Reasoner Evaluation

In this experiment, we want to evaluate our benchmark in various OWL and
OWL 2 reasoners. In selecting the reasoners, first we decided to consider only
noncommercial systems or free versions of those commercial ones. Moreover, we
did not intend to carry out a comprehensive evaluation of all existing semantic
reasoners and our selected ones should cover OWL and OWL 2. In addition, we
also believe a practical semantic reasoner must be able to read OWL/OWL 2 files
and provide programming APIs for loading data and issuing queries. As a result,

8 Y. Li, Y. Yu and J. Heflin

we have settled on four different reasoners including Pellet 2.2.2, HermiT 1.3.4,
SwiftOWLIM and DLDB3. Except DLDB3, all candidate systems are from the
W3C OWL 2 implementation system website 1. Other candidate systems such as
FaCT++, CEL, ELLY, QuOnto and Quil, we rejected due to difficulties in ob-
taining functions executable for the Unix platform. Our experiments are grouped
by the three W3C recommended OWL 2 profiles: OWL 2 EL, RL and QL because
we wanted to investigate the physical (as opposed to theoretical) consequences of
these profiles. We computed the query response time, the source loading time and
the query completeness respectively for each test system. Since Pellet is complete
for all OWL 2 profiles and able to complete all our experiments, we chose Pellet
results as our completeness ground truth. The query completeness is defined to

be
of answers returned by each test system for all tested queries

of answers returned by Pellet for all tested queries
. All experi-

mental results are shown in Fig.2. Note, in Fig.2 (b), (d) and (f), the HermiT
curve is hiding behind the Pellet because their performances are very close.

OWL 2 EL OWL 2 EL is intended for applications that have ontologies that
contain very large numbers of properties and/or classes. It captures the expres-
sive power used by many such ontologies. Therefore, in this experiment, we
evaluate the target systems by varying the number of ontologies but keeping
the data sources constant at 500. Fig.2(a) and Fig.2(b) show how each system’s
query response time and loading time are affected by increasing the number
of ontologies in OWL 2 EL. From these results, we can see that OWLIM per-
forms best in both query response time and loading time. DLDB3 suffers from
the worst loading time because it uses a persistent database backend, while the
other three systems are in-memory. Pellet has better query response time than
Hermit but performs very close to HermiT in loading time. Pellet and HermiT
are complete, but DLDB3 and OWLIM are incomplete with 21.97% and 40.5%
completeness on average respectively. The reason is that DLDB3 is only a limited
OWL reasoner and does not support OWL 2, while OWLIM is only complete
for OWL 2 RL and QL and incomplete for OWL 2 EL. Of the four systems,
Pellet appears to be the best choice for EL. Although OWLIM is the fastest, it
is significantly lacking in completeness.

OWL 2 QL OWL 2 QL focuses on applications that use very large volumes
of instance data, and where query answering is the most important reasoning
task. In this experiment, we evaluate the target systems by varying the number
of data sources with the constant number of 5 ontologies. Fig.2(c) and Fig.2(d)
show how each system’s query response time and loading time are affected by
increasing the number of data sources in OWL 2 QL. In both query response time
and loading time, OWLIM performs best, while HermiT is worst. In particular,
HermiT cannot scale to points of 5-5000-QL and 5-10000-QL because of an out
of memory error but OWLIM, Pellet and DLDB3 can. Starting from point of
5-5000-QL, the loading time of Pellet performs worse than DLDB3 even though

1 http://www.w3.org/2007/OWL/wiki/Implementations

Evaluating Reasoners Under Realistic Semantic Web Conditions 9

DLDB3 uses secondary storage. We think the reason is that Pellet is in-memory
and when the number of loaded data sources increases to some number (5000 in
our experiment), it requires more memory to do the consistency checking during
its loading period than the memory we have provided (6GB). OWLIM, Pellet
and HermiT (in the first three points) are complete. DLDB3 is incomplete with
68.81% completeness on average, but it is better than it did on OWL 2 EL. In
summary, of the four systems, OWLIM appears to be the best choice for OWL
2 QL. DLDB3 is an alternative for large scales where some incompleteness is
tolerable.

OWL 2 RL OWL 2 RL is aimed at applications that require scalable reasoning
without sacrificing too much expressive power. It is designed to accommodate
OWL 2 applications that can trade the full expressivity of the language for effi-
ciency. Therefore, in this experiment, we evaluate the target systems by varying
both the number of ontologies and the number of data sources. Fig.2(e) and
Fig.2(f) show how each system’s query response time and loading time are af-
fected by increasing the number of ontologies and the number of data sources.
As shown by the results, OWLIM still performs best in the query response time
and loading time. HermiT suffers from the worst performance and cannot scale
to points of 10-2000-RL and 15-3000-RL. As was the case to OWL 2 QL, Pellet
starts to have worse loading time than DLDB3 from the point of 10-2000-RL
because it requires more memory. OWLIM, Pellet and HermiT are complete, but
DLDB3 is still incomplete with 44.96% completeness on average. In summary,
OWLIM appears to be the clear winner for OWL 2 RL.

4.2 Approximation Evaluation

Constructors Percentage Constructors Percentage

rdfs:subClassOf 8.13% complementOf 8.98%

TransitiveProperty 0.17% intersectionOf 8.98%

rdfs:domain 1.93% unionOf 8.98%

rdfs:range 1.85% namedClass 1.51%

oneOf 1.09% allValuesFromRestriction 57.71%

inverseOf 0.67%

Table 2. SWRC ontology constructor statistics.

In this experiment, we evaluate how approximate our synthetic data set is
to real semantic data. We have chosen Semantic Web Dog Food (SWRC) cor-
pus 2 as our real semantic data set. Since the downloaded SWRC data is in

2 http://data.semanticweb.org/dumps/

10 Y. Li, Y. Yu and J. Heflin

(a)

(b)

1

10

100

1000

10000

100000

Lo
a

d
in

g
 t

im
e

 i
n

 l
o

g
a

ri
th

m
ic

(m
s)

Configurations

HermiT

Pellet

DLDB3

OWLIM

0

5

10

15

20

25

30

35

40

5-500-EL 10-500-EL 15-500-EL

Lo
a

d
in

g
 t

im
e

(m
s)

Configurations

HermiT

Pellet

DLDB3

OWLIM

1

10

100

1000

10000

100000

5-500-EL 10-500-EL 15-500-EL

Q
u

e
ry

 r
e

sp
o

n
se

 t
im

e
 i

n

lo
g

a
ri

th
m

ic
(m

s)

Configurations

(c)

(e)

1

10

100

1000

10000

100000

Q
u

e
ry

 r
e

sp
o

n
se

t
ti

m
e

 i
n

lo
g

a
ri

th
m

ic
(m

s)

Configurations

(d)

(b)

(f)

1

10

100

1000

10000

100000

Q
u

e
ry

 r
e

sp
o

n
se

 t
im

e
 i

n

lo
g

a
ri

th
m

ic
(m

s)

Configurations

0

100

200

300

400

500

Lo
a

d
in

g
 t

im
e

(m
s)

Configurations

HermiT

Pellet

DLDB3

OWLIM

Fig. 2. Query response time and loading time of OWL 2 EL, QL and RL.

