
Business Processes Verification with Temporal
Answer Set Programming ?

L. Giordano1, A. Martelli2, M. Spiotta1, and D. Theseider Dupré1

1 Dipartimento di Informatica, Università del Piemonte Orientale
2 Dipartimento di Informatica, Università di Torino

Abstract. The paper provides a framework for the specification and
verification of business processes, based on a temporal extension of an-
swer set programming (ASP). The framework allows to capture fluent
annotations as well as data awareness in a uniform way. It allows for a
declarative specification of business process but also for a direct encod-
ing of processes specified in conventional workflow languages. Verifica-
tion of temporal properties of a business process, including verification of
compliance to business rules, can be performed by LTL bounded model
checking techniques.

1 Introduction

The verification of business process compliance to business rules and regulations
has gained a lot of interest in recent years and it has led to the development
to a process annotation approach [12, 18, 33, 23], where a business processes is
enriched with information relevant for compliance verification, to capture the se-
mantics of atomic tasks execution through preconditions and effects. The treat-
ment of data in business process verification, on the other hand, has attracted
growing interest in the last decade, with the definition of artifact-centric and
data-centric process models [27, 5, 9].

In this paper we combine the two perspectives and propose a framework for
the specification and verification of business processes which allows to model
both annotations and data properties by specifying atomic tasks in a uniform
way. The approach is well suited for a declarative specification of the business
process, which has been advocated by many authors in the literature [32, 30, 25].
Following [7], the specification of annotation can be done in an action theory by
defining the effects and preconditions of atomic tasks. The same approach allows
to capture data properties, by modelling data acquisition tasks as actions which
nondeterministically assign values to variables (data objects) on given domains,
under the restriction that domains are finite.

The use of directional rules for modeling business rules as well as to capture
the conditional structure of norms is widely used in the literature [18]. In our
approach, besides the specification of action preconditions and direct effects,
causal rules in an action domain allow to capture dependencies among fluents

? This work has been partially supported by Regione Piemonte, Project ICT4LAW.

Business Processes Verification with Temporal Answer Set Programming 49

(propositions whose truth is affected by actions) and fluent changes, as well as
dependencies between process data and fluents. Our claim is that both static and
dynamic causal laws are useful for the specification of business process annota-
tions and their use allows unintended conclusions to be avoided. Observe that,
once the data perspective is included, causal laws can include both conditions on
data and annotations. For instance, the rule age ≥ 18⇒ ofAge may establish a
link between the business process, whose execution assigns values to the variable
age, and the compliance rules dealing with persons ”of age”.

The approach we propose is based on Answer Set Programming (ASP) [11]
and, more precisely, on the temporal extension of ASP in [16], combining ASP
with the temporal logic DLTL [22], an extension of LTL in which the temporal
operators are enriched with program expressions. The action language in [16]
allows general DLTL constraints to be included in action domains, which can be
profitably used for a declarative specification of the business process advocated
in the literature [32, 30, 25]. In addition, the proposed approach also allows for a
direct encoding of processes specified in workflow languages, and it can be used
in combination with state of the art workflow management systems.

The paper considers several verification tasks including the verification of
business process compliance to business rules. Verification is performed through
Bounded Model Checking [6] techniques and exploits the approach in [16] for
DLTL bounded model checking in ASP, which extends the approach for Bounded
LTL Model Checking with Stable Models in [21].

2 A Temporal Answer Set Programming language

In this section we recall the temporal ASP language introduced in [16]. The
language is based on a temporal extension of Answer Set Programming (ASP)
which combines ASP with the temporal logic DLTL [22], an extension of LTL
in which temporal operators are enriched with program expressions. In particu-
lar, in DLTL the next state modality can be indexed by actions, and the until
operator Uπ can be indexed by a program π which, as in PDL, can be any
regular expression built from atomic actions using sequence (;), nondeterminis-
tic choice (+) and finite iteration (∗). Satisfiability and validity for DLTL are
PSPACE-complete problems [22].

