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Abstract. Engineering of knowledge-intensive processes is far from
being mastered. Processes are defined knowledge-intensive when peo-
ple/agents carry them out in a fair degree of “uncertainty”, where the
uncertainty depends on different factors, such as the high number of
tasks to be represented, their unpredictable nature, or their dependency
on the scenario. In the worst case, there is no pre-defined view of the
knowledge-intensive process, and tasks are mainly discovered as the pro-
cess unfolds. In this work, starting from three different real scenarios, we
present a critical comparative analysis of the existing approaches used
for supporting knowledge-intensive processes, and we discuss some recent
research techniques that may complement or extend the existing state of
the art.
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1 Introduction

Process management systems (PMSs) hold the promise of facilitating the ev-
eryday operation of many enterprises and work environments. However, PMSs
remain especially useful in a limited range of applications where business pro-
cesses can be described with relative ease. Current modeling techniques are used
to codify processes that are completely predictable: all possible paths along the
process are well-understood, and the process participants never need to make a
decision about what to do next, since the workflow is completely determined by
their data entry or other attributes of the process. This kind of highly-structured
work includes mainly production and administrative processes. However, most
business functions involve collaborative features and unstructured processes that
do not have the same level of predictability as the routine structured work [58].

In [29] processes have been classified on the basis of their “degree of struc-
ture”. Traditional PMSs perform well with fully structured processes and con-
trolled interactions between participants. A major assumption is that such pro-
cesses, after having been modeled, can be repeatedly instantiated and executed
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in a predictable and controlled manner. However, even for structured processes,
the combination and sequence of tasks may vary from instance to instance due
to changes in the execution context such as user preferences, or modifications in
the environment such as exceptions and changes in the business rules. In such
cases (structured processes with ad hoc exceptions), processes should be adapted
accordingly (e.g. by adding, removing or generating an alternative sequence of
activities). In general, structured processes can be described by an explicit and
accurate model. But in scenarios where processes are to a large extent unclear
and/or unstructured, process modeling cannot be completed prior to execution
(due to lack of domain knowledge a priori or to the complexity of task combi-
nations). Hence the classical axiom “first model, then execute” – valid for the
enactment of structured processes – fails. As processes are executed and knowl-
edge is acquired via experience, it is needed to go back to the process definitions
and correct them according to work practices. This is the case of unstructured
processes with predefined fragments, where processes cannot be anticipated, and
thus cannot be studied or modeled as a whole. Instead, what can be done is to
identify and study a set of individual activities, and then try to understand the
ways in which these activities can precede or follow each other. At the end of the
classification lies the category of unstructured processes, where it is impossible
to define a priori the exact steps to be taken in order to complete an assignment.
Since there is no pre-defined view of the process, process steps are discovered
as the process scenario unfolds, and might involve decisions not based on some
“codified policy”, but on the user expertise applied on the scenario at hand.

The class of knowledge-intensive processes is transversal with respect to the
classification proposed in [29]. In the literature, different definitions have been
proposed about what does “knowledge-intensive” mean for a business process.
In [24] a process is defined as knowledge intensive if its value can only be created
through the fulfillment of the knowledge requirements of the process partici-
pants, while Davenport recognizes the knowledge intensity by the diversity and
uncertainty of process input and output [11]. In our view, a knowledge-intensive
process is characterized by activities that can not be planned easily, may change
on the fly and are driven by the contextual scenario that the process is embedded
in. The scenario dictates who should be involved and who is the right person
to execute a particular step, and the set of users involved may be not formally
defined and be discovered as the process scenario unfolds. Collaborative inter-
actions among the users typically is a major part of such processes, and new
process steps might have to be defined at run time on the basis of contextual
changes. Despite the popularity of commercial PMSs, there is still a lack of ma-
turity in managing such processes, i.e., a lack of a semantic associated to the
models or an easy way to reason about that semantic.

In this paper, starting from three different real application scenarios, we
present a critical and comparative analysis of the existing approaches used for
supporting knowledge-intensive processes, and we discuss some recent research
techniques which may complement or extend the existing state of the art. The
rest of the paper is organized as follows. Section 2 discusses the role of knowledge-
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intensive processes in the health-care domain, mainly focusing on how different
modeling approaches can contribute to the process representation and execu-
tion. Section 3 discusses the use of knowledge-intensive processes for supporting
the work in highly dynamic scenarios, by focusing on the challenging aspect
of process adaptation. Section 4 traces the evolution of process mining, from
the beginnings up to the current open challenge of discovering flexible models
for knowledge-intensive partially structured processes, along with the graphical
models proposed for presenting them to the user. Finally, Section 5 concludes
the paper.

