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Abstract. The business process planner relies on external services for particu-
lar tasks. The tasks performed by each of the providers or the planner are often
NP-complete, e.g. the Traveling Salesman Problem. Therefore, finding a com-
bined solution is a computationally (as well as conceptually) complex task. Such
a central planner could be used in business process management in e.g. logistics
service provider, manufacturer supply chain management, mid-size businesses
relying on external web services and cloud computing. The main challenge is a
high level of uncertainty and that each module can be described in a different lan-
guage. The language is determined by its suitability for the task and the expertise
of the local developers. To allow for multiple languages, we approach the problem
of finding combined solutions model-theoretically. We describe a knowledge rep-
resentation formalism for representing such systems and then demonstrate how
to use it for representing a business process planner. We prove correctness of our
representation, describe general properties of modular systems and ideas for how
to automate finding solutions.

1 Introduction

Formulating AI tasks as model finding has recently become very promising due to the
overwhelming success of SAT (propositional satisfiability) solvers and related technol-
ogy such as ASP (answer set programming) and SMT (satisfiability modulo theories).
In our research direction we focus on a particular kind of model finding which we call
model expansion. The task of model expansion underlies all search problems where for
an instance of a problem, which we represent as a logical structure, one needs to find
a certificate (solution) satisfying certain specification. For example, given a graph, we
are looking for its 3-colouring in a classic NP-search problem. Such search problems
occur broadly in applications; they include planning, scheduling, problems in formal
verification (where we are looking for a path to a bug), computational biology, and so
on. In addition to being quite common, the task of model expansion is generally simpler
(for the same logic) than satisfiability from the computational point of view. Indeed, for
a given logic L, we have, in terms of computational complexity,

MC(L) ≤ MX(L) ≤ Satisfiability(L),

where MC(L) stands for model checking (structure for the entire vocabulary of the
formula in logicL is given), MX(L) stands for model expansion (structure interpreting a
part of the vocabulary is given) and Satisfiability(L) stands for satisfiability task (where
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we are looking for a structure satisfying the formula). A comparison of the complexity
of the three tasks for several logics of practical interest is given in [15].

The next step is to extend the framework to a modular setting. In [21], we started
to develop a model-theoretic framework to represent search problems which consist
of several modules. In this paper, we develop our ideas further through an example of
a Business Process Planner (BPP). This planner generalizes a wide range of practical
problems. We envision such a planner used as a part of a multi-tool process management
system. The task solved by BPP is extremely complex, and doing it manually requires
significant resources. The technology is now ready to automate such computationally
complex tasks, and our effort is geared towards making the technology available to less
specialized users.

In systems like our planner, a high level of uncertainty is present. In our framework,
we can model the following types of uncertainty.

– Each agent can see only the inputs and the outputs of other modules, but not their
internals. The modules are viewed as black boxes by the outside world. Modules
communicate with each other through common vocabulary symbols.

– Modules can be represented using languages that are not known to other modules.
Such languages can even be old and no longer supported, as is common for legacy
systems.

– Each module (an agent) can have multiple models (i.e., structures satisfying an
axiomatization), each representing a possible plan of an individual module. This is
a feature that generates uncertainty in planning. We view each module abstractly as
a set of structures satisfying the axioms of the module.

The main challenge is that each module can be represented in a different language,
reflecting the local problem’s specifics and local expertise. Thus, the only way to for-
malize such a system is model-theoretic. Our goal is not only to formalize, but to even-
tually develop a method for finding solutions to complex modular systems like the BPP.
This is a computationally complex task. Our inspiration for finding solutions to such
systems comes from “combined” solvers for computationally complex tasks such as
Satisfiability Modulo Theories (SMT). There, two kinds of propagation work interac-
tively – propositional satisfiability (SAT) and theory propagation. In the case of modular
systems, each module will have a so-called oracle that is similar to solvers/propagators
used in SMT. If the logic language used by a module has a clear model-theoretic se-
mantics, such an oracle (propagator) is easy to construct, but in the most extreme cases,
derivations can be even performed by a human expert. At the level of solving, oracles
would interact using a common internal solver language with a clear formal semantics.
We believe that a formal model-theoretic approach is the right approach to develop-
ing a general algorithm for solving modular systems such as the BPP. This is another
important motivation for developing a rigorous model-theoretic framework.

