
Automatic Detection of Business Process
Interference

N.R.T.P. van Beest1, E. Kaldeli2, P. Bulanov2, J.C. Wortmann1, and
A. Lazovik2

1 Department of Business & ICT, Faculty of Economics and Business,
University of Groningen

Nettelbosje 2, 9747 AE Groningen, The Netherlands
2 Distributed Systems Group, Johann Bernoulli Institute, University of Groningen,

Nijenborgh 9, 9747 AG, The Netherlands

Abstract. Today’s organizations are characterized by long-running dis-
tributed business processes, which involve different stakeholders and share
common resources. One of the main challenges posed in such a highly dis-
tributed setting comes from the interference between different processes
that are running in parallel. During execution of a business process, a
data modification caused by some external process may lead to erroneous
and undesirable business outcomes. In order to address this problem, we
propose to annotate business processes with dependency scopes, which
cover critical sections of the process. Erroneous execution can be pre-
vented by executing intervention processes, which are triggered at run-
time. However, for complex processes with a large number of activities
and many interactions with the environment, the manual specification
of the appropriate critical sections can be particularly time-consuming
and error-prone. To overcome this limitation, we present an algorithm
for automating the discovery of critical sections. The proposed approach
is applied on a real case-study of a BP from the Dutch e-Government.

1 Introduction

Modern private and public organizations are moving from traditional, propri-
etary and locally managed Business Process Management Systems (BPMS) to
BPMS where more and more tasks are outsourced to third party providers and
resources are shared among different stakeholders. Often, this is realized by the
emergent paradigms such as Service Oriented Computing (SOC) and cloud com-
puting. As a result, business processes (BPs) can no longer be considered in
isolation, since data can be simultaneously accessed and modified by different
external processes. Disregarding the interdependencies with external actors and
other processes may lead to inconsistent situations, potentially resulting in un-
desirable business outcomes. The situation where undesirable business outcomes
are caused by data modifications of some other concurrently executing process is
known as process interference [1, 2]. The problem of process interference is par-
ticularly relevant for knowledge-intensive BPs, where shared data are accessed
and modified by many processes, involving a large number of stakeholders.

Automatic Detection of Business Process Interference 7

E-Government is a typical area characterized by multiple concurrently exe-
cuting knowledge-intensive processes. These processes access and modify com-
monly shared resources such as citizen data, information reported by external
contracted parties, etc. In such a context, a “think globally, act locally” approach
has to be adopted: each BP instance has to take its own action, independently of
other processes, based on how its knowledge about the world evolves during run-
time, and how this knowledge affects the next tasks in its workflow. For example,
important data used by subsequent tasks may become obsolete, and conditions
on which the process relies may not hold anymore. Therefore, a BP has to be
continuously informed about changes concerning that data, reason about them,
and react accordingly in order to be able to ensure its consistency with the new
state of the world.

In the Netherlands, a first attempt has been made to provide a Software
as a Service (SaaS) solution for the local e-Government (www.govunited.nl).
One of the processes that is proposed as a candidate for this initiative concerns
the process of the Dutch Law for Societal Support, known as the WMO law.
This law is intended to offer support for people with a chronic disease or a
disability, by providing facilities (usually by external parties) such as domestic
care, transportation, a wheelchair or a home modification. Naturally, several
different instances of the WMO process can be executed concurrently, together
with other governmental processes, which may access and modify the same data.
For example, during the execution of the WMO process, the citizen may move
to a different address, the medical status of the citizen may alter, the eligibility
criteria may change because of some new directive etc. These changes may pass
unnoticed by BPs which rely upon them, and consequently result in unexpected
behavior and undesirable business outcomes. The consequences are often noticed
only by end customers [3], by erroneous orders or invoices, customer requests that
are never handled, etc.

Traditional verification techniques for workflow and data-flow (e.g. [4]) are
not sufficient for ensuring the correctness of such BPs, as they assume a closed
environment where no other process can use a service that affects the data used
by that organization. In addition, most work about resolving process interference
refers to failing processes or concerns design-time solutions [5, 6]. Consequently,
neither of these solutions is suitable for a highly dynamic SaaS environment. In
[2], a run-time mechanism is proposed, where vulnerable parts of the process are
monitored in order to manage interferences by employing intervention processes.
Dependency scopes (DS) are used to specify a critical section of the BP, whose
correct execution relies on the accuracy of a volatile process variable, i.e. a
variable that can be changed externally during the execution of the process. If
a volatile variable is modified by some exogenous factor during execution of the
activities in the respective DS, an intervention process (IP) is triggered, with
the purpose of resolving the potential execution problems stemming from this
change event. However, for complex processes with a large number of activities
and many interactions with the environment, the task of manually annotating
a BP with DSs becomes difficult, time-consuming, and prone to errors. Thus,

8 N.R.T.P. van Beest et al.

critical parts of the BP whose correct execution is dependent on the validity of
some volatile variable may be neglected.