2 Modeling Approaches for Healthcare Processes

Healthcare is widely recognized as one of the most promising, yet challenging, do-
mains for the adoption of process-oriented solutions able to support both organi-
zational and clinical processes [10,31,46,30]. Organizational processes, which also
include administrative tasks (patient admission/discharge, appointment schedul-
ing, etc.), are typically structured, stable and repetitive, and represent the ideal
setting for the application of traditional approaches for process automation and
improvement. On the other side, the knowledge-intensive nature and flexibility
requirements of medical treatment processes [3,37] pose challenges that existing
process management approaches are not able to adequately handle. Although
BPM solutions can potentially support these processes, in practice their uptake
in healthcare is limited, mainly due to a generally perceived lack of flexibil-
ity [30]. Clinical decision making is highly knowledge-driven, as it depends on
medical knowledge and evidence, on case- and patient-specific data, and on clini-
cians’ expertise and experience. Patient case management is mainly the result of
knowledge work, where clinicians act in response to relevant events and changes
in the clinical context on a per-case basis, according to so-called diagnostic-
therapeutic cycles based on the interleaving between observation, reasoning and
action [31]. Clinical practices can not be captured by process models that require
a complete specification of activities and their control/data flow, with the risk
of constraining the clinicians and undermining the acceptance of proposed tools.

Despite these characteristics, in the last years the medical community has
introduced Clinical Guidelines (CGs), in an attempt to improve care quality
and reduce costs. CGs are “systematically developed statements to assist prac-
titioner and patient decisions about appropriate health care for specific clinical
circumstances”[21] and act as blueprints that guide the care delivery process and
provide evidence-based recommendations. Consequently, many research groups
have focused on computer-interpretable clinical guidelines (CIGs) and differ-
ent languages have been proposed [49,42,61], which can be broadly classified as
rule-based (e.g., Arden Syntax), logic-based (e.g., PROforma), network-based
(e.g., EON) and workflow-based (e.g., Guide). Most of them follow a task-based
paradigm where modeling primitives for representing actions, decisions and pa-
tient states are linked via scheduling and temporal constraints, often in a rigid
flowchart-like structure, and many representation models are supported by sys-
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tems that allow the definition and enactment of CGs [27]. This rapid evolution
in medical informatics has occurred mainly independently of the advances in
the BPM community. However, the recent shift in the BPM domain towards
process flexibility, adaptation (see Section 3) and evolution [47,30] has led to
reconsider the link with CIGs and investigate the benefits coming from the ap-
plication of process-oriented approaches in the healthcare domain [36]. On the
one side, pattern-based analyses of CIG languages have shown that the expres-
siveness of these models, although specifically developed for the medical domain,
is comparable with (or even lower than) the expressiveness of process modeling
languages [39]. On the other side, emerging declarative constraint-based ap-
proaches [40,32] have been investigated as a possible solution to achieve a high
degree of flexibility, taking advantage of loosely specified process models. In this
direction, the combination of procedural and declarative models is under in-
vestigation, in order to support healthcare processes with different degrees of
structuredness.