In this paper, we demonstrate how to use ideas of model expansion and modular
systems together to naturally represent modular systems such as BPP. We prove cor-
rectness of our formalization and explain how finding solutions to such systems can be
automated.
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2 Business Process Planner

A business process planner is an entity which plans a particular task by relying on ex-
ternal services for particular tasks. Often, in business, there are cases when one needs to
buy services from other service providers. The planner combines services provided by
different companies to minimize the cost of the enterprise. The customer needs to allo-
cate required services to different service providers and to ask them for their potential
plans for their share. These plans will then be used to produce the final plan, which can
be a computationally complex task. The tasks performed by each of the providers are of-
ten NP-complete, e.g. the Traveling Salesman Problem. Therefore, finding a combined
solution is a computationally (as well as conceptually) complex task. Such a central
planner could be used in business process management in many areas such as:

– Logistics Service Provider operates on the global scale, uses contracted carri-
ers, local post, fleet management, driver dispatch, warehouse services, transporta-
tion management systems, e-business services as well as local logistics service
providers with their own sub-modules.

– Manufacturer Supply Chain Management uses a supply chains planner relying
on transportation, shipping services, various providers for inventory spaces, etc.. It
uses services of third party logistics (3PL) providers, which themselves depend on
services provided by smaller local companies.

– Mid-size Businesses Relying on External Web Services and Cloud Computing
Such businesses often use data analysis services, storing, spreadsheet software (of-
fice suite), etc.. The new cloud-based software paradigm satisfies the same need in
the domain of software systems.

Planner

Provider1 Provider2 Provider3

R

S

P

R1 R2 R3S1 S2 S3

P1 P2 P3

P1' P3'P2'

Fig. 1. Business Process Planner (BPP).

Figure 1 shows a general representation of a business process planner with three
providers. Each of the solid boxes in Figure 1 represents a business entity which, while
interested to participate in the process, is not necessarily willing to share the informa-
tion that has affected their decisions. Therefore, any approach to representing and solv-
ing such systems that assumes unlimited access to complete axiomatizations of these
entities is impractical.
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The business process planner in Figure 1 takes a set S of services and a set R of
restrictions (such as service dependencies or deadlines) and generates plan P . Each
“Provideri” takes a subset of services Si and their restrictions Ri. Provideri generates
a potential plan Pi for subset Si of services and returns it to “Planner”. Planner takes
all these partial plans and, if not satisfied with them, reconsiders service allocations or
providers. However, if satisfied, it outputs plan P by combining partial plans Pi.

3 Background: Model Expansion Task

In [17], the authors formalize combinatorial search problems as the task of model ex-
pansion (MX), the logical task of expanding a given (mathematical) structure with new
relations. Formally, the user axiomatizes their problem in some logic L. This axiom-
atization relates an instance of the problem (a finite structure, i.e., a universe together
with some relations and functions), and its solutions (certain expansions of that struc-
ture with new relations or functions). Logic L corresponds to a specification/modelling
language. It could be an extension of first-order logic, or an ASP language, or a mod-
elling language from the Constraint Programming (CP) community such as ESSENCE
[12]. MX task underlies many practical approaches to declarative problem solving.

