
A Knowledge-based Approach to the Configuration of
Business Process Model Abstractions

Shamila Mafazi1, Wolfgang Mayer2, Georg Grossmann2, and Markus Stumptner2

University of South Australia, Adelaide, SA, 5095, Australia
1shamila.mafazi@mymail.unisa.edu.au
2 {firstname.lastname}@unisa.edu.au

Abstract. Methods for abstraction have been proposed to ease comprehension,
monitoring, and validation of large processes and their running instances. To date,
abstraction mechanisms have focused predominantly on structural aggregation,
projection, and ad-hoc transformations.
We propose an approach for configuration of process abstractions tailored to a
specific abstraction goal expressed as constraints on the abstraction relation and
process transformation operators. Our framework goes beyond simple structural
aggregation and leverages domain-specific properties, taxonomies, meronymy,
and flow criteria. In this paper we outline the constraint-based framework and its
underlying inference procedure. We show that our approach can handle most of
the common process analysis use cases.

Keywords: business process abstraction, business process management, process
configuration

1 Introduction

Models of business processes and operational procedures are increasingly being used
in modern organizations, and the size and complexity of processes and their models
can often be large. Development processes in large technology-focused organizations
can easily span more than one thousand process steps [10]. As a result, process models
have become difficult to understand and manage, as they may not be specified in full
in order to enable flexible executions. However, such flexibility comes at a price: it is
no longer easily possible to reason about executions based on a single process model.
Although learning methods have been developed to reconstruct process models from
execution logs [5], the resulting processes are often very specific and can be difficult
to comprehend in full. Therefore, methods for business process abstraction are desired
that enable process analysts to tailor large models to their specific analysis task at hand.

Methods for abstraction have been proposed to ease comprehension, monitoring,
and validation of large processes and their running instances. To date, abstraction mech-
anisms have focused predominantly on structural aggregation and projection. Collaps-
ing “similar” entities in a process model into one abstract element and projecting away
irrelevant entities are among the most common forms of simplification employed for
abstraction. Similarity and relevancy of process entities is often defined ad-hoc using

A knowledge-based approach to the conf. of business proc. model abstractions 61

process structure, clustering techniques, and user-specified selection criteria [4]. Clus-
tering techniques, statistical methods, and ad-hoc criteria are commonly used to devise
a concise summary representation that reflects certain aspects of the larger process.

Although structural aggregation can lead to considerable simplification of large pro-
cess models, the resulting model may not show all required elements or aggregate ele-
ments together that would be better kept separate. However, these measures fail to take
into consideration the purpose of the abstraction for the user.

We propose an approach to computing abstractions of business process models tai-
lored to conducting selected common business process analysis tasks. We address this
problem by imposing constraints on the abstraction relations that relate concrete and
abstract process models such that the abstract process model induced by the abstraction
relation is guaranteed to include the information needed to assess selected properties of
the process. Rather than relying on cumbersome explicit specification of relevant pro-
cess elements, we combine a questionnaire-driven approach to eliciting constraints for
common analysis tasks with explicit specification of additional constraints a user may
have.

As a result, significance and granularity of an abstract model can be explicitly con-
trolled and adjusted to suit a given task. Furthermore, the granularity need not be uni-
form across the entire model; different abstraction operators can be applied to different
regions of the process model.

Although techniques for parameterizing the granularity of the resulting abstractions
have been introduced in order to compensate for current techniques’ inability to devise
representations that are fit for the user’s objective [8], to the best of our knowledge,
no explicit means to control abstractions is available to non-experts in formal process
analysis.

Our method can be seen as configuration of process models, where configuration ap-
plies to the abstraction operators used in devising process rather than the process model
itself. In contrast to classic configuration where one chooses between alternative instan-
tiations of given variation points within a parametric process model, our approach takes
a detailed process model without explicit variation points and derives simplified vari-
ations thereof. Hence, our configuration method controls the operators applied within
the abstraction process rather than the underlying process model.

In this paper we make the following contributions:

– a knowledge-based framework for configuring purposeful abstractions;
– a framework for specifying constraints on the abstraction;
– a method to infer the process elements (nodes, data, labels) that need to be retained

in a conforming abstraction;
– a method to compute abstractions conforming to the abstraction goal.

The subsequent sections are structured as follows. Our process model and abstrac-
tion framework are introduced in section 2, our constraint-based abstraction framework
and configuration mechanism are described in sections 3 and 4, respectively. Abstrac-
tion operators are modeled in section 5 and our method of synthesizing conforming
abstractions is summarized in section 6, followed by discussion of related work in sec-
tion 7.