After more than a decade of research activities, researchers and practition-
ers agree on three main points: (i) clinical procedures, based on semi-structured
and unstructured decision making, can not be completely specified in advance
nor fully automated; (ii) deviations and variations during the care process (as
well as uncertainty and changes in the clinical context) represent the rule rather
than the exception; (iii) process- and activity-centric models can not adequately
represent and support clinical case management. One of the main limitations
of existing approaches is that they often underestimate the knowledge and data
dimension. As patient treatment is knowledge-driven, the focus should be not on
automating the decision making process, but rather on supporting the clinician
during this process, according to a “system suggests, user controls” approach [62]
that makes available the appropriate data and relevant knowledge when needed
or required. Any system intended to support CGs should allow for representing
and integrating at a semantic level evolving medical knowledge, patient-related
data (including conditions, medical history, prescribed treatments and medi-
cations, etc.), and the existing (sometimes unpredictable) interactions between
patient conditions, treatments and medications. This focus on data and knowl-
edge is producing a shift from a process management approach to a more flexible
case management approach, well understood by clinicians (although mostly in
the form of paper-based processes) but only partially investigated in the BPM
area [60]. Process support requires object-awareness in the form of a full integra-
tion of processes with patient data models consisting of object types and object
relations [30,5]. Domain-relevant objects (such as medical orders, clinical and
lab reports, etc.), their attributes and their possible states need to be explicitly
represented, along with their inter-relations, so as to define a rich information
model. This data model enables the identification and definition of the activities
that rely on the object-related information and act on it, producing changes on
attribute values, relations and object states. As a result, a tight integration be-
tween data objects and process activities can be achieved. As object-awareness
requires a data-driven process modeling and execution approach, based on ob-
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ject behavior and object interactions, process/activity-centric methodologies are
being replaced by data-centric models evolving over time [7]. In the context
of a CG, patient’s clinical situation (referred to as patient state, scenario, or
context [49]) is central and represent the shared knowledge that drives the de-
cision making and evolves as a result of performed actions, made decisions and
collected data. Conditions defined over patient state, along with temporal con-
straints, are typically used as entry/exit points for a guideline [61] and as eli-
gibility criteria for specific actions [49]. During the collaboration-based patient
management activities, clinicians have to react to internal (e.g., a change in
patient’s state) and external (e.g., availability of lab test results) events, that
can occur in any sequence. Moreover, it is often not possible to predetermine
which activities have to be executed and in which order when an event occurs:
according to the diagnostic-therapeutic cycles mentioned before, the clinician
first assesses and evaluate the situation and then acts or plans the actions to
be performed. This suggests an interleaving and overlapping of modeling and
execution, where the process is “created at the time it is executed”. Any mod-
eling and execution approach for supporting this view has to consider that the
clinician should be guided by what can be done and not restricted by what has
to be done [35]. Although the path to be followed can be initially unclear and is
gradually determined by clinician decisions, the care process evolves through a
series of intermediate goals or milestones to be achieved (e.g., bring a parameter
back to a normal level) that can again be expressed as conditions or constraints
over patient state.

Given the above scenario, a promising and emerging approach for model-
ing CGs and supporting their execution and management is the artifact-centric
paradigm, which considers data and knowledge as an integral part of business
processes [51]. It is based on the concept of business artifacts as an abstraction
for business-relevant entities and data that evolve according to a lifecycle and
drive the activities in a business setting. Activities are defined in the context
of interrelated artifacts and become enabled as the result of triggering events
(internal or external) constrained by conditions defined and evaluated over the
artifacts. Events and conditions over artifacts can also be used to set specific
goals and evaluate the progress towards their achievement. The scheduling of
actions is thus event- and data-driven, rather than induced by direct control
flow dependencies. Under this perspective, it emerges a clear correspondence
between artifact-centric concepts and clinical case management, in particular if
considering the Guard-Stage-Milestone (GSM) meta-model [51] as a represen-
tative example of the artifact-based paradigm. GSM builds on the concepts of
information model and lifecycle model, where the latter includes milestones to
be achieved, hierarchically organized stages as clusters of possible activities to
be performed to achieve milestones, and guards, timed events and conditions
that control the stages and determine milestones’ achievement. The patient and
his/her state, a diagnostic test, a treatment course can all be considered as ar-
tifact types and represented by an information model that evolves according
to a lifecycle and captures all relevant data and relations (e.g., as a relational
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model or domain ontology). CGs could be seen as progressing through a set
of stages, where each performed action, made decision or event occurrence is
driven by (eligibility criteria mentioned before) and has an impact on patient
state, as reflected in the underlying information model. The data-driven nature
of the model facilitates the integration between process control knowledge and
the patient-related and medical knowledge; in addition, the distinction between
data attributes and status attributes can directly support an integrated and ex-
plicit representation of both patient and execution states, not provided by all
CIG models [61,49]. Although artifact-centric models can open the way for a
new generation of flexible and adaptive case management systems in healthcare,
further investigation is needed to understand the contribution that these mod-
els can bring in solving well-known problems for CIGs; among them: (i) how
to reconcile the decision-action nature of CGs with a declarative modeling ap-
proach than can be used and understood by clinicians and is able to represent
the evidence-based knowledge contained in the CGs; (ii) how to define an infor-
mation model that is able to capture all clinically relevant data and takes into
account existing standards, models, and ontologies used in Electronic Medical
Records (EMRs) for patient and medical data; (iii) to what extent clinical events
and medical knowledge can be represented and encoded by rules and conditions;
(iv) how can an artifact-centric model address the problems of guideline acqui-
sition, verification, testing, tracing and evolution, and how to turn or customize
abstract models in executable models that take into account additional infor-
mation, such as resource availability, roles and local services, in a collaborative
multi-user environment.