Let Σ = {a1, . . . , an} be a finite non-empty alphabet of actions. From the
until operator, the derived modalities 〈π〉, [π], © (next), U , 3 and 2 can be
defined as follows: 〈π〉α ≡ >Uπα, [π]α ≡ ¬〈π〉¬α, ©α ≡

∨
a∈Σ〈a〉α, αUβ ≡

αUΣ∗
β, 3α ≡ >Uα, 2α ≡ ¬3¬α, where, in UΣ∗

, Σ is taken to be a shorthand
for the program a1 + . . . + an. Informally, a formula [π]α is true in a world w
of a linear temporal model if α holds in all the worlds of the model which are
reachable from w through any execution of the program π. A formula 〈π〉α is
true in a world w of a linear temporal model if there exists a world of the model
reachable from w through an execution of the program π, in which α holds.

A domain description D is a pair (Π, C), where Π is a set of laws describing
the effects and executability preconditions of actions (as described below), and C

50 L. Giordano et al.

is a set of temporal constraints, i.e., general DLTL formulas. Atomic propositions
describing the state of the domain are called fluents. Actions may have direct
effects, described by action laws, and indirect effects, described by causal laws
capturing the causal dependencies among fluents.

Let L be a first-order language which includes a finite number of constants
and variables, but no function symbol. Let P be the set of predicate symbols, V ar
the set of variables and C the set of constant symbols. We call fluents atomic
literals of the form p(t1, . . . , tn), where, for each i, ti ∈ V ar ∪ C. A simple
fluent literal l is an atomic literal p(t1, . . . , tn) or its negation ¬p(t1, . . . , tn).
We denote by LitS the set of all simple fluent literals, and we assume that the
fluent ⊥ representing the inconsistency is included in LitS . A temporal fluent
literal has the form [a]l or ©l, where l ∈ LitS and a is an action name (an
atomic proposition, possibly containing variables). Given a (simple or temporal)
fluent literal l, not l represents the default negation of l. A (simple or temporal)
fluent literal possibly preceded by a default negation, will be called an extended
fluent literal. The laws are formulated as rules of a temporally extended logic
programming language having the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln (1)

where the li’s are simple or temporal fluent literals. As usual in ASP, rules with
variables are a shorthand for the set of their ground instances; and we let Σ be
the set of ground instances of atomic actions in the domain description.

In the following we call a state a set of ground fluent literals. A state is said
to be consistent if it is not the case that both f and ¬f belong to the state, or
that ⊥ belongs to the state. The execution of an action in a state may possibly
change the values of fluents in the state through its direct and indirect effects,
thus giving rise to a new state. We assume that a law as (1) can be applied in
all states while, when prefixed with the Init, it only applies to the initial state.

Action laws, causal laws, precondition laws, persistency laws, initial state
laws, etc., which are normally used in action theories, can all be defined as
instances of (1). Action laws describe the effects of atomic tasks. The meaning
of an action law [a]l0 ← l1, . . . , lm, not lm+1, . . . , not ln, (where l0 ∈ LitS and
l1, . . . , ln are either simple fluent literals of temporal fluent literals of the form
[a]l) is that executing action a in a state in which l1, . . . , lm hold and lm+1, . . . , ln
do not hold makes the effect l0 to hold (in the state after the action).

Precondition laws allow the specification of executability conditions for atomic
tasks; they are a special case of action laws with ⊥ as effect, i.e., they have the
form: [a]⊥ ← l1, . . . , lm, not lm+1, . . . , not ln meaning that a cannot be executed
(has an inconsistent effect) in case l1, . . . , lm hold and lm+1, . . . , ln do not hold.