62 S. Mafazi et al.

2 Process Model Abstractions

Different users of a process model are usually interested in observing a process model
at different levels of details. This requires creation of different abstract process models
from one model. However, not all abstract views of a process are equally desirable, as
useful abstractions should be tailored to the user’s needs. In this work, we pursue this
aspect of process abstraction by constraining abstractions such that certain user-selected
properties of the underlying concrete process are maintained in its abstract view.

We adapt the process model of Smirnov et al.[15] for our purposes and furnish the
model with explicit representations of data- and domain-specific properties attached to
tasks:

Definition 1 (Process Model). A tuple (N,F, P, φ,DP) is a process model, where N
is a finite set of nodes partitioned into tasks Nt and gateways Ng , F ⊆ N × N is the
flow relation such that (N,F) is a connected graph, P is a finite set of properties of
tasks, DP is a finite set of property values of tasks, and φ : N × P 7→ DP is a function
that maps each property of a node to its value. For brevity, we write n.p for φ(n, p). Let
M denote the set of all process models.

The set of properties P comprises common domain-specific properties, predicate val-
uations, and information derived from executions of process instances. Common prop-
erties include roles, resources, timing information, and used and modified data flow
information. Domain-specific predicates are boolean properties expressing facts such
as “is on a critical path”. Information derived from executions indicate aggregate infor-
mation, for example execution frequencies or number of running instances of a task.

Given a concrete model m of a business process, an abstract view of m is a process
model m̂ that retains “significant” entities of m and omits insignificant ones. In our
framework, entities comprise the nodes, flows, and properties associated with nodes in
a given model. We write Ωm to denote the set of entities in m where Ωm ⊆ N ∪ F ∪
{n.p|n ∈ N, p ∈ P}.

Which entities are considered significant is largely determined by the purpose of the
abstract model and hence should be defined flexibly based on the goals of the analyst.
We will therefore use an abstract predicate sign ⊆ Ωm ∪Ωm̂ to capture the significant
entities.

Whereas insignificant entities can be either eliminated from in the abstraction or
absorbed into an abstract entity, the significant elements are to be retained. The corre-
spondence between significant entities of m and their abstract counterpart in m̂ is given
by an abstraction relation R ⊆ Ωm ×Ωm̂.

Definition 2 (Process model abstraction). A business process model abstraction is
a function α : M 7→ M that transforms a model m into a model m̂ = α(m) with
correspondence relation Rα such that

– ∀ω̂ ∈ Ωm̂ sign(ω̂) is true,
– ∀ω̂ ∈ Ωm̂∃ω ∈ Ωm (ω, ω̂) ∈ Rα,
– ∀ω ∈ Ωm sign(ω)→ ∃ω̂ ∈ Ωm̂ : (ω, ω̂) ∈ Rα, and
– α preserves local composition of m in m̂.

A knowledge-based approach to the conf. of business proc. model abstractions 63

Receptionist

5 min

Receptionist

10 min

Receptionist

10 min

Receptionist

3 min

Receptionist

7 min

Receptionist

7 min

Admin

7 min

Admin

2 min

Staff

10 min

Customer

7 min

Accountant

1 min

Receptionist

5 min

Concrete Process Model m

Abstract Process Model m ̂

Fig. 1. Example Process Model (bottom), Abstract Model (top), and Correspondence Relation

The first three conditions ensure that all retained entities in the abstraction are signifi-
cant, are justified by the existence of at least one entity in the concrete process, and that
all significant concrete entities have a corresponding element in the abstract model. The
fourth condition restricts correspondences to meaningful maps that preserve the local
structural composition of m in m̂. We require that each concrete entity maps to at most
one abstract counterpart. Where each abstract property attaches to the abstraction of
the concrete nodes belonging to the concrete properties. Also the abstract flow relation
reflects the flow in the concrete process model:

– ∀ω ∈ Ωm ∀ω̂, ω̂′ ∈ Ωm̂ (ω, ω̂) ∈ Rα ∧ (ω, ω̂′) ∈ Rα → ω̂ = ω̂′,

– ∀n.p ∈ Ωm∀n̂.p̂ ∈ Ωm̂ (n.p, n̂.p̂) ∈ Rα → (n, n̂) ∈ Rα,

– (m̂, n̂) ∈ F̂ → ∃m,n ∈ N (m,n) ∈ F ∗ ∧ (m, m̂) ∈ Rα ∧ (n, n̂) ∈ Rα.

Consider the example process models in Figure 1, where the model in the lower half
depicts the concrete process and the upper half shows the abstract model. The corre-
spondence relation for tasks is indicated by dashed lines; the correspondences for flows
are left implicit. Assuming that all elements performed by role Receptionist in m are
significant, the abstraction satisfies the condition of Definition 2 as well as the three
constraints stated above. For illustration, assume that tasks Cancel Late and Send Can-
cellation Confirmation each have a property Duration, then the constraints on Rα en-
sure that property Duration of abstract task Cancel is an abstraction of only the concrete
tasks’ property.