Evaluating Reasoners Under Realistic Semantic Web Conditions 11

dump, in order to make it meet our experimental setup, we partitioned it into
different subsets using the number of triples of each test configuration (50 ×
nD in each configuration). In addition, we collected the statistics of the num-
ber of each type of ontological axiom shown in Table 1 in the SWRC ontology
and used them to parameterize the benchmark to produce realistic synthetic on-
tologies. For each test configuration, we use the learned SWRC ontology profile
to generate five SWRC-like domain ontologies together with their corresponding
ontology mappings. The SWRC ontology constructor statistics is shown in Table
2. We evaluate Pellet and OWLIM because both systems are memory-based and
two representatives of applying two different well-known reasoning algorithms:
tableau and rule-based. We compute the average query response time for each
configuration. As shown in Fig. 3, although Pellet is slightly faster on benchmark
data than on real data, and OWLIM is slightly slower on the benchmark data,
each maintains the same trend on the benchmark that it had with the original
data. Although more experiments are needed to draw significant conclusions,
this suggests that our benchmark may be able to generate synthetic datasets
that are representative enough for users to evaluate their systems or reasoners
instead of using the real semantic data, which cannot be easily customized and
has little ontology integration.

400

450

500

550

600

650

700

750

800

850

1 2 3 4 5 6 7 8

Q
u

e
ry

 r
e

sp
o

n
se

 t
im

e
 (

m
s)

Configurations
SWRC (Pellet) Benchmark (Pellet) SWRC (OWLIM) Benchmark (OWLIM)

5-500-swrc 5-1000-swrc 5-2000-swrc 5-4000-swrc

Fig. 3. Query response time of Benchmark and SWRC.

5 Conclusions and Future Work

We extend our early work [8] on creating a benchmark that can generate user-
customized ontologies together with related mappings and data sources. It sup-
ports both OWL and OWL 2. It can also generate diverse conjunctive queries
with at least one answer. Our experiments have demonstrated that this bench-
mark can effectively evaluate semantic reasoners by generating realistic synthetic
semantic data. In particular, we have collected statistics from real world ontolo-
gies and used these to parameterize the benchmark to produce more realistic

12 Y. Li, Y. Yu and J. Heflin

synthetic ontologies under controlled conditions. According to our evaluation,
OWLIM has the best performance and is complete for OWL 2 QL, RL and
SWRC. Pellet has better performance than HermiT in all experimental settings.
HermiT has the worst scalability in OWL 2 QL and RL because of high memory
consumption. DLDB3 is incomplete in all OWL 2 profiles because it is designed
for an OWL fragment reasoner, but it shows better performance in query re-
sponse time than Pellet and HermiT.

However, there is still significant room for improvement. First, we need to
consider to collect statistics of semantic data besides the ontology schemas. One
way to do so is to find the different RDF graph patterns implied by the real
semantic data and use these to guide our data generation. Second, in the ap-
proximation evaluation, we need to evaluate our benchmark using more data
sets with different characteristics from SWRC. It should be also pointed out
that we believe that the performance of any given system will vary depend on
the structure of the ontology and data used to evaluate it. Thus our benchmark
does not provide the final say on each system’s characteristics. However, it allows
developers to automate a series of experiments that give a good picture of how
system performs under the general parameters of a given scenario.

References

1. S. Bail, B. Parsia, and U. Sattler. JustBench: A framework for owl benchmarking.
In International Semantic Web Conference (1), pages 32–47, 2010.

2. C. Bizer and A. Schultz. The berlin SPARQL benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1–24, 2009.

3. A. Chitnis, A. Qasem, and J. Heflin. Benchmarking reasoners for multi-ontology
applications. In EON, pages 21–30, 2007.

4. Z. P. et al. Hawkeye: A practical large scale demonstration of semantic web inte-
gration. Technical Report LU-CSE-07-006, Lehigh University, 2007.

5. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for owl knowledge base
systems. J. Web Sem., 3(2-3):158–182, 2005.

6. I. Horrocks and P. F. Patel-Schneider. Dl systems comparison (summary relation).
In Description Logics, 1998.

7. A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM - a pragmatic semantic repos-
itory for owl. In WISE Workshops, pages 182–192, 2005.

8. Y. Li, Y. Yu, and J. Heflin. A multi-ontology synthetic benchmark for the semantic
web. In In Proc. of the 1st International Workshop on Evaluation of Semantic
Technologies, 2010.

9. L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a complete owl
ontology benchmark. In ESWC, pages 125–139, 2006.

10. B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning in description logics
using hypertableaux. In CADE, pages 67–83, 2007.

11. Z. Pan, Y. Li, and J. Heflin. A semantic web knowledge base system that supports
large scale data integration. In In Proc. of the 5th International Workshop on
Scalable Semantic Web Knowledge Base Systems, pages 125–140, 2010.

12. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

jcel: A Modular Rule-based Reasoner

Julian Mendez

Theoretical Computer Science, TU Dresden, Germany
mendez@tcs.inf.tu-dresden.de

Abstract. jcel is a reasoner for the description logic EL+ that uses a
rule-based completion algorithm. These algorithms are used to get sub-
sumptions in the lightweight description logic EL and its extensions. One
of these extensions is EL+, a description logic with restricted expressiv-
ity, but used in formal representation of biomedical ontologies. These
ontologies can be encoded using the Web Ontology Language (OWL),
and through the OWL API, edited using the popular ontology editor
Protégé. jcel implements a subset of the OWL 2 EL profile, and can be
used as a Java library or as a Protégé plug-in. This system description
presents the architecture and main features of jcel, and reports some of
the challenges and limitations faced in its development.

1 Introduction

This system description presents jcel1, a reasoner for the description logic EL+.
The design and implementation details refer to jcel 0.17.1, unless other version
is specified.

The lightweight description logic (DL) EL and its extensions have recently
drawn considerable attention since important inference problems, such as the
subsumption problem, are polynomial in EL [1,4,2]. In addition, biomedical on-
tologies such as the large ontology SNOMED CT2, can be defined using this
logic.

The basic entities are concepts (class expressions), which are built with con-
cept names (classes) and role names (object properties).

An ontology is a formal vocabulary of terms which refers to a conceptual
schema inside a domain. The terms are related using an ontology language. The
main service that this reasoner provides is classification, a hierarchical relation
of the concepts in the ontology.