Recall that a vocabulary is a set of non-logical (predicate and function) symbols. An
interpretation for a vocabulary is provided by a structure, which consists of a set, called
the domain or universe and denoted by dom(.), together with a collection of relations
and (total) functions over the universe. A structure can be viewed as an assignment to
the elements of the vocabulary. An expansion of a structure A is a structure B with the
same universe, and which has all the relations and functions ofA, plus some additional
relations or functions. The task of model expansion for an arbitrary logic L (abbreviated
L-MX), is:

Model Expansion for logic L
Given: (1) An L-formula φ with vocabulary σ ∪ ε and

(2) A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

We call σ, the vocabulary of A, the instance vocabulary, and ε := vocab(φ) \ σ the
expansion vocabulary1.

Example 1. The following formula φ in the language of logic programming under an-
swer set semantics constitutes an MX specification for Graph 3-colouring.

1{R(x), B(x), G(x)}1← V (x).
⊥ ← E(x, y), R(x), R(y).
⊥ ← E(x, y), G(x), G(y).
⊥ ← E(x, y), B(x), B(y).

An instance is a structure for vocabulary σ = {E}, i.e., a graph A = G = (V ;E).
The task is to find an interpretation for the symbols of the expansion vocabulary ε =
{R,B,G} such that the expansion of A with these is a model of φ:

1 By “:=” we mean “is by definition” or “denotes”.
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A︷ ︸︸ ︷
(V ;EA, RB, BB, GB)︸ ︷︷ ︸

B

|= φ.

The interpretations of ε, for structures B that satisfy φ, are exactly the proper 3-
colourings of G.

Given a specification, we can talk about a set (class) of σ∪ε-structures which satisfy
the specification. Alternatively, we can simply talk about a set (class) of σ∪ε-structures
as an MX-task, without mentioning a particular specification the structures satisfy.

Example 2 (BPP as Model Expansion). In Figure 1, both the planner box and the
provider boxes can be viewed as model expansion tasks. For example, the box labeled
with “Provider1” can be abstractly viewed as an MX task with instance vocabulary
σ = {S1, R1} and expansion vocabulary ε = {P1}. The task is: given some services
S1 and some restrictions R1, find a plan P1 to deliver services in S1 such that all re-
strictions in R1 are satisfied.

Moreover, in Figure 1, the bigger box with dashed borders can also be viewed as an
MX task with instance vocabulary σ′ = {S,R} and expansion vocabulary ε′ = {P}.
This task is a compound MX task whose result depends on the internal work of all the
providers and the planner.

4 Modular Systems

This section presents the main concepts of modular systems.

Definition 1 (Primitive Module). A primitive module M is a set (class) of σM ∪ εM -
structures, where σM is the instance vocabulary, εM is the expansion vocabulary.

Each module can be axiomatized in a different logic. However, we can abstract away
from the logics and study modular systems entirely model-theoretically.

A modular system is formally described as a set of primitive modules (individual
sets of structures) combined using the operations of:
1. Projection(πτ (M)) to restrict a module’s vocabulary,
2. Composition(M1 BM2) to connect outputs of M1 to M2,
3. Intersection(M1 ∩M2),
4. Union(M1 ∪M2),
5. Feedback(M [R = S]) which connects output S of M to its inputs R.

Formal definitions of these operations were introduces in [21] and are given below.
The initial development of of our algebraic approach was inspired by [14]. In con-

trast to that work, our contribution was to use a model-theoretic setting, simplify the
framework and add a loop operator which increases the expressive power significantly,
by one level in the polynomial time hierarchy. Here, we only consider modular systems
that do not use the union operator.
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Operations for Combining Modules

Definition 2 (Composable, Independent [14]). Modules M1 and M2 are composable
if εM1

∩ εM2
= ∅ (no output interference). Module M1 is independent from M2 if

σM1
∩ εM2

= ∅ (no cyclic module dependencies).

Definition 3 (Modular Systems). Modular systems are built inductively from con-
straint modules using projection, composition, union and feedback operators:
Base Case A primitive module is a modular system.
Projection For modular system M and τ ⊆ σM ∪ εM , modular system πτ (M) is

defined such that (a) σπτ (M) = σM ∩ τ , (b) επτ (M) = εM ∩ τ , and (c) B ∈ πτ (M)
iff there is a structure B′ ∈M with B′|τ = B.