64 S. Mafazi et al.

3 Abstraction Specification

According to Smirnov et al.[15] business process abstraction consists of three aspects:
the why, the when and the how aspect. The why aspect captures the reasons for building
an abstraction of a process model (fragment), the when aspect describes the conditions
under which an element of a process model needs to be abstracted, and the how aspect
relates to the concrete transformation mechanism to devise an abstraction. Whereas an
extensive body of work covers the how aspect, comparatively little work is available to
address the remaining aspects.

Our work aims to address the why and when aspects. We assume that a specification
of the information, its granularity, and predicates whose truth values shall be preserved
by the abstraction can be elicited, represented formally, and exploited to guide a search
procedure to infer suitable abstractions. Let Γ be such a specification, formulated over
the entities in a given process model m. Specifically, we are interested in abstract mod-
els m̂ = α(m) satisfying Γ .

By making the abstraction criterion explicit, the why aspect of process abstraction
is captured, which can be translated into conditions for when it is admissible to abstract
different entities. We define the significance predicate such that the entities are pre-
served which are required to ensure that criterion Γ is fulfilled on the abstract model.
Building on prevalent structural rewriting mechanisms, we provide generic operators
on properties and their values in order to automatically eliminate or aggregate entities,
and furnish the abstract model with a suitable representation of aggregated information.
The application of operators is restricted such that the resulting abstract model retains
the significant entities and predicates.

An abstraction criterion may be composed of the following specification primitives:

– sign(ω) for ω ∈ Ωm;
– ω = ω′ for ω, ω′ ∈ Ωm ∪Ωm̂;
– (n, n′) ∈ F ∗ ∪ F̂ ∗, n, n′ ∈ Nt ∪ N̂t, n, n′ ∈ Ng ∪ N̂g;
– n.p ⊕ c, where n, p, and c are a node, a property and a constant drawn from DP ,

respectively, and ⊕ is a relational operator (e.g. ≺, �, =, 6=, . . .);
– (ω, ω̂) ∈ Rα;
– negation, conjunction, disjunction, universal and existential quantification.

This language is expressive enough to capture many interesting properties, including
domain-specific predicates and some aggregate instance information. The starred F ∗

and F̂ ∗ denote the transitive closure of the flow relation.
For example, one could be interested only in the expensive tasks in the process

model in Figure 1, where the value of Fee exceeds some threshold $$: Γ = x.Fee ≥
$$→ ∃x (x, x̂) ∈ Rα ∧ x.p = x̂.p ∧ (x.p, x̂.p) ∈ Rα for p ∈ {Fee,Label}. Capturing
this explicitly in Γ , significance predicate and aggregation operators can be found. The
example formula implies that all “expensive” tasks will retain their precise labels and
fee information, whereas all other tasks and properties can potentially be abstracted
away (subject to maintaining the generic abstraction constraints and well-formedness
of the resulting abstract process).

While this example may seem trivial, our approach generalizes to more involved sit-
uations. For example, if execution times shall be retained, but labels of some tasks need

A knowledge-based approach to the conf. of business proc. model abstractions 65

Fig. 2. Role Hierarchy

Send Cancelation
Confirmation

Cancel Invoice Cancel Early Cancel Late

Cancel Cancel

Fig. 3. Task Meronymy

not be, our approach allows us to absorb otherwise insignificant tasks into other tasks,
but prevents us from eliminating the task entirely, which would result in its contribution
to execution time being lost. Similarly, the model abstractions that may be applied in
devising an abstraction would be restricted to aggregate the property of sequence of
nodes using the sum function but not, for example, max function. Furthermore, data
flow in the model may impose restrictions on significance of non-local process entities.

To facilitate the abstraction of data properties and other non-structural aspects of
the business process, we assume that the value domain Dp of each property (including
the label of nodes) p ∈ P forms a (finite-height) (semi-)lattice with partial order ≺p,
where x ≺p y denotes that x is more precise (or has more information) than y. We use
>p to denote the least element of Dp, which provides no information. In this case, the
property can be omitted.

For example, let us revisit the model in Figure 1. An example of the (semi-)lattice
for the Role properties is shown in Figure 2. The lattice for roles indicates that roles
Receptionist and Admin are specializations of role Staff and are therefore candidates
for role abstraction.

For example, one could be interested in distinguishing Customers from Staff but not
the precise staff roles. This could be captured in Γ as a constraint on the Role property
of nodes. As a result, any value r of property Role that satisfies r ≺ Staff would be
abstracted to value Staff.