3 Process Adaptation in Highly Dynamic Scenarios

A recent open research question in the BPM field concerns how to tackle sce-
narios characterized by being very dynamic and subject to higher frequency of
unexpected contingencies than classical scenarios, e.g., scenarios for emergency
management. There, a PMS can be used to coordinate the activities of first
responders on the field (e.g., reach a location, evacuate people from collapsed
buildings, extinguish a fire, etc.). The use of processes for supporting the work
in highly dynamic contexts has become a reality, thanks also to the growing use
of mobile devices in everyday life, which offer a simple way for picking up and
executing tasks. These kinds of processes are also named dynamic processes. A
dynamic process usually includes a wide range of knowledge-intensive tasks; as
the process proceeds, the sequence of tasks depends so much upon the specifics
of the context (for example, which resources are available and what particular
options exist at that time), and often it is unpredictable the way in how it un-
folds. This is due to the high number of tasks to be represented and to their
unpredictable nature, or to a difficulty to model the whole knowledge of the
domain of interest at design time. If we refer again to the classification shown
in [29], dynamic processes can be classified between structured processes with
ad hoc exceptions and unstructured processes with predefined fragments.
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Research efforts in this field try to enhance the ability of dynamic processes
and their support environments to modify their behavior in order to deal with
contextual changes and exceptions that may occur in the operating environment
during process enactment and execution. On the one hand, existing PMSs like
YAWL [50] provide the support for the handling of expected exceptions. The
process schemas are designed in order to cope with potential exceptions, i.e.,
for each kind of exception that is envisioned to occur, a specific contingency
process (a.k.a. exception handler or compensation flow) is defined. On the other
hand, adaptive PMSs like ADEPT2 [65] support the handling of unanticipated
exceptions, by enabling different kinds of ad-hoc deviations from the pre-modeled
process instance at run-time, according to the structural process change patterns
defined in [64].

However, traditional approaches that try to anticipate how the work will
happen by solving each problem at design time, as well as approaches that allow
to manually change the process structure at run time, are often ineffective or
not applicable in rapidly evolving contexts. The design-time specification of all
possible compensation actions requires an extensive manual effort for the pro-
cess designer, that has to anticipate all potential problems and ways to overcome
them in advance, in an attempt to deal with the unpredictable nature of this
kind of processes. Moreover, the designer often lacks the needed knowledge to
model all the possible contingencies, or this knowledge can become obsolete as
process instances are executed and evolve, by making useless his/her initial ef-
fort. In general, for a dynamic process there is not a clear, anticipated correlation
between a change in the context and corresponding process changes, since the
process may be different every time it runs and the recovery procedure strictly
depends on the actual contextual information. For the same reason, it is also
difficult to manually define an ad-hoc recovery procedure at run-time, as the
correctness of the process execution is highly constrained by the values (or com-
bination of values) of contextual data. Dealing with dynamic processes require
that PMSs provide intelligent failure handling mechanisms that, starting from
the original process model, are able to adapt process instances without explicitly
defining at design time all the handlers/policies to recover from exceptions and
without the intervention of domain experts.
Recently, some techniques from the field of artificial intelligence (AI) have been
applied to process management, with the purpose of improving the degree of au-
tomatic adaptation of dynamic processes. In [23], the authors present a concept
for dynamic and automated workflow re-planning that allows recovering from
task failures. To handle the situation of a partially executed workflow, a multi-
step procedure is proposed that includes the termination of failed activities, the
sound suspension of the workflow, the generation of a new complete process def-
inition and the adequate process resumption. In [28], the authors take a much
broader view of the problem of adaptive workflow systems, and show that there
is a strong mapping between the requirements of such systems and the capabili-
ties offered by AI techniques. In particular, the work describes how planning can
be interleaved with process execution and plan refinement, and investigates plan
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patching and plan repair as means to enhance flexibility and responsiveness.
A new life cycle for workflow management based on the continuous interplay
between learning and planning is proposed in [20]. The approach is based on
learning business activities as planning operators and feeding them to a planner
that generates the process model. The main result is that it is possible to pro-
duce fully accurate process models even though the activities (i.e., the operators)
may not be accurately described. The approach presented in [45] highlights the
improvements that a legacy workflow application can gain by incorporating plan-
ning techniques into its day-to-day operation. The use of contingency planning
to deal with uncertainty (instead of replanning) increases system flexibility, but
it does suffer from a number of problems. Specifically, contingency planning is
often highly time-consuming and does not guarantee a correct execution under
all possible circumstances. Planning techniques are also used in [22] to define
a self-healing approach for handling exceptions in service-based processes and
repairing faulty activities with a model-based approach. During the process exe-
cution, when an exception occurs, a new repair plan is generated by taking into
account constraints posed by the process structure and by applying or deleting
actions taken from a given generic repair plan, defined manually at design time.