Composition For composable modular systems M and M ′ (no output interference)
with M independent from M ′ (no cyclic module dependencies), M BM ′ is a mod-
ular system such that (a) σMBM ′ = σM ∪ (σM ′ \ εM ), (b) εMBM ′ = εM ∪ εM ′ ,
and (c) B ∈ (M BM ′) iff B|vocab(M) ∈M and B|vocab(M ′) ∈M ′.

Union For modular systemsM1 andM2 with σM1
∩σM2

= σM1
∩εM2

= εM1
∩σM2

=
∅, the expression M1 ∪ M2 defines a modular system such that (a) σM1∪M2

=
σM1
∪σM2

, (b) εM1∪M2
= εM1

∪εM2
, and (c)B ∈ (M1∪M2) iffB|vocab(M1) ∈M1

or B|vocab(M2) ∈M2.
Feedback For modular system M and R ∈ σM and S ∈ εM being two symbols of

similar type (i.e., either both function symbols or both predicate symbols) and of the
same arities; expression M [R = S] is a modular system such that (a) σM [R=S] =
σM \ {R}, (b) εM [R=S] = εM ∪ {R}, and (c) B ∈ M [R = S] iff B ∈ M and
RB = SB.

Further operators for combining modules can be defined as combinations of basic oper-
ators above. For instance, [14] introduced M1 I M2 (composition with projection op-
erator) as πσM1

∪εM2
(M1BM2). Also,M1∩M2 is defined to be equivalent toM1BM2

(or M2 BM1) when σM1 ∩ εM2 = σM2 ∩ εM1 = εM1 ∩ εM2 = ∅.

Definition 4 (Models/Solutions of Modular Systems). For a modular system M , a
(σM ∪ εM )-structure B is a model of M if B ∈M .

Since each modular system is a set of structures, we call the structures in a modular
system models of that system.

Example 3 (Stable Model Semantics). Let P be a normal logic program. We know S is
a stable model for P iff S = Dcl(PS) where PS is the reduct of P under set S of atoms
(a positive program) andDcl computes the deductive closure of a positive program, i.e.,
the smallest set of atoms satisfying it. Now, let M1(S, P,Q) be the module that given
a set of atoms S and ASP program P computes the reduct Q of P under S. Also, let
M2(Q,S

′) be a module that, given a positive logic program Q, returns the smallest set
of atoms S′ satisfying Q. Now define M as follows:

M := π{P,S}((M1 BM2)[S = S′]).

Then, M represents a module which takes a ground ASP program P and returns all and
only its stable models. Figure 2 shows the corresponding diagram of M .
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L’

P

Reduct

Dcl

Fig. 2. Modular Representation of an ASP Solver.

On a model-theoretic level, this module represents all possible ASP programs and
all their solutions, where programs are encoded by structures. While such a module is
certainly possible, a more practical use would be where one module corresponds to a
particular ASP program such as the one for graph 3-colouring in Example 1. Never-
theless, the Example 3 is useful because it represents a well-known construction and
illustrates several concepts associated with modular systems.

Example 4 (BPP as a Modular System). Figure 1 can be viewed as a modular repre-
sentation of the business process planner. There, each primitive module is represented
by a box with solid borders and our module of interest is the compound module which
is shown by the box with dotted borders. This module is specified by the following
formula:

BPP := π{S,R,P}(Planner B ((Provider1 ∩ Provider2∩
Provider3)[P ′1 = P1][P

′
2 = P2][P

′
3 = P3])).

(1)

As in Figure 1, the only vocabulary symbols which are important outside the big box
with dashed borders are S, R and P . There are also three feedbacks from P1 to P ′1, P2

to P ′2, and P3 to P ′3.