Causal laws define causal dependencies among propositions, which are used to
derive indirect effect of actions, called ramifications in the literature of reasoning
about actions where it is well known that causal dependencies among proposi-
tions are not suitably represented by material implication in classical logic. Static
causal laws have the form: l0 ← l1, . . . , lm, not lm+1, . . . , not ln where the li’s are
fluent literals. Their meaning is: if l1, . . . , lm hold and lm+1, . . . , ln do not hold
in a state, then l0 is caused to hold in that state. Dynamic causal laws have the

Business Processes Verification with Temporal Answer Set Programming 51

form: ©l0 ← t1, . . . , tm, not tm+1, . . . , not tn where l0 is a fluent literal and the
ti’s are either fluent literals or temporal fluent literals of the form ©li (meaning
that the fluent literal li holds in the next state). Their meaning is: if t1, . . . , tm
hold and lm+1, . . . , ln do not hold, then l0 is caused to hold in the next state.
In particular, in the premise, a combination of the form ¬f,©f (or f,©¬f)
may be used to mean that fluent f becomes true (resp., false). The language also
includes constraints of the form ⊥ ← l1, . . . , lm, not lm+1, . . . , not ln where the
li’s are simple or temporal fluent literals.

In this language, default negation in clause bodies allows for the specification
of nondeterministic action laws, of the form [a](l0 ∨ . . . ∨ lk) ← lk+1, . . . , lm,
not lm+1, . . . , not ln, stating that the execution of action a in a state in which
lk+1, . . . , lm hold and lm+1, . . . , ln do not hold, makes nondeterministically one of
l0, . . . , lk true. In fact, [a](l0∨ . . .∨lk)← Body can be seen as a shorthand for the
rules [a]li ← Body, not [a]l1, . . . not [a]li−1, not [a]li+1, . . . not [a]lk (i = 1, . . . , k).

The laws above can be used to define persistency laws to deal with frame
fluents as well as to complete the initial state in all the possible ways compatible
with the initial state specification. The semantics of a domain description, is
defined by extending the notion of answer set [11] to temporal answer sets, so to
capture the linear structure of temporal models. We refer to [16] for details.

3 Declarative specification of business processes: merging
annotations with data

A declarative specification of a business process can be given by exploiting the
action theory above to define the effects of atomic tasks as well as their exe-
cutability preconditions. This approach has been followed in different contexts
such as in the declarative specification of web services in [26, 5] and in the declar-
ative specification of agent communication protocols in [35, 14]. We show that
causal laws have a relevant role in the specification of background knowledge,
which is common both to the business process and to the business rules, and that
the proposed approach allows for an easy integration of the data perspective.

The declarative specification of business processes has been advocated by
many authors [32, 30, 25], as opposed to the more rigid transition based approach.
A declarative specification of a process is, generally, more concise than transition
based specification as it abstracts away form rigid control-flow details and does
not require the order among the actions in the process to be rigidly defined.

The Temporal ASP language in Section 2 is well suited for defining imme-
diate and indirect effects of atomic tasks and their preconditions. Consider, for
instance, the business process of an investment firm in [7], where the firm offers
financial instruments to an investor. The atomic task investor identification has
as effect that the investor has been identified, while investor profiling has the
nondeterministic effect that the investor is recognized as being either risk averse
or risk seeking. This can be modeled by the action laws:

[investor ident(I)]investor identified(I)
[profiling(I)](risk averse(I)∨risk seeking(I))← investor identified(I)

52 L. Giordano et al.

The first action law has empty precondition. The fact that profiling can be
executed only when the atomic task investor identification has been executed,
can be modeled by introducing the precondition law:

[profiling(I)]⊥ ← not investor identified(I))

which, literally, states that executing action profiling in a state in which the
investor I has not been identified gives an inconsistency. Observe that, in this
language, an action is executable unless there is a precondition law for it whose
antecedent is not satisfied. Hence, once the investor has been identified, the
action profiling(I) becomes executable. However, to guarantee that it will be
eventually executed, we can add in C the DLTL constraint

2[investor ident(I)]3〈profiling(I)〉>

To force the execution of profiling immediately after investor identification,
instead, we could add the constraint: 2[investor ident(I)] 〈profiling(I)〉>.