2 Language Subset Supported

jcel, as an EL+ reasoner, includes the standard constructors of EL: conjunction
(CuD), existential restriction (∃r.C), and the top concept (>). In addition, this
logic includes role composition (r ◦ s v t) and role hierarchy (r v s).

1 http://jcel.sourceforge.net/
2 http://www.ihtsdo.org/snomed-ct/

Table 1. Syntax and semantics.

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

top > >I = ∆I

conjunction C uD (C uD)I = CI ∩DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C v D CI ⊆ DI

role hierarchy r v s rI ⊆ sI

role composition r ◦ s v t rI ◦ sI ⊆ tI

Table 1 summarizes the semantics of the mentioned constructors.
There is an experimental development of jcel [7] to support inverse and func-

tional roles.

3 Syntaxes and Interfaces Supported

jcel is developed in Java and can be compiled in Java 1.6 or Java 1.7 indis-
tinctly. jcel is integrated to the OWL API 3.2.43, which is a Java application
programming interface (API) and reference implementation for creating, manip-
ulating and serializing OWL ontologies. Using the OWL API, jcel can be used
as a Protégé4 plug-in. Protégé is a free, open source ontology editor, and also
a knowledge base framework. Protégé ontologies can be exported to several for-
mats, like RDF, OWL and XML Schema. In order to keep compatibility with
Protégé 4.1, jcel is distributed as a Java binary for Java 1.6.

jcel can also be used as a library without the OWL API. It has its own
factories to construct the optimized data types used in the core.

4 Reasoning Algorithm Implemented

The algorithm is rule-based, and there is a set of rules that are successively
applied to saturate data structures. These rules are called completion rules. The
process is called classification, and is the main part of jcel’s algorithm.

An algorithm that classifies the set of axioms by applying these rules could be
expensive in time if it is performed by a systematic search. The algorithm used by
jcel is based on CEL’s algorithm [2,3], but generalized with a change propagation
approach [6]. This approach detects the changes in the data structure being
saturated, and triggers the rules in consequence.

The input of the algorithm is a normalized set of axioms T as in the following
list: A v B, A1 u · · · uAn v B, A v ∃r.B, ∃r.A v B, r v s, r ◦ s v t.

3 http://owlapi.sourceforge.net/
4 http://protege.stanford.edu/

The invariant of the algorithm has a set S, called set of subsumptions, such
that for each pair of concept names A, B in T : (A,B) ∈ S if and only if T |=
A v B, and a set R such that for each triple of role r, and concept names A,
B in T : (r,A,B) ∈ R if and only if T |= A v ∃r.B, where |= has the usual
meaning.

The algorithm finishes when S is saturated. The output is S itself, which
tells the subsumption relation for every pair of concept names.

In Figure 1, we can observe S and R, the completion rules (CR-1, CR-2, . . .),
the duplicates checker, and a set Q which has a set of entries to be processed.

In each iteration, an S-entry (a pair) or an R-entry (a triple) is taken from
Q and added to either S or R. This change is propagated and sent to the chain
of rules sensitive to changes in S (S-chain) or in R (R-chain). Every completion
rule takes the new entry as input and returns a set of S- and R-entries. The
arrows indicate how these entries flow.

Every element proposed by the rules is verified by the duplicates checker
before being added to Q. The dashed lines indicate that the duplicates checker
uses S and R for the verification. This procedure is repeated until Q is empty.

Fig. 1. Dynamic diagram.

5 Architecture and Optimization Techniques

jcel axioms are encoded using integers. This optimizes the use of memory and
required time in comparisons. Any program using jcel as a library can encode
its entities with integers, and take advantage of this efficient representation.

jcel is composed by several modules, as shown in Figure 2. The arrows indicate
the relation “depends on”.

jcel.coreontology and jcel.core are modules that use only normalized axioms.
The former contains the normalized axioms themselves, the latter contains the
implementation of the completion rules, together with the data structures for
the subsumption graphs.

jcel.ontology is a module that contains the axioms for the ontology and the
procedures to normalize the ontology. jcel.reasoner is the reasoner interface. It
can classify an ontology and compute entailment.

All the modules mentioned above work with data types based on integers.

jcel.owlapi is the module that connects to the OWL API. This module per-
forms the translation between the OWL API axioms and jcel axioms. jcel.protege
is a tiny module used to connect to Protégé.

Figure 2 describes the module dependencies and shows that jcel can be used:

– extending the core (with jcel.coreontology and jcel.core)
– as a library using integers (adding jcel.ontology and jcel.reasoner)
– as a library using the OWL API (adding jcel.owlapi)
– as a Protégé plug-in (adding jcel.protege)

Fig. 2. Module dependencies.

6 Particular Advantages and Disadvantages

jcel is a pure Java, open source project. Its source code can be cloned with
Git5 and compiled using Apache Ant6 or Apache Maven7 indistinctly.

5 http://git-scm.com/
6 http://ant.apache.org/
7 http://maven.apache.org/

jcel includes several advantages derived from its design and from good prac-
tices of software engineering. Regarding the design, jcel has independent main-
tenance of rules. Each rule works as an independent unit that can be imple-
mented, improved and profiled independently.

Regarding the good practices, jcel uses no null pointers. Every public
method is prevented of accepting null pointers (throwing a runtime exception)
and no public method returns a null pointer. Referred by its inventor as “The
Billion Dollar Mistake”8, a null pointer may have different intended meanings.
For example, min(1,null), may give the results “0” (considering null as 0), “1”
(considering null as an empty argument), or “null” (considering null as an
undefined value).

Another good practice is that public methods return unmodifiable collec-
tions when they refer to collections used in the internal representation. This
prevents a defective piece of code from modifying the collection.

jcel has no cyclic dependencies of packages in each module. This facil-
itates maintenance, since modifications on one package do not alter any other
package that does not depend on the former.

jcel has also some points that are not implemented yet, but can be considered
as good future improvements.

One of the improvements is to apply techniques to unchain properties [5].
This would be useful for large ontologies.

Another improvement is incremental classification. This could be espe-
cially interesting for entailment, since jcel computes entailment by adding fresh
auxiliary concepts and reclassifying the ontology.

Finally, the reduction of use of memory is an important improvement to
consider. jcel 0.16.0 was the first version to include entailment, but also became
significantly slower than jcel 0.15.0 when classifying large ontologies. The reason
was a side effect resulting from the memory required for the entailment, produc-
ing a frequent execution of the garbage collector. This was partially solved in
jcel 0.17.0.

7 Application focus

jcel can be used to classify small and medium-sized ontologies of the EL family.
jcel was designed to be robust, resilient, modular and extensible. Its binaries

are small and can be distributed inside other tools. One tool that uses jcel is
Gel9 (Generalizations for EL) [7], which extends the core of jcel.