We impose one more constraint on Rα: any admissible Rα must satisfy that no
information can be gained in the abstract model. That is, (ω, ω̂) ∈ Rα → ω � ω̂ must
hold for all property entities ω, ω̂.

4 Abstraction Configuration

Although the method of constraining valid abstractions is powerful, direct exposure
of the formal framework to business analysts is rarely feasible in practice. Therefore,
we employ knowledge-based configuration mechanisms to elicit appropriate partial ab-
straction specifications. We use a variant of the questionnaire method of process config-
uration [6], which interacts with the user in terms of simple domain-specific questions
in order to construct the formal domain representation from the user’s answers. Differ-
ent from previous work, our configuration model does not rely on established variation
points within the process model, but rather aims to construct a formula that constrains
the admissible abstraction relations and operators that can be used to construct it. No
explicit library of processes and variation points specific to the process under consider-
ation is needed.

66 S. Mafazi et al.

We envision our process abstraction configurator to provide a wizard-like interac-
tion where process analysts may select the information and predicates they wish to
retain in the abstraction, and define domain-specific value lattices, aggregation- and
structural transformation operators. Underlying our configurator is a catalog of abstrac-
tion constraint templates, which can be selected and its parameters instantiated by the
user.

Definition 3 (Configuration Model). A configuration model is a triple (C,O, G), where
C is a catalog of abstraction aspects,O is a library of abstraction operators (defined in
section 5), and G is a finite set of boolean propositions.

The catalog contains configuration options and associated abstraction constraints, the
library of abstraction operators defines the transformations that can potentially be ap-
plied to the process model, and the set of propositions allows one to restrict the set of
applicable operators based on choices made for aspects in the catalog. We first describe
the catalog and defer discussion of the operators until the next section.

Definition 4 (Abstraction Aspect Catalog). An abstraction aspect catalog is a set of
templates (Q,X,C[X,G]) where Q is a configuration option, X is a set of parameter
variables, and C[X,G] is a formula template parametric in X specifying the abstrac-
tion constraints associated with Q in terms of the process model, and abstraction oper-
ator constraint in terms of assignments to G. Each placeholder variable x ∈ X can be
assigned a predicate or domain value from the process model (subject to resulting in a
well-formed formula C[X,G]). The configuration criterion Γ is simply the conjunction
of all constraints Ci[xi, Gi] of selected Qi with binding Xi = xi.

As an example, let the configuration option Q1 be ’Get a process view from all
the interactions between two specific roles’. By selecting this configuration option, the
parameter variables are set as: X = {Role1, Role2}. The values for the roles are re-
quested and assigned as Role1 = Admin and Role2 = Accountant. The configura-
tion imposes constraints on the abstraction relation: a task n must be retained in the
abstraction if its Role property valuation matches either Role1 or Role2, and there is a
flow from n to another task n′ that has property Role set to the remaining given role.
Formally, the abstraction criterion Γ can be expressed as

∀n1, n2 ∈ Nt : (n1, n2) ∈ F ∗

∧ ((n1.Role = Role1 ∧ n2.Role = Role2)

∨ (n1.Role = Role1 ∧ n2.Role = Role2))

→ (n1, n1) ∈ Rα ∧ (n2, n2) ∈ Rα.

The catalog allows for convenient elicitation of user’s requirements based on com-
mon abstraction goal patterns. Table 1 shows how 11 of the 14 common use cases for
process abstraction presented by Smirnov et al[15] can be expressed in our framework.
Most constraints restrict which tasks and properties may be abstracted, and whether
insignificant tasks shall be eliminated or aggregated. In the first group of uses cases
(1–4), a process view respecting one or more properties of a task, such as resources
and data objects, is required. For this purpose the properties of all tasks are compared

A knowledge-based approach to the conf. of business proc. model abstractions 67

with the user specified property P. Tasks satisfying property P over property A are re-
tained in the abstraction, whereas others are eliminated. In the second use case, tracing
a task, the effect of a task in the process model needs to be assessed. For this purpose
a process view containing the tasks which are reachable from the interesting task is
produced. The constraint ensures that all tasks x′ reachable from a given task x are
retained in the abstraction. For instance-related use cases (5–7), we currently require a
pre-processing stage, where the tasks in the process model are furnished with aggregate
property information derived from the instances. For example, an property representing
execution frequencies or cumulative case costs could be added. For use case 9, adapt
process model for an external partner, the tasks which need to be presented to the ex-
ternal partner are selected. The selected tasks are considered as significant, hence they
need to be retained while the rest of the tasks are aggregated. The first constraint ensures
that selected tasks are retained in the abstraction, whereas the second constraint ensures
that no insignificant tasks are eliminated from the model (although such tasks may be
aggregated with other insignificant tasks). In use case 10, a process view respecting the
data dependencies of the tasks is required. For this purpose those tasks which make
use of the data objects of interest are considered as significant and must be retained
in the abstraction while the rest of the tasks are considered as insignificant and can be
eliminated from the abstract model. For use case 13, a process view respecting user
specified property(s) is required. Different from use cases 1–4, in this process view the
insignificant tasks (tasks without interesting property(s)) are aggregated and presented
as a composite task in the process view. Hence the constraint prohibiting the elimination
of insignificant tasks must be imposed in addition to the constraint capturing use cases
1–4.