In this paper, we extend the initial idea presented in [2], by systematizing
the main methodology, and providing an algorithm which automates the task of
identifying the critical parts of a BP. To this end, we concretize the proposed
approach by describing the semantic extensions to the BP modelling that allow
the specification of DSs for resolving runtime process errors. Given a block-style
BP specification and some basic information about the services it uses (i.e. the
input-output parameters and internal state variables), we show how the parts
of the process that are covered by DSs can be automatically inferred. This way,
the task of the BP designer can be highly facilitated.

The remainder of this paper is organized as follows. Section 2 describes a pos-
sible interference scenario on a real case-study taken from Dutch e-Government,
which plays the role of our running example. In Section 3 the basic definitions re-
quired for the proposed approach are presented. The algorithm for the automatic
identification of critical sections is described in Section 4. Section 5 provides an
overview of related work, and the overall conclusions are drawn in Section 6.

2 A Process Interference Case-study

In order to illustrate the effects of process interference and the potential ways to
overcome them, let us consider a real case-study from the Dutch e-Government
regarding the WMO law, as described in [2]. The BP under investigation (referred
to as WMO process) concerns the handling of the requests from citizens at one
of the 430 municipalities in the Netherlands. In this section, the WMO process
is described as used by one of the municipalities. Furthermore, an example is
provided, showing the required DSs along with the required IPs.

2.1 WMO Process Description

The WMO process (shown in Figure 1) starts with the submission of an appli-
cation for a provision by a citizen. After receiving the application at the munic-
ipality office, a home visit is executed by an officer, in order to gather a detailed
understanding of the situation. After the home visit, additional information on
the citizen’s health may still be required, which can be obtained via a medical
advice provided by e.g. a general practitioner. Based on this information, a de-
cision is made by the municipality to determine whether the citizen is eligible to
receive the requested provision or not. In case of a negative decision, the citizen
has the possibility for appeal. In case of a positive decision, the process contin-
ues and the requested provision will be provided. For domestic help, the citizen
has the choice between “Personal Budget” and “Care in Kind”. In case of a
“Personal Budget”, the citizen periodically receives a certain amount of money
for the granted provision, and in case of “Care In Kind” suppliers who can take
care of the provision are contacted. For obtaining a wheelchair, first the detailed
requirements are acquired before sending the order to the supplier. The home

Automatic Detection of Business Process Interference 9

Home visit

Decision

Medical

advice

[Medical

advice]
[No medical

advice]

Intake and

application

[Appeal]

[Affirm

decision]

[Revise

decision]

[No appeal]

[Rejected]

Payment

[Domestic help]

[Approved]

[Else]

[Wheelchair]
[Home

Modification]

Tender

procedure

Check tender

with decision

[Tender not ok]

[Tender ok]

Acquire

requirements

T
e

rm
in

a
te

T
e

rm
in

a
te

Send order to

supplier

Send order

confirmation to

selected supplier

[Personal

budget]
[Care

in kind]

Send request

to supplier

Receive delivery

confirmation

Receive delivery

confirmation

Handle invoice

+

Handle invoice

+

Handle invoice

[Invoice correct]

Check invoice

with decision

Receive

invoice

Return invoice

to the supplier

[Invoice

not correct]

Fig. 1: The WMO process

modification involves a tender procedure to select a supplier that provides the
best offer. If the selected tender is approved by the municipality, the order is
sent to the selected supplier. After delivery of the provision, an invoice is sent
by the supplier to the municipality. Finally, the invoice is checked and paid.

2.2 Interference Examples

The request for a wheelchair or a home modification may take up to 6 weeks
until the delivery of the provision. These processes depend on the correctness of a
number of process variables, like the address of the citizen and the content of the
decision. However, these process variables may be changed by another process
running in parallel, independently from the WMO process, and are, therefore,
volatile. A change in either of these process variables (e.g. address) may have
potentially negative consequences for the WMO process, due to its dependencies

10 N.R.T.P. van Beest et al.

Check Tender

Tender

Procedure

Send Order to

Supplier

tenderOK

== TRUE

tenderOK

== FALSE

Send Order to

Supplier

Acquire

Requirements

Delivery

Confirmation

DS2:

{WMO Eligibility Criteria}

Delivery

Confirmation

Send Request

to Supplier

Handle

Invoice

provision ==

‘home modification’

provision ==

‘wheelchair’

provision ==

‘care in kind’

provision ==

‘personal budget’

DS1:

{Address, Medical Condition}

DS3: {Address,

 Medical Condition}

Fig. 2: WMO dependency scopes

on those variables, and lead to erronous outcomes. Such situations are typical
examples of process interference.