Another example is OntoComP10. It is a Protégé plug-in for completing OWL
ontologies, and for checking whether an OWL ontology contains “all relevant
information” about the application domain. This tool uses the OWL API to
connect to jcel as a library.

8 http://qconlondon.com/london-2009/speaker/Tony+Hoare
9 http://sourceforge.net/p/gen-el/

10 http://ontocomp.googlecode.com/

jcel is also used to verify correctness in UEL11, Unification for the description
logic EL.

8 Conclusion

jcel is a reasoner for lightweight ontologies. Its rule-based design makes it easy to
be configured according to the rules. Provides a high-level interface to be used
as a tool seamlessly integrated to the OWL API.

The implementation is modular, resilient and highly extensible. Implemented
in a state-of-the-art technology, it has a low coupling and a high cohesion, it is
portable, and has an optimal interface to connect to other technologies of the
Semantic Web.

References

1. Franz Baader. Terminological cycles in a description logic with existential restric-
tions. In Proc. IJCAI’03, 2003.

2. Franz Baader and Sebastian Brandt and Carsten Lutz. Pushing the EL envelope.
In Proc. IJCAI’05, 2005.

3. Franz Baader and Carsten Lutz and Boontawee Suntisrivaraporn. Is Tractable
Reasoning in Extensions of the Description Logic EL Useful in Practice?. Journal
of Logic, Language and Information, Special Issue on Method for Modality (M4M),
2007.

4. Sebastian Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. ECAI’04, 2004.

5. Yevgeny Kazakov and Markus Krötzsch and Frantǐsek Simanč́ık. Unchain My EL
Reasoner. In Riccardo Rosati, Sebastian Rudolph, Michael Zakharyaschev, editors,
Proceedings of the 24th International Workshop on Description Logics (DL-11).
CEUR, 2011.

6. Julian Mendez. A Classification Algorithm for ELHIfR+. Dresden University of
Technology, 2011.

7. Julian Mendez and Andreas Ecke and Anni-Yasmin Turhan. Implementing
completion-based inferences for the EL-family. In Riccardo Rosati, Sebastian
Rudolph, and Michael Zakharyaschev, editors, Proceedings of the international De-
scription Logics workshop, volume 745. CEUR, 2011.

8. Quoc Huy Vu. Subsumption in the Description Logic ELHIfR+ w.r.t. General
TBoxes. Dresden University of Technology, 2008.

11 http://uel.sourceforge.net/

The HermiT OWL Reasoner

Ian Horrocks, Boris Motik, and Zhe Wang

Oxford University Department of Computer Science
Oxford, OX1 3QD, UK

{ian.horrocks,boris.motik,zhe.wang}@cs.ox.ac.uk

Abstract. HermiT is the only reasoner we know of that fully supports
the OWL 2 standard, and that correctly reasons about properties as well
as classes. It is based on a novel “hypertableau” calculus that addresses
performance problems due to nondeterminism and model size—the pri-
mary sources of complexity in state-of-the-art OWL reasoners. HermiT
also incorporates a number of novel optimizations, including an opti-
mized ontology classification procedure. Our tests show that HermiT
performs well compared to existing tableau reasoners and is often much
faster when classifying complex ontologies.

1 Introduction

HermiT is an OWL reasoning system based on a novel hypertableau calculus
[12]. Like existing tableau based systems, HermiT reduces all reasoning tasks to
ontology satisfiability testing, and proves the (un-)satisfiability of an ontology
by trying to construct (an abstraction of) a suitable model. When compared to
tableau calculi, however, the hypertableau technique can greatly reduce both the
size of constructed models and the non-deterministic guessing used to explore
all possible constructions. Moreover, HermiT employs a novel classification algo-
rithm that greatly reduces the number of subsumption (and hence satisfiability)
tests needed to classify a given ontology.

Our tests show that HermiT is as fast as other OWL reasoners when classi-
fying relatively easy-to-process ontologies, and usually much faster when classi-
fying more difficult ontologies. Moreover, HermiT is currently the only reasoner
known to us that fully supports the OWL 2 standard: it supports all of the
datatypes specified in the standard, and it correctly reasons about properties as
well as about classes. Most other reasoners support only a subset of the OWL
2 datatypes [11], and all other OWL reasoners known to us implement only
syntax based reasoning when classifying properties, and may thus fail to detect
non-trivial but semantically entailed sub-property relationships [4].

HermiT also includes some nonstandard functionality that is currently not
available in any other system. In particular, HermiT supports reasoning with
ontologies containing description graphs. As shown in [10], description graphs
allow for the representation of structured objects—objects composed of many
parts interconnected in arbitrary ways. These objects abound in bio-medical
ontologies such as FMA and GALEN, but they cannot be faithfully represented
in OWL.

2 Ian Horrocks, Boris Motik, and Zhe Wang

HermiT is available as an open-source Java library, and includes both a Java
API and a simple command-line interface. We use the OWL API [6] both as part
of the public Java interface and as a parser for OWL files; HermiT can thus pro-
cess ontologies in any format handled by the OWL API, including RDF/XML,
OWL Functional Syntax, KRSS, and OBO.

2 Architecture and Optimizations

On OWL ontology O can be divided into three parts: the property axioms, the
class axioms, and the facts. These correspond to the RBox R, TBox T , and ABox
A of a Description Logic knowledge base K = (R, T ,A). All basic reasoning
tasks, including subsumption checking, can be reduced to testing the satisfiability
of such a knowledge base. For example, K |= A v B iff (R, T ,A∪ {Au¬B(s)})
is not satisfiable, where s is a “fresh” individual (i.e., one that does not occur in
K).

To show that a knowledge base K = (R, T ,A) is satisfiable, a tableau al-
gorithm constructs a derivation—a sequence of ABoxes A0,A1, . . . ,An, where
A0 = A and each Ai is obtained from Ai−1 by an application of one inference
rule. The inference rules make the information implicit in the axioms of R and
T explicit, and thus evolve the ABox A towards (an abstraction of) a model
of K. The algorithm terminates either if no inference rule is applicable to some
An, in which case An represents a model of K, or if An contains an obvious
contradiction, in which case the model construction has failed. The following
inference rules are commonly used in DL tableau calculi.

– t-rule: Given (C1 t C2)(s), derive either C1(s) or C2(s).
– u-rule: Given (C1 u C2)(s), derive C1(s) and C2(s).
– ∃-rule: Given (∃R.C)(s), derive R(s, t) and C(t) for t a fresh individual.
– ∀-rule: Given (∀R.C)(s) and R(s, t), derive C(t).
– v-rule: Given an axiom C v D and an individual s, derive (¬C tD)(s).