The presence of DLTL constraints in a domain specification allows for a sim-
ple way to constrain activities in a business process. Observe that, as DLTL is
an extension of LTL, it is possible to provide an encoding of all ConDec [28]
constraints into our action language. The additional expressivity which comes
from the presence of program expressions in DLTL, allows for a very compact
encoding of certain declarative properties of the domain dealing with finite iter-
ations. For instance, the property “action b must be executed immediately after
any even occurrence of action a in a run” can be expressed by the temporal
constraint: 2[(a;Σ∗; a)∗]〈b〉>), where Σ∗ represents any finite action sequence.

In [7] it has been shown that program expressions can be used to model the
control flow of a business process in a rigid way. However, the solution in [7]
does not deal with non-structured workflows.

As concerns the data perspective, an atomic task which acquires the value
of a data variable (data object) x can be regarded as an action assigning nonde-
terministically to x one of the values in its domain. Consider, for instance, the
atomic task verify status which verifies the status of a customer. Assume it has
the effect of assigning a value (gold, silver or unknown) to a variable status. The
task verify status can be regarded as a non deterministic action assigning one
of the possible values to the variable status:

[verify status](status(gold) ∨ status(silver))

In general, we model a data acquisition task as a nondeterministic action. As an
example, let us consider an atomic task get order which acquires an order of a
product P and an atomic task select shipper(P) which selects a shipper among
the available shippers, which are compatible with the choice of the product P .
Let us introduce the notation 1{[a]R(X) | P (X)}1 (similar to the notations used
in Clingo and in S-models) as a shorthand for the two laws:

[a]R(X)← not [a]¬R(X) ∧ P (X)
[a]¬R(X)← [a]R(Y) ∧ P (X) ∧ P (Y) ∧X 6= Y

Business Processes Verification with Temporal Answer Set Programming 53

meaning that after the execution of action a, R(X) holds for a unique value of X
among those values satisfying P (X). Let available product(P) and
available shipper(S) be the predicates defining the available products and ship-
pers, and compatible(P, S) be a predicate saying that product P and shipper S
are compatible. We can represent the effect of action get order by the law:

1{[get order]product(P) | available product(P)}1
and the effect of action select shipper(P) as

1{[select shipper(P)]shipper(S) | available shipper(S)}1.
The requirement that P and S must be compatible can be enforced introducing
the constraint:
⊥ ← [select shipper(P)]shipper(S) ∧ not compatible(P, S)

meaning that it is not the case that the selected shipper S and the product P
to be shipped are not compatible.

The above specification of the effects of the task select shipper(P) has strong
similarities with the specification of a post-condition for a service in [9]. Indeed,
in [9], a post-condition of the form R(x) := ψ(x), associated with a service σ,
requires that after the execution of σ the argument x of R is instantiated with a
(unique) tuple u such that ψ(u) holds in the previous state (artifact instance). As
a difference with [9], where ψ(x) is a first-order temporal formula, our temporal
language does not allow for explicit quantification: all variables occurring in
action and causal laws are intended to be universally quantified in front of the
laws. Furthermore, in our approach we cannot deal with infinite domains. As
usual in ASP, a finite groundization the set of laws in the domain specification
is required. Abstraction techniques as those in [24] can be adopted to abstract
infinite or large domains to a finite, small set of abstract values.

4 Specification of business rules: causality and
commitments

The use of directional implications for modeling business rules as well as for
modeling the conditional structure of norms is widely recognized in the literature
[18]. In this section we claim that static and dynamic causal laws, proposed in
the AI literature about reasoning about actions and change, are also appropriate
for modeling business processes.

Consider the domain in examples 2 and 3 in [33], with the rule stating that if
an insurance claim is accepted by reviewer A and reviewer B, then it is accepted.
Suppose this is represented as the material implication

claimAccRevA ∧ claimAccRevB ⊃ claimAccepted
i.e., the clause ¬claimAccRevA ∨ ¬claimAccRevB ∨ claimAccepted. Suppose
further, as in [33], that as a result of an action with direct effects, we accept
models where such effects hold, that satisfy a background theory including the
implication above, and, according to the Possible Models Approach [34], dif-
fer minimally from the previous state. Consider a state where claimAccRevA
already holds, and an action of acceptance for reviewer B occurs, with direct ef-
fect claimAccRevB. In order to satisfy the material implication, claimAccepted