For example, the requirements of a wheelchair may depend on certain char-
acteristics of the citizen’s home. Consequently, an address change after “Acquire
requirements” might result in a wheelchair that does not fit the actual require-
ments. Similarly, if the citizen moves to a nursing home after “Check tender
with decision”, the home modification is not necessary anymore. However, the
supplier is not notified of this address change and the municipality is notified
through a different process, which is external to the WMO process. As a result,
unless some action is taken to cancel or update the order, the WMO process will
proceed with the home modification. In order to guard for changes to the volatile
process variables, DSs can be defined, covering those activities for which such a
change poses a potential risk of interference. In Figure 2, a part of the process is
annotated with DSs using a Process Modeller tool developed for the graphical
modeling of BPs. The tool provides a selection of standard control blocks like
flow, switch etc., with the extra support of design tools for modeling DSs. For
the implementation details see [7].

The activities in DS1 rely on the accuracy of the address. If the address
changes, the DS should be triggered, and potentially some recovery activities
need to be executed, depending on the state of the BP at that point. For example,
if the address change is detected before the order for a wheelchair is sent to the
supplier, it is sufficient to execute the IP as shown in Figure 3a. However, if
the order is already sent to the supplier, some additional activities are required
(Figure 3b). First of all, the current order should be put on hold. After acquiring

Automatic Detection of Business Process Interference 11

Send order to

supplier
Home visit

Receive delivery

confirmation

Acquire

requirementsa)

b)

[Requirements

Unchanged]

[New

Requirements]

Home visit
Acquire

requirements
Pause order

Receive delivery

confirmation

Send order to

supplier
Cancel order

Resume order

Fig. 3: WMO intervention examples

the requirements again, it is evaluated whether there is a change. If not, the order
can be resumed, otherwise the old order should be cancelled and a new order
should be sent. The specification of IPs is outside the scope of this paper (for a
detailed discussion about the specification of IPs see [2] and [7]).

3 Basic Definitions

In this section, we provide the basic definitions regarding the BP representation
extended with the support of DSs. First, we define the Service Repository (SR),
which is a registry that keeps semantic information about a set of services that
are accessible to the client who is executing a specific BP. The SR plays the role
of a pool of service descriptions and instances, which are used as the building
elements of different process specifications. Service descriptions specify the basic
functionalities provided by a service. Service instances refer to specific providers,
which offer a service whose functionality conforms to some service description.

The service descriptions specify the operations offered by the respective ser-
vice type and are represented in terms of simple semantics. Service instances re-
fer to specific providers of a certain service description. The service descriptions
can be extracted from standard semantic languages for representing Web Ser-
vices, such as WSDL-S (www.w3.org/Submission/WSDL-S) and OWL-S (www.
w3.org/Submission/OWL-S). The service descriptions capture the Input-Output
behavior of the operations, i.e. the type of the input parameters inputs and of
the expected outputs, as well as some information about its internal variables
(similar to Locals in OWL-S). No extra semantic information is required to au-
tomatically identify the critical sections of a BP.

Definition 1 (Service Repository (SR)). A Service Repository SR=(SD ,
SI) is a registry, which keeps a set of Service Descriptions SD, and a set of Ser-
vice Instances SI . A Service Description sd ∈ SD is a tuple sd = (sdid ,O ,SV),
where sdid is a unique identifier, O is a set of service operations, and SV is a
list of variables, each ranging over a finite domain. These variables correspond to
state variables internal to the service, whose value can be changed by the service
operations. Each service operation o ∈ O is a tuple o = (id(o), in(o), out(o))
where:
– id(o) is the identifier of the operation
– in(o) is a list of variables that play the role of input parameters to o, ranging
over finite domains

12 N.R.T.P. van Beest et al.

– out(o) is a list of variables that play the role of output parameters to o,
ranging over finite domains

A Service Instance si ∈ SI is a tuple si = (iid(si), st(si)):
– st(si) is the unique identifier (service type) of the service description sd ∈ SD
this instance complies with

– iid(si) is an instance identifier. For each pair of service instances si1 , si2
∈ SI that have the same service type st(si1) = st(si2), iid(si1) 6= iid(si2).

The set of state variables involved in the SR may be used by different running
process instances, and their value may be changed by any process that has access
to the respective setting service operation.