Three use cases cannot directly be expressed in our framework. In use case 14, Re-
trieve coarse grained activities, a view over the coarse-grained tasks are required but
not a view over the process model. This requires inferring the coarse-grained activities,
i.e, abstraction hierarchies and meronymy, from the detailed process model. In contrast,
our approach relies on given abstraction hierarchies and meronymy to compute abstrac-
tions. In use case 12, the user needs to control the abstraction level gradually while in
our approach the process model is abstracted until all the user specified criteria are met.
Finally, use case 8 requires to infer possible executions of the process model given a
specification of a case instance. Extensions to our framework would be required in or-
der to infer transitions that are potentially enabled or blocked based on guard conditions
and values in the given case instance.

5 Abstraction Operators

Once abstraction constraints have been set, the concrete process model m can be trans-
formed into a customized process view m̂. In our framework, this amounts to construct-
ing an abstraction function α and its induced Rα such that all abstraction constraints
are satisfied when applying α on m. We employ generic search techniques to compose
α from individual model transformation operators selected from a library of abstraction
operators.

68 S. Mafazi et al.

Preserving Relevant Tasks (Use cases 1–4)
Q1 : Retain a task if property [A] satisfies [P]
C1[A,P] = ∀x ∈ Nt [P](x.[A]) → (x, x) ∈ Rα
Tracing a Task (Use case 11)
Q2 : Retain a task if it is reachable from the node [x]
C2[x] = ∀x′ ∈ N (x, x′) ∈ F ∗ → (x′, x′) ∈ Rα
Preserving Relevant Process Instances (Use cases 5–7)
Q1 and Q2, based on pre-processed model
Adapt Process Model for an External Partner (Use case 9)
Q3 : Retain selected tasks in set T
∀x ∈ T (x, x) ∈ Rα
Q′3 : Aggregate insignificant tasks:
∀x ∈ N sign(x)

Trace Data Dependencies (Use case 10)
Q4 : Retain a task if it uses data property [P]
C4[P] = ∀x ∈ Nt∀p ∈ [P]HasProperty(x, p) → (x, x) ∈ Rα ∧ (x.p, x.p) ∈ Rα
Get Process Quick View Respecting a Property (Use case 13)
Q1 and Q′3

Table 1. Representation of Use Cases in [15]

Abstraction operators are model transformations that rewrite the concrete model’s
entities into their abstract counterparts. Traditionally, work on business process abstrac-
tion focuses predominantly on structural transformations, where rules specify how frag-
ments in a model shall be transformed into an abstract (smaller) fragments in the ab-
stract model. Our work extends this approach to data properties.

Similar to constraints on the abstraction relation, which limit the information re-
tained in the abstraction, the selection of abstraction operators is subject to constraints
imposed by the configuration model that ensure abstract data values are given meaning-
ful values consistent with the purpose of the abstraction.

Definition 5 (Abstraction Operator). An abstraction operator is a tuple (R,S, V,W)
where R, S are fragments of a process model (“patterns”) with common variables V ,
and W is a boolean expression over propositions G (in the configuration model) and
V , governing the application of the operator. If R matches with binding σ in a model
m, and W is satisfiable, a model m′ = m[Rσ 7→ Sσ] is obtained by replacing the
matched part Rσ in m with the replacement fragment Sσ. Substitute S may contain
data transformation functions that compute the aggregate value for properties in the
abstract model. Operators include sum, min, max, avg, for numeric properties, and
least upper bound and greatest lower bound operators (if defined) on properties’ value
lattices.

Our library of abstraction operators currently comprises:

– Projection operators that eliminate tasks/flows;
– Entity abstraction rules that transform labels and properties of individual tasks.

These operators abstract property values according to the corresponding lattices of
domain values;

A knowledge-based approach to the conf. of business proc. model abstractions 69

– Structural rewrite rules that transform the process structure and re-arrange tasks
and flows;

– Aggregation rules that aggregate values of properties of multiple tasks. Separate
rules exist for properties of different type, and different aggregation functions may
need to be used for sequence, choice, parallel, and loop constructs.