54 L. Giordano et al.

should become true, or claimAccRevA should become false, or both; minimal
difference with the previous state only excludes this third alternative, while pro-
viding equal status to the first two. If the redundancy in the process means that
the assessment of a reviewer has no influence on the other’s, then only the first
result, where claimAccepted becomes true, is intended. The (static) causal rule

claimAccepted← claimAccRevA, claimAccRevB

allows to obtain the first solution, given that its semantics imposes that in all
states, if claimAccRevA ∧ claimAccRevB is true (and, in particular, it just
became true), then claimAccepted holds (and it becomes true as a side effect if
the premise just became true).

However, the above implication might not actually be intended, as in case
later steps in the process could make the claim not accepted. For example,
the process model might specify that if the amount claimed is greater than
a threshold, it should go through further approval by a supervisor (with possible
effect ¬claimAccepted). Unlike [33], we consider the case where this does not
mean that claimAccRevA ∧ claimAccRevB should become false, i.e., at least
one conjunct (or exactly one, for a minimal change) should become false. Rather,
we suggest that here, after reviewers acceptance, claimAccepted actually stands
for “accepted unless decision is overridden” Dynamic causal laws are suitable to
represent this; the side effect of acceptance by the single reviewers becomes:
©claimAccepted←©claimAccRevA,¬claimAccRevB,©claimAccRevB
©claimAccepted← ¬claimAccRevA,©claimAccRevA,©claimAccRevB

where syntactic sugar can be introduced, as in [8], to succinctly state that the
conjunction claimAccRevA ∧ claimAccRevB is initiated i.e., it becomes true.

Such rules correctly make claimAccepted true after reviewer acceptance, but,
if a further step has the effect ¬claimAccepted, they do not “fire” because
claimAccRevA ∧ claimAccRevB is true, but it is not becoming true. Note the
difference with the static causal rule which would fire (because claimAccRevA∧
claimAccRevB is true) and then contradict ¬claimAccepted.

A particularly significant case of the pattern above, where a fluent becomes
true as an indirect effect of some activity, but may be canceled by further activi-
ties, is the one of obligations, which arise naturally in compliance rules: several
such rules are variants of “if B happens, then A shall happen”, or, “if B is (or
becomes) true, then A shall become true”. Compliance verification for such rules
could be performed by verifying a straightforward representation of the rule as
a temporal logic formula, e.g., in LTL, the formula 2(B ⊃ 3A).

This, however, does not admit the possibility that a later activity cancels the
obligation: e.g., if an order for goods is confirmed by the seller, goods have to
be shipped; but if the customer cancels the order, the obligation to ship goods
is canceled. An explicit representation of obligations is useful to this purpose. In
this paper we limit our attention to one type of obligations in the classification
in [19]: the case where a given condition should become true at least once, after
they have been triggered; i.e., we consider achievement obligations in [19], and
we only consider the case where the obligation should be fulfilled after it is
triggered.

Business Processes Verification with Temporal Answer Set Programming 55

We then identify obligations with the notion of commitment from the social
approach to agent communication [30, 20, 10]. A (base) commitment C(i, j, A),
means that agent i is committed to agent j to bring about A, while conditional
commitments of the form CC(i, j, B,A), mean that agent i is committed to
agent j to bring about A, if condition B is brought about [35, 14]. In this paper
we do not consider agents explicitly, and we concentrate our attention to base
commitments C(A) where A is a fluent; C(A) is also a fluent, which can be made
true, due to an action law or a dynamic causal law, as a direct or indirect effect of
an activity in the process (order confirmation, in the example). The commitment
(to ship goods, in the example) can be made false by an action with effect
¬C(A) (the customer cancelling the order). Fulfilling the commitment (shipping
goods) also makes the commitment false. Compliance verification, as we shall
see in Section 6, amounts then to verifying that commitments, if introduced, are
discharged, i.e., they are either fulfilled or explicitly canceled.

We refer to [7] for the treatment of defeasible business rules by means of
default negation in ASP.