In the followings, the working definition of a Business Process (BP) is pro-
vided. Although the WMO process (Figure 1) is represented in BPMN-notation
for readability, the core BP representation used in this paper is block-structured
[8], and uses the basic BPEL constructs of BPEL, enriched with DSs. As such,
the syntax of the BP is block-structured and unambiguously defined, so that the
BP can be directly executed by an orchestrator [9], and automatically parsed to
identify the parts of the BP that should be covered by a DS. The representation
is ultimately a tree structure where a block can have other blocks as children,
and for each block its parent can be obtained. All activities included in the BP
are references to service instances that exist in the Service Repository.

Definition 2 (Business Process (BP)). Given a Service Repository SR=
(SD, SI), a Business Process is a tuple BP = (PV ,E), with E being a pro-
cess element E = (ACT | SEQUENCE | FLOW | SWITCH | REPEAT |
WHILE | DS), where:

– PV = PVi ∪ PVe is a set of variables ranging over finite domains.
- PVi is a set of internal variables, which are declared at the BP level (BP-

specific). A subset of PVi are passed as input parameters to the entire BP,
in which case we write BP(pv1 , . . . , pvn), where pvi ∈ PVi and pvi can be
initialized with specific values at execution time.

- PVe is a set of external variables, which refer to state variables declared
in the SR. An external variable v ∈ PVe is a reference sdid .iid .vid, where
sdid is the identifier of a service description sd = (sdid ,O ,SV) ∈ SD, iid
is the identifier of a service instance si = (iid , sdid) ∈ SI , and vid is the
identifier of some state variable v ∈ SV .

– ACT is a process activity, which represents the invocation of a service op-
eration. For instance, in BPEL it may correspond to an invoke, receive,
reply, etc. Every ACT refers to an operation that exists in SI . It is a tuple
act = (id(act), in(act), out(act)), where id(act) is a reference sdid .iid .oid,
with sdid being an identifier of a service description sd = (sdid ,O ,SV) ∈
SD, iid the identifier of a service instance si = (iid , sdid) ∈ SI , and oid is the
identifier of some operation o ∈ O. The input and output parameters of act
refer to the inputs and outputs of the respective oid, i.e. in(act) = in(oid) and
out(act) = out(oid). The input (output) parameters of all activities in the BP

Automatic Detection of Business Process Interference 13

form the sets IP (OP). Input variables can be assigned with constant values or
other process variables: id(act)(ip1 := v1 , . . . , ipn := vn), where ipi ∈ in(act),
vi ∈ (PV ∪OP), or vi is a value compliant with ipi ’s domain. There are also
two special types of activities: no-op, which represents an idle activity, and
exit, whose execution causes the entire BP to halt.

– SEQUENCE refers to a totally ordered set of process elements, which are
executed in sequence: SEQUENCE{e1 . . . en}, where ei is a process element.

– FLOW represents a set of process elements, which are executed in parallel:
FLOW {e1 . . . en}, where ei is a process element.

– SWITCH is a set of tuples {(c1 , e1), . . . , (cn , en)}, where ei is a process
element and ci is a logical condition C ::= var ◦ v, where var ∈ (PV ∪OP),
v is some constant belonging to var’s domain, and ◦ is a relational operator
(◦ ∈ {=, <,>, 6=,≤,≥}). All ci participating in a SWITCH refer to the same
variable var and are mutually exclusive.

– REPEAT represents a loop structure, and is defined as a tuple (pe, c{pei}),
where c is a logical condition as already defined, and pe, pei are process ele-
ments. c is evaluated just after the end of pe, and if it holds then pe is repeated,
after the execution of the optional pei .

– DS is a dependency scope as defined in Definition 3.

3.1 Dependency scopes

The DS is based on a guard-verify structure to deal with modification events
due to factors exogenous to the BP, e.g. due to some other process execution
which affects some data on which the BP relies. The critical part of the BP is
included in the guard block, while the verify block specifies the types of events
that require intervention. The mechanism of event recording and handling are
out of scope of this paper (for a system dealing with process-generated events see
e.g. [10]). Whenever such an event occurs, the control flow is transferred to the
verify block, and the respective goal is activated. Once the resulting IP finishes
execution in the updated environment, the control flow of the BP continues
from the point following the guard-verify structure, unless it is explicitly forced
to terminate.