5 Details of the Business Process Planner

In this section we give a detailed description of one of the many kinds of business
process planners, i.e., a logistics service provider on the global scale which hires lo-
cal carriers and warehouses. So, in Figure 1, “Planner” refers to the global entity and
“Provider” refers to local entities.

The logistics provider need a plan to execute the services so that all restrictions
are met. Some sample restrictions are: (1) latest delivery time (e.g., Halloween masks
should be in stores before Halloween), (2) type of carrying vehicles (perishable products
need refrigerator trucks), and (3) level of care needed (glass-works should be carried
carefully).

We say that a plan P is good for a set of services S and restrictions R
(Good(P, S,R)) if P does all services in S and satisfies all restrictions in R. For sim-
plicity, here, we only consider time restrictions, i.e., the value of t(i) is the (latest)
delivery time for item i. There are also functions s(.) and d(.) to indicate the source
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and the destination of an item. For an item i, a plan is a sequence of cities 〈c1, · · · , cn〉
along with its pickup times pt(i, j) and arrival time at(i, j). So, we have that2:

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
c0 = s(i) ∧ cn = d(i)),

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃ at(i, n) ≤ t(i)),
∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
∀j ∈ [1, n] (connected(cj−1, cj)),

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
∀j ∈ [0, n] (pt(i, j) ≥ at(i, j))),

∀i ∈ Items (P (i) = 〈c0, · · · , cn〉 ⊃
∀j ∈ [1, n] (at(i, j) = pt(i, j − 1) + time(cj−1, cj))).

Intuitively, these axioms tell us that a plan for each item should: (1) start at the source
and end at the destination, (2) arrive at the destination sooner than their latest delivery
time, (3) pass through cities which are connected to each other, (4) respect time con-
straints, i.e., be picked up at a city after they have arrived at that city, and (5) respect
the distance between cities. Certainly, a good plan needs to satisfy all these conditions,
but, of course, this does not give us a full axiomatization of the problem. Here, we do
not even intend to do that, because we believe that this is enough for the reader to have
a good idea on how such full axiomatizatins look like.

Given a definition of a good plan, one can define the intended solutions of a business
process planner as below:

Definition 5 (Intended Solutions). Let BPP be a business process planner with ac-
cess to n providers. Structure B is an intended solution of BPP if:
1. PB is good for SB and RB, i.e., B |= Good(P, S,R),
2. All atomic actionsA of PB (here, moving items between different cities) are doable

by one of the n providers.

So, by Definition 5, if some set of services cannot be executed under some restrictions,
there should not exist any solution for the whole modular system which interprets S by
those services and R by those restrictions.

Now, to ensure that the intended solutions of modular system in Figure 1 coin-
cide with the models of this modular system under our modular semantics, we use the
declarative representations below for the modules:

2 We slightly abuse logic notations here to keep the axiomatization simpler. For example, we use
the notation P (i) = 〈c0, · · · , cn〉 to denote that item i takes a path starting at city c0 and then
going to city c1 and so on until it getting to city cn. In practice, such a specification can be
realized using two expansion function “len(.)” (to show the length of the path of an item) and
“loc(., .)” (to show its location). As an example, this is how the first axiom above is rewritten
in terms of “len” and “loc”:

∀i ∈ Items (loc(i, 0) = s(i) ∧ loc(i, len(i)) = d(i)).
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Module “Planner” is the set of structures over vocabulary σ = {R,S, P1, · · · , Pn}
and ε = {P, S1, · · · , Sn, R1, · · · , Rn} which satisfies:

Good(P, S,R)⇔
∧

i∈{1,··· ,n}

Good(Pi, Si, Ri), (2)

P is a join of sub-plans Pi(for i ∈ {1, · · · , n}). (3)

This module is easily specifiable in extended FO.
Module “Provideri” is the set of structures over vocabulary σ = {Ri, Si} and ε =

{Pi} which satisfy Good(Pi, Si, Ri). Each such module “Provideri” can be specified
using mixed integer linear programming. Also, in practice, many such modules are
realized using special purpose programs (so, no standard language). Our framework
enables us to deal with such programs in a unified way.