5 Translating business process workflows in ASP

The temporal action language introduced above provides a flexible and declara-
tive specification language for business processes, and in [16] we have provided
its translation to standard ASP.

There are, however, cases where the business process is naturally modeled
(or it has already been modeled) in a workflow language such as YAWL [31]. In
principle, such process models could be translated automatically to the temporal
action language, but we have provided a direct translation to ASP for a subset
of YAWL including AND- and XOR- splits and joins. The translation is based
on an enabling semantics of arcs and tasks: an atomic task can be executed (i.e.,
the action can occur) when it is enabled. It is enabled when its only incoming
arc is enabled, or it is an AND-join and all incoming arcs are enabled, or it is
a XOR-join an one incoming arc is enabled. The execution of a task enables
the outgoing arcs, and, in case it is a XOR-split, the execution of a subsequent
activity based on the enabling of one such arc disables the other arcs.

6 Business process verification by bounded model
checking

In [16] we have developed Bounded Model Checking techniques for the verifica-
tion of DLTL constraints. In particular, the approach extends the one developed
in [21] for bounded LTL model checking with Stable Models. The approach can
be used for checking satisfiability of temporal formulas. To prove the validity
of a formula, its negation is checked for satisfiability. In case the formula is not
valid, a counterexample is provided.

Several verification tasks can be addressed within the proposed approach.
Compliance verification (described in some detail in [7]) amounts to check that all

56 L. Giordano et al.

the business rules are satisfied in all the execution of the process. We distinguish
among business rules which can be encoded as a temporal formula and business
rules whose modeling involves commitments.

As an example of rule which can be encoded as a temporal formula to be
verified, consider, in the order-production-delivery process in [24], the rule “Pre-
mium customer status shall only be offered after a prior solvency check”: it can
be verified by checking the validity of the temporal formula

2(solvency check done ∨ ¬〈offer premium status〉>)

i.e., by verifying that in all executions of the business process if the action
offer premium status is executable, the fluent solvency check done holds. As
an example of rule modeled through causal laws whose effect is adding a com-
mitment, consider the rule “if the investor signs an order, the firm is obliged to
provide him a copy of the contract”. It can be encoded by the causal law:

C(sent contract)← order signed

We require that all the commitments generated are eventually fulfilled, unless
they are explicitly cancelled (e.g., in the example, cancelling the order also can-
cels the obligation to send the contract). Observe that canceling a commitment
would not be possible if the commitment to α corresponded directly to the tem-
poral formula 3α. A commitment is also discharged when it is fulfilled, i.e., the
following causal rule is added for all possible commitments:

©¬C(α)← C(α) ∧©α

Then the verification of rules involving commitments amounts to verifying the
validity, for all possible commitments C(α), of the formula:

2(C(α)→ 3(¬C(α)))

A verification task considered in [9] is that of verifying properties of a busi-
ness process, under the assumption that the process satisfies some given business
rules. This verification task can also be addressed in our approach: the specifica-
tion of the business rules is given by adding temporal constraints (and, possibly,
causal laws) to the domain specification. The executions of the resulting domain
specification are then verified against other temporal properties.

Satisfiability and validity of a DLTL formula over the business process ex-
ecutions are decidable problems. However, given that BMC is not complete in
general, an alternative approach to BMC in ASP is proposed in [15] to address
the problem of completeness, by exploiting the Büchi automaton construction
while searching for a counterexample.

7 Conclusions and related work

The paper presents an approach to the verification of the compliance of business
processes with norms. The approach is based on a temporal extension of ASP.

Business Processes Verification with Temporal Answer Set Programming 57

The business process, its semantic annotation and the norms are encoded using
temporal ASP rules as well as temporal constraints. Causal laws are used for
modeling norms, and commitments are introduced for representing obligations.
Compliance verification can be performed using the BMC technique developed
in [16] for DLTL bounded model checking in ASP, which extends the approach
for bounded LTL model checking with Stable Models in [21].