The t-rule is nondeterministic, and the knowledge base K is unsatisfiable if and
only if all choices lead to a contradiction.

Or-Branching This “case based” procedure for handing disjunctions is
sometimes called or-branching. The v-rule is the main source of or-branching,
as it adds a disjunction for each TBox axiom to each individual in an ABox, even
if the corresponding axiom is equivalent to a Horn clause, and so inherently de-
terministic. Such indiscriminate application of the v-rule can be a major source
of inefficiency, and this has been addressed by various absorption optimizations
[2, Chapter 9], including role absorption [14] and binary absorption [8].

HermiT’s hypertableau algorithm generalizes these optimizations by rewrit-
ing description logic axioms into a form which allows all such absorptions be
performed simultaneously, as well as allowing additional types of absorption im-
possible in standard tableau calculi. Furthermore, HermiT actually rewrites DL
concepts to further reduce nondeterminism, and is thus able to apply absorption-
style optimizations much more pervasively.

The HermiT OWL Reasoner 3

And-Branching The introduction of new individuals in the ∃-rule is some-
times called and-branching, and it is another major source of inefficiency in
tableau algorithms [2]. To ensure termination, tableau algorithms employ block-
ing to prevent infinitely repeated application of the ∃-rule [7]. Standard blocking
is applied only along a single “branch” of fresh individuals. HermiT uses a more
aggressive anywhere blocking strategy [12] that can reduce the size of gener-
ated models by an exponential factor, and this substantially improves real-world
performance on many difficult and complex ontologies.

HermiT also tries to further reduce the size of the generated model using a
technique called individual reuse: when expanding an existential ∃R.C, it first at-
tempts to re-use some existing individual labeled with C to construct a model,
and only if this model construction fails does it introduce a new individual.
This approach allows HermiT to consider non-tree-shaped models, and drasti-
cally reduces the size of models produced for ontologies which describe complex
structures, such as ontologies of anatomy. “Reused” individuals, however, are
semantically equivalent to nominal concepts, and thus performance gains due to
individual reuse are highly dependent upon the efficient handling of nominals.
HermiT therefore uses an optimised nominal introduction rule that reduces non-
determinism, and is more conservative in its introduction of new nominals.

Caching Blocking Labels Anywhere blocking avoids repetitive model
construction in the course of a single satisfiability test. HermiT further extends
this approach to avoid repetitive construction across an entire set of satisfiabil-
ity tests. Conceptually, instead of performing n different tests by constructing n
different models, it performs a single test which constructs a single model con-
taining n independent fragments. Although no two fragments are connected, the
individuals in one fragment can block those in another, greatly reducing the size
of the combined model. In practice, tests are not actually performed simultane-
ously. Instead, after each test a compact representation of the model generated is
retained for the purpose of blocking in future tests. This näıve strategy is, how-
ever, not compatible with ontologies containing nominals, which could connect
the models from independent tests.

This optimization has been key to obtaining the results that we present in
Section 3. For example, on GALEN only one satisfiability test is costly because it
computes a substantial part of a model of the TBox; all subsequent satisfiability
tests reuse large parts of that model.

Classification Optimizations DL reasoning algorithms are often used in
practice to compute a classification of a knowledge base K—that is, to determine
whether K |= A v B for each pair of atomic concepts A and B occurring in
K. Clearly, a näıve classification algorithm would involve a quadratic number
of subsumption tests, each of which can potentially be expensive. To obtain
acceptable levels of performance, various optimizations have been developed that
reduce the number of subsumption tests [3] and the time required for each test
[2, Chapter 9].

HermiT employs a novel classification procedure, and exploits the unique
properties of the system’s new calculus to further optimise the procedure. In

4 Ian Horrocks, Boris Motik, and Zhe Wang

Table 1: Statics of the ontologies

Ontology Name DL Expressivity Classes Properties TBox RBox

EMap (Feb09) EL 13737 2 13730 0
GO Term DB (Feb06) EL + + 20526 1 28997 1

DLP ExtDnS 397 SHIN 96 186 232 675
LUBM (one university) ALEHI+(D) 43 32 142 51

Biological Process (Feb09) EL + + 16303 5 32286 3
MGED Ontology ALCOF(D) 229 104 452 21

RNA With Individual (Dec09) SRIQ(D) 244 93 364 310
NCI Thesaurus (Feb09) ALCH(D) 70576 189 100304 290

OBI (Mar10) SHOIN (D) 2638 83 9747 150
FMA Lite (Feb09) ALEI+ 75145 3 119558 3

FMA-constitutional part (Feb06) ALCOIF(D) 41648 168 122695 395

GALEN-doctored ALEHIF+ 2748 413 3937 799
GALEN-undoctored ALEHIF+ 2748 413 4179 800

GALEN-module1 ALEHIF+ 6362 162 14515 219
GALEN-full ALEHIF+ 23136 950 35531 2165

particular, when it tries to construct a model I of K ∪ {A(a)} (in order to de-
termine the satisfiability of A), HermiT is able to exploit the information in I
to derive a great deal of information about both subsumers and non-subsumers
of A, information that can be efficiently exploited by the new classification pro-
cedure [4].

3 Empirical Results

To evaluate our reasoning algorithm in practice, we compared HermiT with the
state-of-the-art tableau reasoners Pellet 2.3.0 [13], and FaCT++ 1.5.3 [15].

We selected a number of standard test ontologies, and measured the time
needed to classify them using each of the mentioned reasoners. Unlike Pellet
and FaCT++, HermiT does not include a dedicated reasoner for any tractable
fragment of OWL 2. Hence, we mainly focus on ontologies that exploit most or
all of the expressive power available in OWL 2. All tests were performed on a
2.7 GHz MacBook Pro with 8 GB of physical memory. A classification attempt
was aborted if it exhausted all available memory (Java tools were allowed to use
2 GB of heap space), or if it exceeded a timeout of 20 minutes.

The majority of the test ontologies were classified very quickly by all three
reasoners. For these “trivial” ontologies, the performance of HermiT was com-
parable to that of the other reasoners. Therefore, we consider here only the test
results for “interesting” ontologies—that is, ontologies that are either not trivial
or on which the tested reasoners exhibited a significant difference in performance
(see Table 1 for details of these ontologies).