Definition 3 (Dependency Scope (DS)). Given a SR = (SD ,SI) and a
BP = (PVi ∪ PVe ,E), a dependency scope is a tuple DS = 〈guard(VV){CS},
verify({(ci , IPi | terminate(IPi))})〉, where:

– guard(VV) indicates the set of volatile variables VV ⊂ PVe whose modifi-
cation triggers the verification of the DS, and CS a process element of BP
which is called the Critical Section. Whenever during the execution of CS a
modification event regarding the value of a vv ∈ VV is received, the verify part
of the DS is triggered, and BP’s execution is interrupted.

– verify({(ci , IPi)}) comprises a set of tuples consisting of a logical condition ci
and an intervention process IPi in compliance with Definition 2 to be pursued if
ci holds. Providing a case condition is optional, with the default interpretation

14 N.R.T.P. van Beest et al.

being ci = TRUE. IPi specifies a BP which ensures the satisfaction of the
properties that reflect the state right after the final activity of CS. After the
interruption of the BP, some IPi is executed, and then BP is resumed just
after CS (and from any other parallel branches that were interrupted).

– terminate(IP) forces the rest of BP’s execution to be aborted after completing
IP’s execution.

Following Definition 3, the DS specification representing DS1 of Figure 2 is
as follows, where IPa, IPb and IPc refer to the respective intervention processes,
which take care of repairing the erroneous execution in each of the cases.

<ds>
<guard>

<variables >
<variable name="address" dataType="dt:address"/>
<variable name="medCond" dataType="dt:medInfo"/>

</variables >
<criticalSection >

<!-- Subprocess covered by DS1 as in Figure 2 -->
</criticalSection >

</guard >
<verify >

<case condition="address.county!=‘Groningen ’">
<terminate >

<invoke name="IPa"/>
</terminate >

</case>
<case condition="address.county=‘Groningen ’&AND;medCond!=‘deceased ’">

<invoke name="IPb"/>
</case>
<case condition="medCond=‘deceased ’">

<terminate >
<invoke name="IPc"/>

</terminate >
</case>

</verify >
</ds>

According to DS1 , if a modification event regarding the address or the medical
condition is received within the scope of the guarded subprocess, different IPs are
executed, depending on the state of execution and the kind of modification that
has occurred. For example, if the address change indicates that the citizen has
moved to another municipality, then IPa includes canceling the order (either for
a wheelchair or home modification) if one has already been issued, and sending a
notification to the city hall. Similarly, IPb takes care of the situation where the
customer has moved within the range of the municipality, and IPc in case his
medical condition has changed to ‘deceased’. In the following section we describe
how the guard(VV){CS} part of a DS description can be derived automatically,
by parsing the BP specification.

4 Automatic Identification of Critical Sections

The algorithm of automated generation of the parts of a BP covered by a DS is
presented in Algorithm 1 below. The algorithm guarantees that the computed

Automatic Detection of Business Process Interference 15

CSs are elements of the BP in compliance with Definition 2. CSs cover all activi-
ties that are directly or indirectly dependent on the same set of volatile variables
VV . That is, they either use a vv ∈ VV as input or use the output of another
activity, which is dependent on vv . These activities are referred to as Dependent
Activities (DA). In order to ensure that important change events will not pass
untreated, any part of the process in a potential execution path between two
activities dependent on the same VV should also be covered by the respective
CS. This is necessary to take care of any modification of vv that occurs dur-
ing the execution of this intermediate part, since the modification may require
the cancelation or repetition of some preceding part of the BP which relied on
some vv ∈ VV (e.g. performing a new visit to the new house if the address
has changed), and which is used by a succeeding element (e.g. to calculate the
characteristics of the requested wheelchair). However, branches in switch or flow
constructs that are not on a potential path between two activities dependent on
some vv , should not be unnecessarily included in the respective CS, in order to
avoid unnecessary invocation of intervention processes.

a) b)

c)

Fig. 4: CS creation examples

In Figure 4, some examples of CSs are provided to illustrate the properties
described above. The shaded activities are dependent on VV and should be
covered by a CS. The CSs are indicated by a dashed line. In case (a), only
the specific branches of the switch-constructs that comprise dependent activities
are included in the CS. In situation (b), however, the second switch has to
be covered entirely by a CS, because the last activity is dependent on VV as
well. Any modification event regarding a vv ∈ VV that occurs during the upper
branch (which is not dependent on VV) has still to be dealt with, since the last
activity may use a a variable that is a result of some dependent activities before
the switch, which produced this result based on the obsolete vv . In situation (c),
both branches of the first switch contain activities that are not dependent on
VV . However, as they both are on a path between activities that are dependent
on VV , the entire switch is covered by a CS.