An interesting approach for dealing with exceptional changes has been pro-
posed in [13,34]. Here, it is presented SmartPM (Smart Process Management),
a model and a proof-of-concept PMS featuring a set of techniques providing sup-
port for automatic adaptation of processes. In SmartPM, a process model is
defined as a set of n task definitions, where each task ti can be considered as a
single step that consumes input data and produces output data. Data are repre-
sented through some process variables whose definition depends strictly on the
specific process domain of interest. The model allows to define logical constraints
based on process variables through a set F of predicates fj . Such predicates can
be used to constrain the task assignment (in terms of task preconditions), to
assess the outcome of a task (in terms of task effects) and as guards into the ex-
pressions at decision points (e.g., for cycles or conditional statements). Choosing
the predicates that are used to describe each activity falls into the general prob-
lem of knowledge representation. To this end, the environment, services and tasks
are grounded in domain theories described in Situation Calculus [48]. Situation
Calculus is specifically designed for representing dynamically changing worlds in
which all changes are the result of the tasks’ execution. Processes are represented
as IndiGolog programs. IndiGolog [12] allows for the definition of programs
with cycles, concurrency, conditional branching and interrupts that rely on pro-
gram steps that are actions of some domain theory expressed in Situation Calcu-
lus. The dynamic world of SmartPM is modeled as progressing through a series
of situations. Each situation is the result of various tasks being performed so far.
Predicates may be thought of as “properties” of the world whose values may vary
across situations. SmartPM provides mechanisms for adapting process schemas
that require no pre-defined handlers. Specifically, adaptation in SmartPM can
be seen as reducing the gap between the expected reality, the (idealized) model
of reality that is used by the PMS to reason, and the physical reality, the real
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world with the actual values of conditions and outcomes. The physical reality
Φs reflects the concept of “now”, i.e., what is happening in the real environment
whilst the process is under execution. In general, a task ti can only be performed
in a given physical reality Φs if and only if that reality satisfies the preconditions
Prei of that task. Moreover, each task has also a set of effects Effi that change
the current physical reality Φs into a new physical reality Φs+1. At execution
time, the process can be easily invalidated because of task failures or since the
environment may change due to some external event. For this purpose, the con-
cept of expected reality Ψs is given. A recovery procedure is needed if the two
realities are different from each other. An execution monitor is responsible for
detecting whether the gap between the expected and physical realities is such
that the original process δ0 cannot progress its execution. In that case, the PMS
has to find a recovery process δh that repairs δ0 and removes the gap between the
two kinds of reality. Currently, the adaptation algorithm deployed in SmartPM
synthesizes a linear process δh (i.e., a process consisting of a sequence of tasks)
and inserts it at a given point of the original process - specifically, that point of
the process where the deviation was first noted. This means that such technique
is able to automatically recover from exceptions without defining explicitly any
recovery policy.