Table 2 summarizes the results of our tests on these “interesting” ontologies.
Since HermiT has no special handling for tractable fragments of OWL 2, the per-

The HermiT OWL Reasoner 5

Table 2: Results of Performance Evaluation

Ontology Name
Classification Times (seconds)

HermiT Pellet FaCT++

EMap (Feb09) 1.1 0.4 34.2
GO Term DB (Feb06) 1.3 1.3 6.1

DLP ExtDnS 397 1.3 timeout 0.05
LUBM (one university) 1.7 0.7 152.7

Biological Process (Feb09) 1.8 4.0 8.0
MGED Ontology 2.1 19.6 0.04

RNA With Individual (Dec09) 2.7 0.8 102.9
NCI Thesaurus (Feb09) 58.2 12.3 4.4

OBI (Mar10) 150.0 timeout 17.2
FMA Lite (Feb09) 211.1 timeout timeout

FMA-constitutional part (Feb06) 1638.3 timeout 396.9

GALEN-doctored 1.8 timeout 2.5
GALEN-undoctored 6.7 out of mem. 11.6

GALEN-module1 out of mem. timeout timeout
GALEN-full out of mem. timeout timeout

formance of HermiT on such ontologies may not be competitive. For example,
FaCT++ shows advantages when classifying ontologies which fall into a prede-
fined syntactic fragment for which it uses a more efficient reasoning technique
[16]. Different versions of GALEN have commonly been used for testing the per-
formance of DL reasoners. The full version of the ontology (called GALEN-full)
cannot be processed by any of the reasoners. Thus, we extracted a module (called
GALEN-module1) based on a single concept from GALEN-full using the tech-
niques from [5] in order to determine if modularisation techniques might make
classification feasible. However, although the module is much smaller than the
full ontology, no reasoner was able to classify it either. Our analysis has shown
that, due to a large number of cyclic axioms, the reasoners construct extremely
large ABoxes and eventually exhaust all available memory (or get lost in the
resulting large search space). FMA-constitutional part exhibits similar features,
but to a lesser extent, and both HermiT and FaCT++ were able to classify it.
Because of the failure of DL reasoners to process GALEN-full, various simpli-
fied versions of GALEN have often been used in practice. As Table 2 shows,
these ontologies can still be challenging for state-of-the-art reasoners. HermiT,
however, can classify them quite efficiently.

4 Conclusions and Future Directions

We have described HermiT, an OWL reasoner based on novel algorithms and
optimizations. HermiT fully supports the OWL 2 standard, and shows significant
performance advantages over other reasoners across a wide range of expressive
real-world ontologies. Although not always the fastest, HermiT exhibits relatively
robust performance on our tested ontologies, and as shown in our results, it never

6 Ian Horrocks, Boris Motik, and Zhe Wang

failed to classify an ontology in the test corpus that was successfully handled by
one of the other reasoners. HermiT also includes support for some non-standard
ontology features, such as description graphs.

We are continuing to develop HermiT, and to explore new and refined opti-
mization techniques. We also continue to extend its functionality: the latest ver-
sion, for example, provides support for the SPARQL 1.1 query language [1]. We
are also investigating techniques for exploiting specialized reasoning techniques,
such as those implemented in the ELK system [9], to speed up the classification
of ontologies that are (largely) within a fragment of OWL that such techniques
can handle.

Acknowledgments This work was supported by the EU FP7 project SEALS
and by the EPSRC projects ConDOR, ExODA, and LogMap.

References

1. SPARQL 1.1 Query Language. W3C Working Draft, 12 May 2011.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,

editors. The Description Logic Handbook. 2nd edition, 2007.
3. F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. Making KRIS

Get a Move on. Applied Intelligence, 4(2):109–132, 1994.
4. B. Glimm, I. Horrocks, B. Motik, R. Shearer, and G. Stoilos. A Novel Approach

to Ontology Classification. J. of Web Semantics, 10(1), 2011.
5. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse of

Ontologies: Theory and Practice. JAIR, 31:273–318, 2008.
6. M. Horridge and S. Bechhofer. The OWL API: A Java API for Working with OWL

2 Ontologies. In Proc. OWLED 2009, 2009.
7. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the Descrip-

tion Logic SHIQ. In Proc. CADE-17, pages 482–496, 2000.
8. A. K. Hudek and G. Weddell. Binary Absorption in Tableaux-Based Reasoning

for Description Logics. In Proc. DL 2006, 2006.
9. Y. Kazakov, M. Krötzsch, and F. Simanč́ık. Concurrent Classification of EL On-

tologies. In Proc. of ISWC 2011, pages 305–320, 2011.
10. B. Motik, B. Cuenca Grau, I. Horrocks, and U. Sattler. Representing Ontologies

Using Description Logics, Description Graphs, and Rules. Artificial Intelligence,
173(14):1275–1309, 2009.

11. B. Motik and I. Horrocks. OWL Datatypes: Design and Implementation. In Proc.
of ISWC 2008, pages 307–322, 2008.

12. B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description
Logics. JAIR, 36:165–228, 2009.

13. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical
OWL-DL Reasoner. J. of Web Semantics, 5(2):51–53, 2007.

14. D. Tsarkov and I. Horrocks. Efficient Reasoning with Range and Domain Con-
straints. In Proc. DL 2004, 2004.

15. D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System De-
scription. In Proc. IJCAR 2006, pages 292–297, 2006.

16. D. Tsarkov, I. Horrocks, and P. F. Patel-Schneider. Optimizing Terminologi-
cal Reasoning for Expressive Description Logics. J. of Automated Reasoning,
39(3):277–316, 2007.

OWLIM Reasoning over FactForge

Barry Bishop, Atanas Kiryakov, Zdravko Tashev, Mariana Damova, Kiril Simov

Ontotext AD, 135 Tsarigradsko Chaussee, Sofia 1784, Bulgaria

Abstract. In this paper we present the reasoning mechanism in the OWLIM
family of semantic repositories, which is based on materialization. This mech-
anism is evaluated using a combination of datasets from the Linked Open Data
cloud in a public service called FactForge, where the benefits of materialization
are manifested in improved SPARQL query performance.

Keywords: LOD, materialization, OWLIM, RDF, semantic repository

1 Introduction

In this paper we present the reasoning mechanism employed in the OWLIM family
of semantic repositories. These native RDF databases are implemented in Java and
comprise storage components, inference-engine and query-answering engine. They
are available in three editions: OWLIM-Lite, an in-memory and very fast RDF data-
base that can load data at over 50,000 statements per second on a 1,000 USD machine
using non-trivial inference; OWLIM-SE, that uses file-based, paged indices and data
structures to be able to process tens of billions of RDF statements on standard desktop
hardware; and OWLIM-Enterprise, a replication cluster based on OWLIM-SE that
provides resilience and linearly scalable parallel query performance. OWLIM-Lite is
free-for-use, whereas OWLIM-SE and OWLIM-Enterprise are the commercial edi-
tions licensed per CPU core. OWLIM-SE and OWLIM-Enterprise use a number of
storage and query optimizations that allow it to sustain outstanding insert and delete
performance even when managing tens of billions of statements of linked open data.