Proposition 1 (Correctness). Structure B is in modular system BPP :=
π{S,R,P}(Planner B ((Provider1 ∩ · · · ∩ Providern)[P ′1 = P1] · · · [P ′n = Pn])) (where
“Planner” and “Provideri”s are defined as above) iff B is an intended solution ofBPP
(according to Definition 5).

Proof. (1) Take B which satisfies all modules, each PBi has to be good for SBi and RBi .
Therefore, PB is good for SB and RB. Thus, B is an intended solution of BPP . (2)
Conversely, take an intended solution B. PB should be such that PB is good for SB

and RB. So, set B′ to be an expansion of B such that PB
′

i is the parts of PB which
are executed by i-th provider. Also, SB

′

i is those services that PB
′

i executes and RB
′

i is
those restrictions satisfied by PB

′

i , e.g., the latest delivery time of item a is the delivery
time of a according to PB

′

i . Now, PB
′

i is good for SB
′

i and RB
′

i . So, B ∈ BPP .

6 The Bigger Picture

Complexity of the modular framework In this subsection, we summarize one of
our important results about the modular framework from [21]. In order to do so, we first
have to introduce the concepts of totality, determinacy, monotonicity, anti-monotonicity,
etc. For lack of space, we do this through examples. The exact definitions can be found
in [21].

Example 5 (Reachability). Consider the following model expansion task with σ =
{S,E,B} and ε = {R}:

R(v)← S(v).
R(v)← R(u), E(u, v), not B(u).

(4)

where S represents a set of source vertices of a graph, E represents the edges of the
graph, B represents a set of blocked vertices of the graph and R represents a set of ver-
tices which can be reached from a source vertex without passing any blocked vertices.

Through this section, let MR denote a primitive module which represents the MX
task of Example 5. Obviously, σMR

= {S,E,B} and εMR
= {R}: Then, we have:
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Totality: Module MR is {S,E,B}-{R}-total because for every interpretation of S, E
and B, there is an interpretation for R which is a stable model of program 4.

Determinacy: Module MR is {S,E,B}-{R}-deterministic because for every inter-
pretation of S, E and B, there is at most one interpretation for R which satisfies
(4).

Monotonicity: ModuleMR is {E}-{S,B}-{R}-monotone because if we fix the inter-
pretation of symbols S and B and increase the set of edges E, then the interpreta-
tion of R (reachable vertices) increases.

Anti-monotonicity: ModuleMR is {E}-{S,B}-{R}-anti-monotone because if we fix
the interpretation of S and E and increase the set of blocked vertices (B), then, the
set R of reachable vertices decreases.

Polytime Checkability/Solvability: Module MR is both polytime checkable (because
one can check in polynomial time if a structure B belongs to MR) and polytime
solvable (because, given interpretations to S, E and B, one can compute the only
valid interpretation for R in polynomial time). However, the module MC which
corresponds to the graph 3-coloring (Example 1) is polytime checkable but not
polytime solvable (unless P=NP).
Now, we are ready to restate our main theorem from [21]. We should however point

out one difference to the readers who are not accustomed to the logical approach to
complexity: In theoretical computing science, a problem is a subset of {0, 1}∗. How-
ever, in descriptive complexity, the equivalent definition of a problem being a set of
structures is adopted. The following theorem gives a capturing result for complexity
class NP:

Theorem 1 (Capturing NP over Finite Structures). Let K be a problem over the
class of finite structures closed under isomorphism. Then, the following are equivalent:
1. K is in NP,
2. K is the models of a modular system where all primitive modules M are σM -εM -

deterministic, σM -total, σM -vocab(K)-εM -anti-monotone, and polytime solvable,
3. K is the models of a modular system with polytime checkable primitive modules.