This paper enhances the approach to business processes compliance verifica-
tion in [7] by taking into consideration the data perspective and by providing a
declarative specification of the business process, while in [7] the control flow of
a structured business process is modeled in a rigid way by means of a program
expression. Also, we have shown that a direct encoding of the process workflow
in ASP can be given and exploited for process verification.

Several proposals in the literature introduce annotations on business pro-
cesses for dealing with compliance verification [12, 18, 33]. In particular, [18]
proposes a logical approach to business process compliance based on the idea of
annotating the business process. Annotations and normative specifications are
provided in the same logical language, namely, the Formal Contract Language
(FCL), which combines defeasible logic [3] and deontic logic of violations [17].
Compliance is verified by traversing the graph describing the process and identi-
fying the effects of tasks and the obligations triggered by task execution. Ad hoc
algorithms for propagating obligations through the process graph are defined.

The idea of describing the effects of atomic tasks on data through precondi-
tions and effects is already present in [23], where effects and preconditions are
sets of atomic formulas, and the background knowledge consists of a theory in
clausal form; I-Propagation [33] is exploited for computing annotations. In our
approach the domain theory contains directional causal rules rather than gen-
eral clauses (which allow unintended conclusions to be avoided when reasoning
about side effects), and domain annotations are combined with data properties
in a uniform approach. In the related paper [33] several verification tasks are
defined to verify that the business process control flow interacts correctly with
the behaviour of the individual activities.

In [9] a service over an artifact schema is defined as a triple: a precondition, a
post-condition and a set of static rules, which define changes on state relations,
and are formulas in a first-order temporal logic. State update rules S(x)← φ+(x)
and ¬S(x)← φ−(x) are essentially specific kind of causal laws whose antecedents
φ+ and φ+ are evaluated in the artifact instance in which the service is executed
and whose consequents are added to the resulting artifact instance. [9] identifies
a class of guarded artifacts for which verification of properties in a (guarded)
first-order extension of LTL is decidable. While our action language does not
allow for explicit quantification, it allows for a flexible formulation of action
effects and causal laws, which permits (as shown in Section 3) an encoding of
post-conditions as in [9].

In [4] compliance checking for BPMN process models is based on the BPMN-
Q visual language. Rules are given a declarative representation as BPMN-Q
queries, which are translated into temporal formulas for verification.

58 L. Giordano et al.

In [25] the Abductive Logic Programming framework SHIFF [2] is exploited
in the declarative specification of business processes as well as in the verification
of their properties. In [1] expectations are used for modelling obligations and
prohibitions and norms are formalized by abductive integrity constraints.

In [29] Concurrent Transaction Logic (CTR) is used to model and reason
about general service choreographies. Service choreographies and contract re-
quirements are represented in CTR. The paper addresses the problem of decid-
ing if there is an execution of the service choreography that complies both with
the service policies and the client contract requirements.

Temporal rule patterns for regulatory policies are introduced in [13], where
regulatory requirements are formalized as sets of compliance rules in a real-time
temporal object logic. The approach is used essentially for event monitoring.

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, and G. Sartor. Mapping
of Deontic Operators to Abductive Expectations. NORMAS, pages 126–136, 2005.

2. Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
and Paolo Torroni. Verifiable agent interaction in abductive logic programming:
the SCIFF framework. ACM Trans. Comput. Log., 9(4), 2008.

3. G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation
results for defeasible logic. ACM Trans. on Computational Logic, 2:255–287, 2001.

4. Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking
using BPMN-Q and temporal logic, LNCS 5240. In BPM, pages 326–341. Springer,
2008.

5. K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis
of artifact-centric business process models. In BPM, pages 288–304, 2007.

6. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

7. D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. L. Pozzato, and D. Theseider
Dupré. Verifying business process compliance by reasoning about actions. In
CLIMA XI, pages 99–116, 2010.

8. M. Denecker, D. Theseider Dupré, and K. Van Belleghem. An inductive definitions
approach to ramifications. Electronic Transactions on Artificial Intelligence, 2:25–
97, 1998.

9. A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic verification of data-
centric business processes. In ICDT, pages 252–267, 2009.