For space reasons we cannot present the entire collection in detail. Figure 4 contains
examples of property-related aggregation for properties of different types (numeric,
set-valued, boolean). The bottom part shows the concrete fragments and the top part the
abstract counterparts; X and Y represent variables to be matched and a,b,c represent
placeholders for numeric, set-valued, and boolean properties, respectively.

Figure 4a indicates 2 tasks in a block. To aggregate the numeric properties of the
two tasks, the operators such as Max, Min, Avg, Sum can be employed. Selecting an
operator is completely case based. For example, assume a user is interested in tasks
with high hand-off times. In this case, the operator Max needs to be selected to as-
sign the maximum hand-off time to the composite task XY. Likewise, for the set-valued
properties, an operator such as union, aggregate meronymy, abstract label, based on the
configuration option in hand, can be selected. The operators for boolean properties of
the tasks, include, Or, And, Xor. As an example, assume a user is interested in observing
the tasks which are in a critical path, the operator Or can be employed which indicates
the composite task is whether on a critical path or not. Figure 4b shows an abstraction
operator for two tasks in a loop. For the numeric properties of these tasks, based on
how many times the loop is executed, the result from the abstracting operator needs to
be multiplied or widened to infinity, if an upper bound is not known. Figure 4c shows
an abstraction operator for sequential tasks. In this case, where numeric properties typi-
cally are aggregated, set-valued properties are merged, and boolean properties are either
merged or combined using logic operators to infer the property value associated with
the abstract task.

Table 2 gives a list of operators currently defined in our library. The table on the
right-hand side of the figure shows examples for formalization of three operators in our
framework. Our formalization relies on a set G of propositions defined in the config-
uration model that is used to govern the application of certain abstraction operators.
The elements of this set are determined by the selected configuration options and do-
main model and consists of propositions of the form Enable(o, op, p), where o is the
name of an abstraction operator, op is an aggregation operation, and p is a property. To-
gether with a hierarchy of properties (with specialization ordering v), the propositions
are used to control which operators can be applied to certain operations. For example,
abstraction operator SumNumPropSeq is only applicable if none of the configuration
options prohibits its application. Whereas most operators are generic and can be ap-
plied to process models from any domain, domain-specific operators can be introduced
to account for specific abstractions, such as the meronymy approach presented in [14].

6 Abstraction Computation

Conceptually, our abstraction method proceeds as follows. Starting with a given con-
crete process model m and configuration constraints Γ , we employ a search procedure

70 S. Mafazi et al.

[Y.a, ∞]

Fig. 4. Structural and Property Aggregation Operators

Operator Type
Remove Task/Flow Projection
Remove Property Projection
Abstract Label Entity
Abstract Property Value Entity
Aggregate Sequence Structural
Aggregate Concurrent Structural
Aggregate Choice Structural
Aggregate Loop Structural
Aggregate Meronymy Structural
Simplify Gateway Structural
Shift Gateway Structural
Aggregate Value (Seq) Aggregation
Aggregate Value (Concurrent) Aggregation
Aggregate Value (Choice) Aggregation
Aggregate Value (Loop) Aggregation

Logic Representation of the Operators
RemoveTask(x):
∀x ∈ Nt : ¬sign(x) →

@x̂ ∈ N̂t : (x, x̂) ∈ Rα
AggregateTaskSeq(x,y):
x, y ∈ Nt ∧ (x, y) ∈ F →

∃x̂y ∈ N̂t : (y, x̂y) ∈ Rα
∧ (y, x̂y) ∈ Rα

SumNumPropSeq(x,y,p):
x, y ∈ Nt ∧ (x, y) ∈ F∧
(x, x̂y) ∈ Rα ∧ (y, x̂y) ∈ Rα
∧p v Numeric
∧ ¬Enable(SumNumPropSeq,+, p) /∈ G

→ x̂y.p = x.p+ y.p

Table 2. Abstraction Operators

to incrementally build an abstraction. An applicable abstraction operator r is selected
and applied to m, yielding a transformed model m′. If structural aggregation was per-
formed, additional rules to determine the property values of new task(s) are applied.
Concurrently, the abstraction function and its correspondence relation are extended to
account for the effects of r. This process repeats until an abstraction satisfying all con-
straints in Γ has been created and no further rule applications are possible. As a result,
we obtain an abstraction function that transforms the given model m in a maximally
abstract process model reflecting the relevant tasks and properties. If the intermediate
results are recorded, this yields a hierarchy of abstractions of varying granularity. Al-
though not all models in this hierarchy necessarily satisfy all abstraction constraints,
navigating the abstraction hierarchy could be useful to “drill-down” in specific areas if
needed (comparable to the approach in [12]). Incremental specification and adjustment
of abstraction constraints based on initial abstract views remains a direction for future
research.