The experiments conducted were performed using datasets from the Linked Open
Data cloud, see section 3, that constitute a reason-able view [2] named FactForge1.
Entities described in more than one dataset are unified via owl:SameAs statements
and a common ontology PROTON2, called a unification ontology [1] for FactForge
used for querying and data integration. PROTON is mapped to DBPedia3, FreeBase4

and Geonames5. Query performance with such dataset sizes is like-wise good, with
sub-second response times for all the example queries found on the FactForge site.

1 http://factforge.net/
2 http://www.ontotext.com/proton-ontology
3 http://dbpedia.org/About
4 http://www.freebase.com/
5 http://www.geonames.org/

2 Reasoning in OWLIM

The inferencing strategy in OWLIM is one of materialization based on R-Entail-
ment as defined by ter Horst [3], where Datalog like rules with inequality constraints
operate directly on a single ternary relation that represents all triples. In addition, free
variables in rule heads are treated as blank nodes. Materialization involves computing
all the entailed statements at load time. While this introduces additional reasoning
cost when loading statements into a repository, the desirable consequence is that
query evaluation can proceed extremely quickly. Several standard rule sets are in-
cluded in all editions of OWLIM and these include:

empty – no inference;
rdfs6 – RDFS semantics using rule entailment, but without data-type

reasoning, i.e. without the literal generalization and related rules;
owl-horst – equivalent to pD*, again without data-type reasoning;
owl-max – RDFS and OWL-Lite (that can be captured in rules);
owl2-ql – a fragment of OWL2 Full based on DL-LiteR, a variant of DL-

Lite that does not require the unique name assumption;
owl2-rl7 – the OWL2 RL profile, a fragment of OWL2 Full amenable to

implementation on rule-engines, but without data-type reasoning.
In addition to the standard semantics, user-defined rule-sets can be used. In this

case the user provides the full pathname to a custom rule file that contains definitions
of axiomatic triples, rules and consistency checks. For ease of use, the rule files for
the standard rule-sets are included in the distribution and users can modify or extend
these for their specific purposes.

Consistency checks are used to ensure that the data model is in a consistent state
and are applied whenever an update transaction is committed, for example to ensure
that owl:Nothing has no members or that no pair of individuals have both
owl:sameAs and owl:differentFrom relationships.

During loading, all inferred statements are materialized, except those generated as
a result of the semantics of owl:sameAs. OWLIM-SE uses special data structures to
maintain equivalence classes and uses the URI of the first asserted resource in each
equivalence class in the statement indices. This allows for the correct expansion of
results during query-answering while keeping the index sizes manageable. This tech-
nique has the further advantage that it can be switched off during query answering in
order to limit the number of ‘duplicate’ results.

3 FactForge - a Reason-able View on LOD

FactForge is a reason-able view [] to the Web of Linked Data, made up of 11 of the
central LOD datasets, which have been selected and refined in order to serve as a use-
ful index and entry point to the LOD cloud and to present a good use-case for large-
scale reasoning and data integration. The compound dataset of FactForge is the largest
6 http://www.w3.org/TR/rdf-schema/
7 http://www.w3.org/TR/owl2-profiles/

body of heterogeneous general knowledge on which inference has been performed. It
counts 1.7 billion explicit statements; 15 billion retrievable statements available after
inference and owl:sameAs expansion (cf. section 2); including 1.4 billion inferred
statements. The datasets combined in FactForge are:

• DBPedia - an RDF dataset derived from Wikipedia, designed to provide as full
as possible coverage of the factual knowledge that can be extracted from the
InfoBoxes of Wikipedia with a high level of precision;

• Freebase - a dataset containing information about 11 million things, including
movies, books, locations, companies and more, with underlying schema based
on properties, and not ontologies, which exploits user generated categories;

• Geonames - a geographic database that covers 6 million of the most significant
geographical features on Earth, characterised by coordinates and relations to
other features (e.g. ‘parent feature’ in which the feature is nested);

• CIA World Factbook8 - a collection of structured data, including statistical,
geographic, political, and other information about all countries;

• Lingvoj9 - providing descriptions of the most popular human languages; cur-
rently it contains information about more than 500 languages;

• MusicBrainz10 (RDF from Zitgist) – a comprehensive music information suit-
able for browsing or useful for tagging;

• WordNet11 - a lexical database of English. Nouns, verbs, adjectives and ad-
verbs that are grouped into sets of cognitive synonyms (synsets).

 The interlinking of datasets is facilitated by DBPedia, which provides link-sets of
owl:sameAs links of DBpedia with GeoNames, Lingvoj, Freebase, MusicBrainz, UM-
BEL and Wordnet. These link-sets are also loaded into FactForge along with the fol -
lowing ontologies and schemata:

• DCMI Metadata Terms12 (Dublin Core - DC) - a relatively small, but very
popular metadata schema. It defines attributes that can be used to describe in-
formation resources;

• SKOS13 (Simple Knowledge Organization System) - a relatively simple RDF
schema for describing taxonomies of concepts linked to each other by any sort
of subsumption hierarchy;

• RSS - an RDF schema designed to enable syndication of machine-readable in-
formation about updates from Web sites;

• FOAF - an ontology for defining and linking personal profiles on the Web.
FactForge provides several methods to explore the combined dataset that exploits

some of the advanced features of OWLIM-SE. Firstly, ‘RDF Search and Explore’ al-
lows entities to be searched by keyword with a real-time auto-suggest feature ordered
by ‘RDF Rank’ (similar to Google’s Page Rank). The results page shows all triples
where the selected node appears as the subject, predicate or object, together with the

8 http://www4.wiwiss.fu-berlin.de/factbook/
9 http://lingvoj.org/
10 http://musicbrainz.org/
11 http://wordnet.princeton.edu/
12 http://dublincore.org/
13 http://www.w3.org/2004/02/skos/

preferred label, RDF Rank indicator, etc. Secondly, a SPARQL page allows users to
write their own queries with clickable options to add each of the known namespaces.
The results are presented in a conveniently formatted table with the option to down-
load results in various formats (SPARQL/XML, JSON, etc). Lastly, a graphical
search facility called ‘RelFinder’ [4] that discovers paths between selected nodes.
This is a computationally intensive activity and the results are displayed and updated
dynamically during each iteration. The resulting graph can be reshaped by the user
with simple click and drag operations. Entities within the emerging graph can be se-
lected and a properties box provides links to the sources of information.

4 PROTON - Unification Ontology for FactForge

In addition to the above, FactForge also uses an ontology called PROTON (de-
veloped by Ontotext) to unify concepts in the main datasets. The PROTON ontology
is a lightweight, upper-level ontology serving as a modelling basis for a number of
tasks in different domains. PROTON is meant to serve as a seed for ontology genera-
tion, i.e. new ontologies constructed by extending PROTON. It can also be used for
automatic entity recognition and more generally Information Extraction (IE) from text
for the purpose of semantic annotation (metadata generation). The PROTON ontology
contains about 500 classes and 150 properties, providing coverage of the general con-
cepts necessary for a wide range of tasks. The design principles can be summarized as
follows: (1) domain-independence; (2) light-weight logical definitions; (3) alignment
with popular metadata standards; (4) good coverage of named entity types and con-
crete domains, e.g. people, organizations, locations, numbers, etc.; and (5) good cov-
erage of instance data in Linked Open Data Reason-able views.