Note that Theorem 1 shows that when basic modules are restricted to polytime
checkable modules, the modular system’s expressive power is limited to NP. Without
this restriction, the modular framework can represent Turing-complete problems. As an
example, one can encode Turing machines as finite structures and have modules that
accept a finite structure iff it corresponds to a halting Turing machine.

Theorem 1 shows that the feedback operator causes a jump in expressive power
from P to NP (or, more generally, from ∆P

k to ΣP
k+1).

Example 6 (Stable Model Semantics). In Example 3, firstly, note that primitive module
M1 is {S}-total and {S}-{P}-{Q}-anti-monotone, and also polytime solvable. Sec-
ondly, module M2 is {Q}-total, {Q}-{}-{S′}-monotone and, again, polytime solvable.
However, the module M := π{P,S}((M1 BM2)[S = S′]) is neither total nor mono-
tone or anti-monotone. Moreover, M represents the NP-complete problem of finding a
stable model for a normal logic program. This shows how, in the modular framework,
one can describe a complex modular system in terms of very simple primitive modules.
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Solving modular systems We would like to find a method for solving complex tasks
such as the application in this paper, without limiting to the particular structure of Figure
1, and without committing to a particular language. The language is determined by its
suitability for the task and the expertise of the local developers. For example, the planner
module is more easily specified as a SAT (propositional satisfiability) problem, while
some provider modules are most easily specified using MILP (mixed integer linear
programming), and global constraints with CP (constraint programming). A module
performing scheduling with exceptions is more easily specified with ASP (answer set
programming).

In our research, we focus on the central aspect of this challenging task, namely on
solving the underlying computationally complex task, for arbitrary modular systems and
arbitrary languages suitable for specifying combinatorially hard search/optimization
problems. Our approach is model-theoretic. We aim at finding structures satisfying
multi-language constraints of the modular system, where the system is viewed as a func-
tion of individual modules. Our main goal is to develop and implement an algorithm
that takes a modular system as its input and generates its solutions. Such a prototype
system should treat each primitive module as a black-box (i.e., should not assume ac-
cess to a complete axiomatization of the module). Not assuming complete knowledge
is essential in solving problems like business process planning.

We take our inspiration in how “combined” solvers are constructed in the general
field of declarative problem solving. The field consists of many areas such as MILP, CP,
ASP, SAT, and each of these areas has many solvers, including powerful “combined”
solvers such as SMT, ASP-CP solvers. There are several methods e.g. cutting plain
techniques of ILP, the formal interaction between SAT and theory solvers in SMT, etc.
used in different communities. We made the fundamental observation [22] that while
different on the surface, the techniques are similar when looked at model-theoretically.
We proposed that those general principles can be used to develop a new method of
solving modular systems as in the example above.

7 Related Work

In [21],we continued the line of research initiated in [14]. We introduced MX-based
modular systems and extended the previous work in several ways such as adding the
feedback (loop) operator, thus drastically increasing the expressive power. The current
paper shows one of the important real-world applications of systems with loops. In
our modelling of the business process planner, we use the language independence of
modular systems in an essential way. This is an essential property because, in practice,
providers use domain-specific software which may not belong to a well-studied logic.
This property separates the modular framework of [21] from many other languages
which support modularity such as modular logic programs [7, 18, 13], and frameworks
with multiple languages [19, 10].

An early work on adding modularity to logic programs is [7]. There, the authors
derive a semantics for modular logic programs by viewing a logic program as a gen-
eralized quantifier. This work is continued by [18] to introduce modular equivalence
in normal logic programs under the stable model semantics. That work, in turn, is ex-
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tended to define modularity for disjunctive programs in [13]. The last two papers focus
on introducing modular programming in logic programs and dealing with difficulties
that arise there.

Applications such as business process planning need an abstract notion of a module,
independent from the languages used. Our MX-based modular framework is well-suited
for this purpose. That cannot be said about many other approaches of adding modularity
to ASP languages and FO(ID) (such as those described in [2, 1, 6]) because they address
different goals.