10. N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. AAMAS03, pages 520–527.

11. M. Gelfond. Answer Sets. Handbook of Knowledge Representation, chapter 7,
Elsevier, 2007.

12. A. Ghose and G. Koliadis. Auditing business process compliance. ICSOC, LNCS
4749, pages 169–180, 2007.

13. C. Giblin, S. Müller, and B. Pfitzmann. From Regulatory Policies to Event Mon-
itoring Rules: Towards Model-Driven Compliance Automation. IBM Reasearch
Report, 2007.

14. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction
Protocols in a Temporal Action Logic. Journal of Applied Logic, 5:214–234, 2007.

Business Processes Verification with Temporal Answer Set Programming 59

15. L. Giordano, A. Martelli, and D. Theseider Dupré. Achieving completeness in
bounded model checking of action theories in ASP. In Proc. KR 2012.

16. L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about actions with
temporal answer sets. Theory and Practice of Logic Programming, 2012.

17. G. Governatori and A. Rotolo. Logic of Violations: A Gentzen System for Reason-
ing with Contrary-To-Duty Obligations. Australasian Journal of Logic, 4:193–215,
2006.

18. G. Governatori and S. Sadiq. The journey to business process compliance. Hand-
book of Research on BPM, IGI Global, pages 426–454, 2009.

19. Guido Governatori. Law, logic and business processes. In Third International
Workshop on Requirements Engineering and Law. IEEE, 2010.

20. F. Guerin and J. Pitt. Verification and Compliance Testing. Communications in
Multiagent Systems, Springer LNAI 2650, 2003.

21. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.
Theory and Practice of Logic Programming, 3(4-5):519–550, 2003.

22. J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal Logic.
Annals of Pure and Applied logic, 96(1-3):187–207, 1999.

23. J. Hoffmann, I. Weber, and G. Governatori. On compliance checking for clausal
constraints in annotated process models. Information Systems Frontieres, 2009.

24. D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, and P. Dadam. On enabling
data-aware compliance checking of business process models. In Proc. ER 2010,
29th International Conference on Conceptual Modeling, pages 332–346, 2010.

25. M. Montali, P. Torroni, F. Chesani, P. Mello, M. Alberti, and E. Lamma. Ab-
ductive logic programming as an effective technology for the static verification of
declarative business processes. Fundam. Inform., 102(3-4):325–361, 2010.

26. S. Narayanan and S. McIlraith. Simulation, verification and automated composi-
tion of web services. In Proc. 11th Int. World Wide Web Conference, WWW2002,
pages 77–88, 2002.

27. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational spec-
ification. IBM Systems Journal, 42(3):428445, 2003.

28. Maja Pesic and Wil M. P. van der Aalst. A declarative approach for flexible
business processes management. In Business Process Management Workshops,
LNCS 4103, pages 169–180. Springer, 2006.

29. D. Roman and M. Kifer. Semantic web service choreography: Contracting and
enactment. In International Semantic Web Conference, LNCS 5318, pages 550–
566, 2008.

30. M. P. Singh. A social semantics for Agent Communication Languages. Issues in
Agent Communication, LNCS(LNAI) 1916, pages 31–45, 2000.

31. A. M. ter Hofstede, W. M. P. van der Aalst, M. Adamns, and N. Russell. Modern
Business Process Automation: YAWL and its Support Environment. 2010.

32. Wil M. P. van der Aalst and Maja Pesic. Decserflow: Towards a truly declara-
tive service flow language. In The Role of Business Processes in Service Oriented
Architectures, volume 06291 of Dagstuhl Seminar Proceedings, 2006.

33. I. Weber, J. Hoffmann, and J. Mendling. Beyond soundness: On the verification
of semantic business process models. Distributed and Parallel Databases (DAPD),
2010.

34. M. Winslett. Reasoning about action using a possible models approach. In Proc.
AAAI 88, 7th National Conference on Artificial Intelligence, pages 89–93, 1988.

35. P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. AAMAS’02, pages 527–534, 2002.