The main function of Algorithm 1 is extractScopes, which takes as an input a
BP specification in accordance with Definition 2 and the list of volatile variables
VV . extractScopes returns a list of tuples 〈VVi ,CSi〉, which correspond to the
guard parts of all DSs in the BP. Given a BP = (PVi ∪ PVe ,E), VV = PVe .
That is, all state variables that are declared in the SR and used in the BP should
be guarded, since their modification may be a source of erroneous results. The

16 N.R.T.P. van Beest et al.

BP is treated as a tree (represented in XML), where the root is the outermost
element in the specification, and the leaves are the activities.

The outermost loop in the function extractScopes iterates over the list of
volatile variables VV . For each vv ∈ VV , critical sections are extracted sepa-
rately. Identical CSs for different variables are merged into a united CS at the
end by mergeScopes. The first step (line 4) is to find all activities and switch–
blocks that depend directly or indirectly on the volatile variable vv , by calling
the function getDependentElems. First (line 18), all activities for which vv is
assigned to some of their input parameters directly or by transitivity are added
to the dependent elements DE . Then (line 24), DE is augmented by adding all
switch–blocks whose condition is either on vv , or some variable produced by the
already considered activities. All elements in DE are arranged in a breadth-first
order as they appear in the BP. The next step in extractScopes is to iterate
through the list DE . In the inner loop, for each pair of elements ei, ej , it is
checked whether their minimal common ancestor is of type sequence. If so, then
the function getTempCS is called, which returns a set of elements that are can-
didates for being CSs with respect to the variable vv , and lie between ei and
ej . Then, ej can be removed from DE , since subsequent inspections on it are
redundant, as the appropriate CSs covering it have already been computed.

Function getTempCS(ei , ej ,BP) first calls getPathBtw to compute the path
between ei and ej (line 31), which comprises all elements that are part of the
sequence between ei and ej , including the special markers StartBranchEl and
EndBranchEl . These markers indicate the start (splits) and end points (joins)
of branching elements. Consequently, a path is a list with members of type Item
(line 44), where an item is either a process element or a BranchElMarker . Mark-
ers are added in the path only if they concern joins (splits) for which the re-
spective split (join) is not encountered during the traversal of the BP from ei
to ej . This way, the markers divide the path into the appropriate sequences of
elements (lines 33 to 39), each of which is a candidate for being a CS.

Function getPathBtw uses the auxiliary function nextItems (not explained
in the algorithm for space reasons), which returns a list consisting of the next
element in the sequence path, and some possible EndBranchEl , if any are en-
countered before the next element is fetched. These are added to the path, and
the process proceeds by fetching the next items (line 45), until the element in
the sequence that contains ej is reached. In the latter case, pathInElem is called,
which traverses the path within this last element until ej is reached. If the ele-
ment containing ej is an activity or sequence, this activity (ej) or the subsequence
till ej (line 52) are returned respectively. If the element is a switch or flow, then
a StartBranchEl marker is added in the list of results, and the branch containing
ej is inspected. pathInElem is called recursively on this branch, and all items in
the path leading to ej are collected in pathj . Consequently, the computation of
the entire path is completed, and returned to getTempCS . The path is traversed
(line 33), and divided into the appropriate CSs: currCS is constructed as a se-
quence of the elements in path, until a marker is met, at which point currCS is
added to the list of candidate CSs.

Automatic Detection of Business Process Interference 17

Algorithm 1 Automatic computation of the set of the pairs
Guarded={〈VVi ,CSi〉}, consisting of volatile variables and respective ele-
ments that constitute the Critical Sections

1: function extractScopes(BP ,VV): List[(List[V], E)]
2: for each vv ∈ VV do
3: guardList = ∅
4: DE = getDependentElems(vv ,BP)
5: for each ei ∈ DE do
6: tmpCS = ∅
7: DE = DE .remove(ei)
8: for each ej ∈ DE do
9: if type(minCommonAncestor(ei, ej))=sequence then

10: tmpCS = tmpCS ∪ getTempCS(ei, ej , BP)
11: DE = DE .remove(ej)

12: for tmpCSi ∈ tmpCS do
13: guardList .add(〈{vv}, tmpCSi〉)
14: mergeScopes (guardList)

15: function getDependentElems(vv ,BP): List[Element]
16: varList = {vv}
17: DE = ∅
18: for each ai ∈ BP .getActivities do
19: for each ipi := v ∈ ai .parseInputAssignments do
20: if v ∈ varList then
21: for each opi ∈ out(ai) do
22: varList .add(opi)

23: DE .add(ai); break;

24: for each SWITCHi ∈ BP .getSWITCHelements do
25: ci = SWITCHi .getFirstCondition
26: if ci .getLeftVariable ∈ varList then
27: miDE.add(SWITCHi);