4 Mining

Process Mining [54], also referred to as Workflow Mining [53], is the set of tech-
niques that allow the extraction of process descriptions, stemming from a set of
recorded executions. Throughout this Section, we will investigate the techniques
adopted, along with the notations used to display the results, i.e., the mined
processes. To date, ProM [55] is one of the most used plug-in based software
environment for implementing workflow mining techniques. The idea to apply
process mining in the context of workflow management systems was introduced in
[1]. There, processes were modelled as directed graphs where vertices represented
individual activities and edges stood for dependencies between them. Cook and
Wolf, at the same time, investigated similar issues in the context of software
engineering processes. In [8] they described three methods for process discovery:
(i) neural network-based, (ii) purely algorithmic, (iii) adopting a Marko-
vian approach. The authors considered the latter two as the most promising.
Although, the results presented in [8] were limited to sequential behavior only.
The nowadays mainstream process mining algorithms and management tools
model processes with a graphical syntax derived from a subset of Petri Nets,
i.e., Workflow Nets (WfN [53]), explicitly designed to represent the control-flow
dimension of a workflow. See [41] for a history of Petri nets and an extensive
bibliography. From [1] onwards many techniques have been proposed, in order to
address specific issues: pure algorithmic (e.g., α algorithm [59] and its evolution
α++ [67]), heuristic (e.g., [66]), genetic (e.g., [38]). Heuristic and genetic algo-
rithms were introduced to cope with noise, that the pure algorithmic techniques
were not able to manage. Whereas algorithmic processes rely on footprints of
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traces (i.e., tables reporting whether events appeared before or afterwards, if de-
cidable) to determine the workflow net that could have generated them, heuristic
approaches build a representation similar to causal nets, taking frequencies of
events and sequences into account when constructing the process model, in or-
der to ignore infrequent paths. Genetic process mining adopts an evolutionary
approach to the discovery and differs from the other two in that its computation
evolves in a non-deterministic way: the final output, indeed, is the result of a
simulation of a process of natural selection and evolutionary reproduction of the
procedures used to determine the final outcome. A very smart extension to the
previous research was achieved by the two-steps algorithm proposed in [52]. Dif-
ferently from previous works, in which the proposed approaches provide a single
process mining step, it splitted the computation in two phases: the first built
a Transition System that represents the process behavior and the tasks causal
dependencies; the second made use of the state-based “theory of regions” [9,15]
to construct a Petri Net bisimilar to the Transition System. The first phase was
made “tunable”, so that it could be either more strictly adhering or more per-
missive to the analyzed log traces behavior, i.e., the expert could determine a
balance between “overfitting” and “underfitting”. Indeed, past execution traces
are not the whole universe of possible ones that may run: hence, the extracted
process model should be valid for future unpredictable cases, on one hand, nev-
ertheless checking whether the latter actually adhere to the common behavior,
on the other hand. This issue reveals to be particularly relevant in the field of
knowledge-intensive processes.

To date, the majority of research relating to processes coped with structured
business processes. [26] discusses about a particular class of knowledge-intensive
processes, named “artful business processes”; they are typically carried out by
those people whose work is mental rather than physical (managers, professors,
researchers, etc.), the so called “knowledge workers” ([63]). With their skills,
experience and knowledge, they are used to perform difficult tasks which require
complex, rapid decisions among multiple possible strategies, in order to fulfill
specific goals. In contrast to business processes that are formal and standardized,
informal processes are not even written down, often, let alone defined formally,
and can vary from person to person even when those involved are pursuing the
same objective. Knowledge workers create informal processes “on the fly” to
cope with many of the situations which arise in their daily work. While informal
processes are frequently repeated, because they are not written down, they are
not exactly reproducible, even by their originators, nor can they be easily shared.
[63] described the “ACTIVE” EU collaborative project, coordinated by British
Telecom. Such project addressed the need for greater knowledge worker produc-
tivity by providing more effective and efficient tools. Among the main objectives,
it aimed at helping users to share and reuse informal processes, even by learning
those processes from the user’s behavior. Basing on the work of [6] and [56],
[19] investigated the challenge of mining these processes out of semi-structured
texts, i.e., the email conversations exchanged among knowledge workers, through
the interplay of text mining, object matching and process mining techniques. It
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provided an architectural overview of the application (named MailOfMine) able
to fulfill the objective.