A knowledge-based approach to the conf. of business proc. model abstractions 71

If multiple operators are applicable, this approach may result in multiple possible
abstractions. To steer our algorithm towards desirable abstractions, we employ a sim-
ple optimization method that aims to minimize both constraint violations and model
complexity. When selecting an abstraction operator, we choose the operator that mini-
mizes the sum viol(Γ, α,m) + size(α(m)), where viol(Γ, α,m) denotes the number
of constraints in Γ that are violated by the current abstraction α when applied to m,
and size(α(m)) measures the number of elements (|N | + |F |) in the abstract model
α(m). In addition, we maintain a worklist of the current best k abstraction functions.
Currently, k is a user-set parameter.

For example, let us revisit the process in Figure 1. Assume that only tasks that are
involving role “Receptionist” with Duration> 3min are required to be shown in the
abstraction.

Based on the given the abstraction constraints, the abstraction criterion Γ can be
expressed as:
∀n ∈ Nt ∧ n.Role = Receptionist ∧ n.Duration > 3→ (n, n) ∈ Rα

Considering the criteria, tasks Use, Cancel Early and Cancel Invoice are insignif-
icant, as for example Use.Role 6= Receptionist. Aggregating the two tasks Cancel
Early and Cancel Invoice does not result in a significant task either. Hence among oth-
ers, operator “Remove Task” can be applied to these tasks to eliminate them from the
process model. Tasks Cancel Late and Send Cancellation Confirmation are also in-
significant but unlike Cancel Early and Cancel Invoice, aggregating these two tasks
results in a significant task. Hence, operator Abstract Property Value can be applied to
their role properties to lift the property value to the abstract value Staff. Now, operator
Aggregate Meronymy can be applied (based on the meronymy in Figure 3), combin-
ing Cancel Late and Send Cancellation Confirmation into Cancel. The operator Sum-
NumPropSeq is applied on the duration properties of the two tasks to add up these
properties. Since the abstract task was formed by sequential composition, Aggregate
Value (Seq) must be applied twice to infer the value for properties Role and Duration of
the abstract task.

At this point, no operators are applicable that satisfy the abstraction constraints.
Further simplification of properties and removal of tasks or flows would yield either an
ill-formed process model or violate an abstraction constraint.

7 Related Work

The research presented in this paper complements the areas of business process model
abstraction and process model configuration. Due to emerging various needs, several
approaches have been proposed by which the size of a process model can be reduced.
However, no single approach provides the same level of configuration ability as ours.

Many approaches for simplifying a given process model based on rewrite rules have
been developed [15]. Rewriting approaches based on process fragments, process re-
gions and patterns aim to simplify the structure of large processes by hierarchical ag-
gregation. Various process visualization techniques rely on users selecting interesting
tasks and eliminating the remaining tasks from the process model [2]. Pankratius et al.
[11] proposed Petri Net based reduction patterns, including place and transition elim-

72 S. Mafazi et al.

ination and place and transition join, for abstraction. Liu et al. [9] cluster tasks in a
process model, preserving ordering constraints, roles, execution frequencies, and pro-
cess view for external partners. Since their main abstraction operation is aggregation,
the clusters are aggregated into composite nodes. In both of these approaches [11, 9],
the authors address the how component of the business process abstraction. Since the
papers ignore the execution semantic of the process model and treat only tasks, but
not the reachability criterion, as the abstraction objects, the process views related to the
process instances (use cases [5-7]) cannot be captured by their techniques. Additionally,
compared to our approach, their approach is not user interactive. Cardoso et al.[3] pro-
posed reduction rules to synthesize process views respecting ordering constraints and
roles. The paper concentrates on the how component of the process abstraction while
only non-functional property values have been considered. Furthermore, their reduction
technique is pattern based. Once a region matches one of their predefined patterns, the
region is aggregated into a composite node. Hence, it is not always possible to aggre-
gate an insignificant task, as forming a region for the task that matches the patterns, can
be impossible.

Bobrik et al.[1] aggregate information derived from running instances into a sum-
mary process model, including completion status, data properties, and timing informa-
tion. In this paper only the how component is discussed. Also the paper does not discuss
the property aggregation operations for different types of properties. Polyvyanyy et al.
[13] defined abstraction criteria based on slider approach which separate significant
from insignificant tasks, which are subsequently aggregated based on structural process
patterns. Although the abstraction criteria can be extended to cover more abstraction
scenarios, they are limited to those properties which have a quantitative measurement
such as cost and execution duration.