28: return DE

29: function getTempCS(ei , ej ,BP): List[Elem]
30: tmpCSList = ∅
31: path = getPathBtw(ei , ej ,BP)
32: currCS = ∅
33: for each item ∈ path do
34: match type(item)
35: case Element:
36: currCS .attachInSeq(item)

37: case BranchElMarker:
38: tmpCSList .add(currCS)
39: currCS = ∅
40: return tmpCSList

18 N.R.T.P. van Beest et al.

41: function getPathBtw(ei , ej ,BP): List[Item]
42: currElem = ei
43: while ¬ currElem.contains(ej) do
44: path.append(currItems)
45: currItems = nextItem(currElem, ei ,BP)
46: currElem = currItems.getElement
47: if currItems = ∅ then return ∅
48: path.append(pathInElem(currElem, ej ,BP))
49: return path

50: function pathInElem(el , endEl ,BP): List[Item]
51: match type(el)
52: case activity:
53: return {el}
54: case sequence:
55: return el .subsequenceTill(endEl)

56: case SWITCH ∨ flow:
57: pathj = {StartBrEl}
58: branchj = el .getBranchWith(endEl)
59: return pathj .append(pathInElem(branchj , endEl ,BP)

60: return ∅

Once the list of temporary CSs tmpCS regarding a volatile variable vv is
computed as described above, extractScopes proceeds with constructing the re-
spective guardList consisting of tuples 〈{vv}, tmpCSi〉 (line 12). After repeating
the process described above for each vv ∈ VV , mergeScopes is called, in order
to clean up the candidate CSs. The following steps are performed in that order:

– If there are two tuples 〈{v1},CS1 〉 and 〈{v2},CS2 〉, where CS1 and CS2 are
identical, then they are replaced by a single tuple 〈{v1, v2}, CS1〉.

– If there are two tuples 〈{v1},CS1 〉 and 〈{v2},CS2 〉, where v1 =v2 and
CS1 .descendantOf (CS2), then the former tuple is removed as redundant.

– If a list of tuples on the same volatile variable set 〈VV ,CS1 〉, . . . , 〈VV ,CSn〉
correspond to the branches of a switch, i.e. there is an eswitch = switch{
(CS1 , e1), . . . , (CSn , en)}, then these are replaced with a single CS, which cov-
ers the entire switch–element. A similar process is performed for flow branches.

– If a list of tuples on the same volatile variable set 〈VV ,CS1 〉, . . . , 〈VV ,CSn〉
are interrelated through a sequence relation, i.e. there is a seq{CS1 , . . . ,CSn},
then these are replaced with a single CS, which covers the entire sequence.

Algorithm 1 has been applied to the BP specification of the WMO process
represented in Figure 1. The algorithm identified three volatile variables, and
all five critical sections related to them. The total time for parsing the WMO
process specification and computing all CSs is below 100 msec. The discovered
CSs can then be projected on the Process Modeller, as presented in Figure 2.

Automatic Detection of Business Process Interference 19

5 Related work

Process interference between concurrent BPs occurs frequently in organizations,
and some solutions have been provided in literature, e.g. [2, 5, 6]. Although the
use of temporal logic for data-flow analysis in business processes can ensure
soundness of both the control-flow and the data-flow [4], runtime disruptions due
to external data changes are not accounted for. As a result, process interference
can not be prevented or resolved by such methods.

However, most existing mechanisms to resolve process interference are either
providing a design-time solution, thus requiring that the designer anticipates
all potential problems and ways to overcome them in advance, or are based
on failing processes [5]. A more elaborate solution for process interference in
Service-Oriented Computing is provided by [6], where in addition to failing pro-
cesses, events like exceptional conditions or unavailable activities are covered.
More specifically to cloud computing, an approach for handling faults due to
failing processes or services is presented by [11]. In practice, however, process
interference does not necessarily cause processes to fail. Often, processes may
end up with providing erroneous outcomes as a result of wrong data values, a
problem that is acknowledged in [2].

Interference causes processes to provide erroneous outcomes as a result of
wrong data values. In most cases, however, wrong data values are interpreted a
data integrity problem. Much work has been done with respect to ensuring data
integrity in distributed and concurrent systems. Some techniques for checking
the integrity of distributed and dynamic data stored on the cloud are discussed
in [12, 13], while [14] focus on run-time failures that affect cloud short-lived data.
Although the interference problem is related to concurrent data usage, the cause
of the problem is beyond data integrity issues. Therefore, we focus on problems
that arise at the level of process execution due to the use of outdated data.