The need for flexibility in the definition of some types of process, such as artful
business processes, leads to an alternative to the classical “imperative” approach:
the “declarative”. Rather than using a procedural language for expressing the
allowed sequences of activities, it is based on the description of workflows through
the usage of constraints: the idea is that every task can be performed, except
what does not respect them. [58] showed how the declarative approach can help in
obtaining a fair trade-off between flexibility in managing collaborative processes
and support in controlling and assisting the enactment of workflows. DecSerFlow
[57] and ConDec [43], now under the name of Declare [44], define such constraints
as formulations in Linear Temporal Logic. [33] outlines an algorithm for mining
Declare processes, integrated in ProM (namely, Declare Miner). The tool is based
on the translation of Declare constraints into automata, and works in conjunction
with the optimization techniques described in [68]. [4] describes the usage of
inductive logic programming techniques to mine models expressed as a SCIFF
theory. SCIFF theory is thus translated into the ConDec notation [43]. [2] differs
from both [4] and [33] in that it does not directly verify the candidate constraints
over the whole set of traces in input. It prepares an ad-hoc knowledge base of
its own, instead, which specific queries are further submitted to. The model is
determined on the base of the result of such queries. MINERful, proposed in [18],
exploits this two-steps technique too, in order to improve the efficiency of the
mining procedure. [17] proves the complexity of the algorithm to be polynomial
w.r.t. the size of both the alphabet of constraints and the input traces. Differently
from [33], [4] and [2], it is independent of the formalism adopted for representing
constraints.

Declare provides a graphical model for representing declarative processes,
useful to depict the constraints that hold between activities as a graph where
nodes are activities and arcs are constraints among them. [25] and [16] presented
a different approach to the graphical modelling. The former describes an event-
based model, namely DCRGraph, showing the current state of the workflow at
run-time, through the listing of tasks that can (either optionally or mandatorily)
or can not be executed at the moment. A section describing the mapping of that
notation to Büchi Automata is provided as well. The latter provides multiple
graphical syntaxes, respectively depicting the process from two viewpoints: (i)
global, i.e., focused on the representation of constraints between tasks, repre-
sented all together in a single graph and (ii) local i.e., focused instead on the
constraints directly related to one single activity at a time. The first is then
divided into a base and an extended version, in order to respectively depict less
or more details about the nature of constraints that hold in the process – fol-
lowing the so called “map metaphor” [14]. The second is also twofold. The static
view shows the constraints affecting an activity, which is put on the origin of a
cartesian-like diagram. There, the implication and the temporal succession are
aligned on orthogonal axes. The tasks involved in constraints related to the ac-
tivity under analysis are put on different coordinates accordingly. In the dynamic
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view, the graph evolves as new tasks are executed. Starting from the initial, the
enacted task is chained down to the previous. On the basis of the execution
trace, the consequent next tasks are shown below the chain, in compliance with
the constraints that hold at the moment.

5 Conclusions

In this work, we provided a critical and comparative analysis of the existing
approaches used for supporting knowledge-intensive processes, and we showed
some recent research techniques that may complement or extend the existing
state of the art to this end.

In the health care domain, several challenges still need to be addressed and
an interdisciplinary research effort is required. In this direction, the existing
gap between the general evidence-based knowledge contained in CGs and the
knowledge and information required to apply them to specific patients in local
healthcare organizational contexts needs further investigation. Similarly, model-
ing approaches should allow to capture all “knowledge layers” and their possible
interactions, including the procedural knowledge contained in CGs, the declara-
tive knowledge representing domain- or site-specific constraints and properties,
and clinicians’ basic medical knowledge.

In highly dynamic environments, commercial PMSs are not able to deal with
knowledge-intensive processes sufficiently, due to the static and only implicitly
defined meta models of those systems. Basically, a dynamic process is largely
dependent on the scenario at hand, and the result of process modeling is often
a static plan of actions, which is difficult to adapt to changing procedures or to
different business goals. In order to devise intelligent failure handling mechanisms
for dynamic processes there is the need to define enriched workflow models,
possibly with a declarative specification of process tasks, i.e., comprising the
specification of input/output artefacts and task preconditions and effects. In
general, the use of AI techniques for adapting dynamic processes seems very
promising.

In the area of process mining, the declarative model proves to be very effective
in allowing flexibility required by knowledge-intensive processes. Although, it has
to be verified with people involved in those processes. E.g., the graphical notation
proposed in [16] has to be implemented and its readability tested with real actors
of those processes. A graphical notation representing the level of severity of a
constraint in the process still misses. In the area of declarative workflow mining,
it might be useful to determine the tightness of the discovered constraints on
the basis of the frequency with which a constraint did not hold in the past.
Moreover, a study on the impact of noise in such analysis could be done.
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