Fahland et al.[5] proposed a simplification strategy for Petri nets that is based on un-
folding and subsequent transformation and folding regardless of abstraction purposes.
Overall most of the process model abstraction approaches focus on only the how com-
ponent, reduce a process model based on predefined patterns, consider only a limited
number of properties, and are not user interactive. In contrast, we take other process
abstraction components into account, we do not restrict the preservation or aggregation
of a task based on its region and the corresponding patterns, we provide an aggrega-
tion solution for properties with different types. Finally using a questionnaire, different
needs of a user from abstracting a process model are taken into account.

In process model configuration literature, La Rosa et al. [8] introduce a question-
naire approach for system configuration. The questionnaire elicits facts about the de-
sired process variant. Facts are associated with actions that adapt a given generic ref-
erence process to suit the users requirements. Gottschalk et al. [7] summarizes similar
approaches for EPCs and YAWL, where tasks in the process are either blocked or hid-
den. In contrast, our approach does not rely on a reference process with variation points.
Instead, we constrain the resulting abstraction relation and employ search techniques to
compute suitable abstractions for tasks and data entities in the process model.

A knowledge-based approach to the conf. of business proc. model abstractions 73

8 Conclusion

We presented a configuration method for generating tailored business process abstrac-
tions that satisfy user-selected abstraction criteria. Our method is based on imposing
constraints on the abstraction relation, which is computed using a generic search pro-
cedure using a library of generic and domain-specific abstraction operators. Elicitation
of relevant abstraction constraints is simplified by a questionnaire-based approach that
hides much of the formal underpinnings of our method. Our abstraction approach goes
beyond simple structural transformation and also considers data properties and flow
aspects within the process model in the abstraction.

In this paper we focused on conceptual elaboration of our method. Immediate future
work will focus on empirical evaluation of the approach on large business processes,
and on incorporating preference orderings into our search and operator selection algo-
rithms. Other avenues for research are incremental elicitation of abstraction constraints
in the context of incremental process exploration and integration of process instance-
based properties and further reachability-based criteria.

9 Acknowledgement

We would like to acknowledge that this research was supported by the Australian Re-
search Council (ARC) under grant DP0988961.

References

1. Bobrik, R., Reichert, M., Bauer, T.: Parameterizable views for process visualization. Tech.
rep., Centre for Telematics and Information Technology, University of Twente (2007)

2. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Proc. BPM. pp.
88–95. Springer (2007)

3. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows
and web service processes. Web Semantics: Science, Services and Agents on the World Wide
Web 1(3), 281 – 308 (2004)

4. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In: Proc. APCCM. pp. 71–80. Australian Computer Society (2007)

5. Fahland, D., van der Aalst, W.: Simplifying mined process models: An approach based on
unfoldings. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) Business Process Management,
LNCS, vol. 6896, pp. 362–378. Springer (2011)

6. Gottschalk, F., La Rosa, M.: Process configuration in yawl. In: Hofstede, A.H.M., Aalst,
W.M.P., Adams, M., Russell, N. (eds.) Modern Business Process Automation, pp. 313–382.
Springer (2010)

7. Gottschalk, F., Wagemakers, T., Jansen-Vullers, M., van der Aalst, W., La Rosa, M.: Con-
figurable process models: Experiences from a municipality case study. In: Advanced Infor-
mation Systems Engineering, Lecture Notes in Computer Science, vol. 5565, pp. 486–500.
Springer Berlin / Heidelberg (2009)

8. La Rosa, M., van der Aalst, W., Dumas, M., ter Hofstede, A.: Questionnaire-based variability
modeling for system configuration. Software and Systems Modeling 8, 251–274 (2009)

9. Liu, D.R., Shen, M.: Workflow modeling for virtual processes: an order-preserving process-
view approach. Information Systems 28, 505 – 532 (2003)

74 S. Mafazi et al.

10. Mayer, W., Killisperger, P., Stumptner, M., Grossmann, G.: A declarative framework for
work process configuration. AI EDAM 25(2), 145–165 (2011)

11. Pankratius, V., Stucky, W.: A formal foundation for workflow composition, workflow view
definition, and workflow normalization based on petri nets. In: APCCM. pp. 79–88. APCCM
’05, Australian Computer Society (2005)

12. Polyvyanyy, A., Smirnov, S., Weske, M.: Process model abstraction: A slider approach. In:
EDOC. pp. 325–331 (2008)

13. Polyvyanyy, A., Smirnov, S., Weske, M.: Business process model abstraction. In: Handbook
on Business Process Management 1, pp. 149–166. Springer (2010)

14. Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-based aggregation of activ-
ities in business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y.
(eds.) Conceptual Modeling ER 2010, LNCS, vol. 6412, pp. 1–14. Springer (2010)

15. Smirnov, S., Reijers, H., Weske, M., Nugteren, T.: Business process model abstraction: a
definition, catalog, and survey. Distributed and Parallel Databases 30, 63–99 (2012)