6 Concluding Remarks

One of the main challenges posed by the emergent distributed setting of modern
BP Management Systems comes from the interference between different pro-
cesses that access common resources. During execution of a business process, a
data modification caused by some external factor may lead to erronous results,
and should, therefore, be guarded and dealt with. To address this issue, the cor-
rect identification of the sections of a business process, whose correct execution
depends on some volatile variable, is very important. These sections shoul be
guarded upon, so that whenever a modification event is received during their
execution, an appropriate intervention process is executed, in order to restore
the process to a consistent state. However, the task of manual specification of
these critical sections can become cumbersome and prone to errors, especially
for processes with a complex structure, using many shared resources. To facili-
tate this task, we have developed an algorithm, which automatically computes
the appropriate critical sections, given a BP specification and some semantics

20 N.R.T.P. van Beest et al.

regarding the input-output and the internal state variables of the service oper-
ations used by the process. We have shown how this can be applied in a real
case-study taken from the Dutch e-government. The results can be presented on
a process modelling tool in a graphical way, so as to assist the process designer
in the specification of the necessary dependency scopes in order to ensure the
delivery of correct results by the process.

References

1. Xiao, Y., Urban, S.: Process dependencies and process interference rules for ana-
lyzing the impact of failure in a service composition environment. In: Business Inf.
Systems. Volume 4439 of LNCS. (2007) 67–81

2. van Beest, N.R.T.P., Bulanov, P., Wortmann, J., Lazovik, A.: Resolving business
process interference via dynamic reconfiguration. In: Proc. of 8th Int. Conf. on
Service Oriented Computing (ICSOC). (2010) 47–60

3. van Beest, N.R.T.P., Szirbik, N.B., Wortmann, J.C.: Assessing the interference in
concurrent business processes. In: Proc. of 12th Int. Conf. on Enterprise Informa-
tion Systems (ICEIS). (2010) 261–270

4. Trčka, N., van der Aalst, W., Sidorova, N.: Data-flow anti-patterns: Discovering
data-flow errors in workflows. In: Adv. Inf. Systems Eng. Volume 5565 of LNCS.
(2009) 425–439

5. Xiao, Y., Urban, S.: Using data dependencies to support the recovery of concurrent
processes in a service composition environment. In: Proc. of the 16th Int. Conf.
on Cooperative Inf. Systems. (2008) 139–156

6. Urban, S., Gao, L., Shrestha, R., Courter, A.: The dynamics of process modeling:
New directions for the use of events and rules in service-oriented computing. In:
The Evolution of Conceptual Modeling. Volume 6520 of LNCS. (2011) 205–224

7. van Beest, N.R.T.P., Kaldeli, E., Bulanov, P., Wortmann, J., Lazovik, A.: Auto-
mated runtime repair of business processes. Technical Report 2012-12-2, University
of Groningen (2012) www.cs.rug.nl/∼eirini/papers/tech 2012-12-2.pdf.

8. Ouvans, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: From BPMN process
models to BPEL web services. In: Int. Conf. on Web Services. (2006) 285–292

9. Kopp, O., Martin, D., Wutke, D., Leymann, F.: On the choice between graph-
based and block-structured business process modeling languages. In: Modellierung
betrieblicher Informationssysteme (MobIS 2008). Volume 141 of Lecture Notes in
Informatics (LNI)., Gesellschaft für Informatik e.V. (GI) (2008) 59–72

10. Rozsnyai, S., Vecera, R., Schiefer, J., Schatten, A.: Event cloud - searching for
correlated business events. In: 9th IEEE Int. Conf. on E-Commerce Technology /
4th IEEE Int. Conf. on Enterprise Computing, E-Commerce and E-Services. (2007)

11. Juhnke, E., Dornemann, T., Freisleben, B.: Fault-tolerant BPEL workflow exe-
cution via cloud-aware recovery policies. In: 35th EUROMICRO Conference on
Softw. Eng. and Adv. Applications (SEAA). (2009) 31 – 38

12. Sravan Kumar, R., Saxena, A.: Data integrity proofs in cloud storage. In: 3rd Int.
Conf. on Communication Systems and Networks (COMSNETS). (2011) 1 – 4

13. Hao, Z., Zhong, S., Yu, N.: A privacy-preserving remote data integrity checking
protocol with data dynamics and public verifiability. IEEE Trans. on Knowledge
and Data Engineering 23(9) (2011) 1432–1437

14. Ko, S.Y., Hoque, I., Cho, B., Gupta, I.: Making cloud intermediate data fault-
tolerant. In: 1st ACM Symposium on Cloud computing. (2010) 181–192