The ontology is encoded in a fragment of OWL Lite and split into two modules:
Top and Extent. Top module is an upper ontology covering some basic philosophical
distinctions between entity types, such as: Object – existing entities (agents, loca-
tions, vehicles); Happening – events and situations; Abstract – abstractions that
are neither objects nor happenings. The Top module also contains the main classes for
each of these types. The Extent module contains more domain and application ori-
ented classes. In FactForge PROTON is used to join the ontological classes and prop-
erties of the main datasets. The mapping between PROTON and a given dataset onto-
logy is done in three different ways: (1) using rdfs:subClassOf statements
between classes in both ontologies and rdfs:subPropertyOf for properties; (2)
using OWL expressions in the mappings where there is a difference in the conceptual-
ization in both ontologies; and (3) using inference rules in cases where additional in-
dividuals are necessary in the repository in order to support the mapping. Only the
PROTON ontology is loaded in FactForge. In this way the conceptual structure im-
plied by the particular dataset ontologies is ignored and only the PROTON definitions
are presented.

5 Evaluation

Table 1 shows the loading statistics for FactForge datasets. The figures are given in
thousands, note ('000) in the header of the columns. The first column lists the datasets
loaded. The column “Explicit Indexed Triples” shows the number of explicit facts
loaded. The column “Inferred Indexed Triples” presents the number of triples that
were generated as a result of the materialization during loading. The column “Total #
of Indexed Triples” gives the sum of explicit and implicit triples loaded in OWLIM.
The column “Entities” outlines the number of nodes in the graph generated for each
dataset, and column “Inferred closure ratio” indicates the number of inferred triples
per number of explicit triples loaded.

Dataset Dataset Statistics

Explicit
Indexed
Triples
('000)

Inferred
Indexed
Triples ('000)

Total # of
Indexed
Triples
('000)

Entities
('000 of
nodes in
the
graph)

Inferred
closure ratio

Sechmata (RSS, DC)
ontologies (geonames)

5 5 10 3 0,9

DBpedia (sameAs) 15 706 0 15 706 24 778 0
NY times 346 550 896 196 1,6
MusicBrainz 198 418 103 757 302 175 54 834 0,5
Lingvoj 2012 + ontology 22 27 49 20 1,2
Lexvo 693 542 1 235 584 0,8
CIA Factbook 40 39 79 24 1
Wordnet 2 724 13 234 15 959 1 081 4,9
Geonames 2.2.1 107 832 194 040 301 872 42 758 1,8
DBpedia core 3.7 659 738 205 602 865 341 155 209 0,3
Freebase 705 161 233 026 938 187 196 947 0,3
Proton 6 637 942 637 948 4 115 297,70
Total 1 690 691 1 388 764 3 079 456 476 437 0,8

Table 1 Statistics over statements loaded in FactForge

The effects of the materialization and the owl:sameAs optimization described in
section 2 above result in 79% index compression, which means that close to 12 billion
triples that are not indexed are available for querying, making the total of retrievable
triples of FactForge close to 15 billion. The loading speed amounts to 8 032 explicit
indexed statements per second, and 14 630 indexed statements per second on a CPU -
2 x Intel Xeon X5690, 3.46GHz, 12MB cache, 6 Core, RAM - 144 GB machine.

The utility of reasoning becomes apparent during the evaluation of SPARQL quer-
ies. For example the following SPARQL query about Mass media companies in
Europe which uses PROTON predicates only:

PREFIX ptop: <http://proton.semanticweb.org/protontop#>

PREFIX pext: <http://proton.semanticweb.org/protonext#>

PREFIX dbpedia: <http://dbpedia.org/resource/>

SELECT * WHERE

 {

 ?Company ptop:locatedIn ?Place ;

 pext:industryOf dbpedia:Mass_media .

 ?Place ptop:subRegionOf dbpedia:Europe.

 }

returns answers indicating that “Associated Newspapers” is a media company loc-
ated not only in the United Kingdom, but also in England and in London based on the
materialization of the transitive relation ptop:subRegionOf.

Furthermore, the queries with formulated with PROTON only return results much
faster than queries combining predicates and concepts from different LOD datasets in
FactForge, which is due to optimization of the joins traversed.

6 Conclusion

In this paper we presented the inference mechanisms implemented in the OWLIM
semantic repositories and their application to a dataset formed by several LOD data-
sets. The materialization of statements in the closure of the inference rules provides a
sound basis for extracting inferred information at query time.

Acknowledgments
This work is partially supported by RENDER FP7-ICT-2009-5, Contract no.:

257790.

References

1. Damova, M., Kiryakov, A., Grinberg, M., Bergman, M., Giasson, F., Simov, K..
Creation and Integration of Reference Ontologies for Efficient LOD Manage-
ment. In: Semi-Automatic Ontology Development: Processes and Resources, IGI
Global, USA, Armando Stellato and Maria Teresa Pazienza (Eds.) 2012.

2. Kiryakov, A; Ognyanov, D; Velkov, R; Tashev, Z; Peikov, I; LDSR: a Reas-
on-able View to the Web of Linked Data, in: SW Challenge (ISWC2009), 2009.

3. ter Horst, H. J. Combining RDF and Part of OWL with Rules: Semantics, Decid-
ability, Complexity . In Proceedings of The Semantic Web ISWC 2005, LNCS
volume 3729 pp. 668–684. Springer Berlin / Heidelberg, 2005.

4. Heim, P; Hellmann, S; Lehmann, J; Lohmann, S; Stegemann, T; (2009) RelFind-
er: Revealing Relationships in RDF Knowledge Bases. In Semantic Multimedia,
volume 5887 of LNCS, pp. 182–187. Springer Berlin/Heidelberg, 2009.

	ore2012_front.pdf
	ore2012_paper1
	ore2012_paper2
	ore2012_paper3
	ore2012_paper4
	ore2012_paper5
	ore2012_paper6
	ore2012_paper7
	ore2012_paper8
	ore2012_paper9
	ore2012_paper10
	ore2012_paper11
	ore2012_paper12
	ore2012_paper13
	ore2012_paper14
	1 Introduction
	2 Reasoning in OWLIM
	3 FactForge - a Reason-able View on LOD
	4 PROTON - Unification Ontology for FactForge
	5 Evaluation
	6 Conclusion
	References