Modular programming enables ASP languages to be extended by constraints or
other external relations. This view is explored in [8, 9, 20, 3, 16]. While this view is ad-
vantageous in its own right, we needed an approach that is completely model-theoretic.
Also, some practical modelling languages incorporate other modelling languages. For
example, X-ASP [19] and ASP-PROLOG [10] extend prolog with ASP. Also ESRA
[11], ESSENCE [12] and Zinc [5] are CP languages extended with features from other
languages. Such practical modelling languages are further proof that combining differ-
ent languages is extremely important for practitioners. We take this view to its extreme
by looking at modules as only sets of structures and, thus, having no dependency on
the language they are described in. The existing practical languages with support for
specific languages could not have been applied to our task.

Yet another direction to modularity is the multi-context systems. In [4], the authors
introduced non-monotonic bridge rules to the contextual reasoning and originated an
interesting and active line of research followed by many others for solving or explain-
ing inconsistencies in non-monotonic multi-context systems. However, we believe that
this application cannot be naturally described as a multi-context system because it is
impractical to define the concepts of a logic, a knowledge-base and an acceptability
relation (these are concepts that are essential to define in multi-context systems) for a
domain-specific application which might not use any known logical fragment.

8 Conclusion and Future Work

In this paper, we introduced an important range of real-world applications, i.e., business
process planning. We discussed several examples of where this general scheme is used.
Then we represented this problem as a model expansion task in the modular setting
introduced in [21]. We gave a detailed description of the modules involved in describing
business process planning in the modular framework and proved the correctness of our
representation. Our main challenge is to devise an appropriate mathematical abstraction
of “combined” solving. Remaining particular tasks include:
Algorithm Design and Implementation We will design and implement an algorithm

that given a modular system, computes the models of that modular system itera-
tively, and then extracts the solutions.

Reduction in Search Space We will improve our algorithm by using approximation
methods proposed in [21]. These methods correspond to least fixpoint and well-
founded model computations (but in modular setting). We will extend our algorithm
so that it prunes the search space by propagating information from the approxima-
tion process to the solver.



Modular Representation of a Business Process Planner 87

References

1. M. Balduccini. Modules and signature declarations for a-prolog: Progress report. In Work-
shop on Software Engineering for Answer Set Programming (SEA 2007), pages 41–55, 2007.

2. Chitta Baral, Juraj Dzifcak, and Hiro Takahashi. Macros, macro calls and use of ensembles
in modular answer set programming. In Sandro Etalle and Miroslaw Truszczynski, editors,
Logic Programming, volume 4079 of Lecture Notes in Computer Science, pages 376–390.
Springer Berlin / Heidelberg, 2006.

3. S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set and constraint
solving. In Maurizio Gabbrielli and Gopal Gupta, editors, Logic Programming, volume 3668
of Lecture Notes in Computer Science, pages 52–66. Springer Berlin / Heidelberg, 2005.

4. Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context
systems. In Proceedings of the 22nd national conference on Artificial intelligence - Volume
1, pages 385–390. AAAI Press, 2007.

5. Maria de la Banda, Kim Marriott, Reza Rafeh, and Mark Wallace. The modelling language
zinc. In Frédéric Benhamou, editor, Principles and Practice of Constraint Programming
- CP 2006, volume 4204 of Lecture Notes in Computer Science, pages 700–705. Springer
Berlin / Heidelberg, 2006.

6. M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions. Transactions
on Computational Logic, 9(2):1–51, 2008.

7. Thomas Eiter, Georg Gottlob, and Helmut Veith. Modular logic programming and general-
ized quantifiers. In Jürgen Dix, Ulrich Furbach, and Anil Nerode, editors, Logic Program-
ming And Nonmonotonic Reasoning, volume 1265 of Lecture Notes in Computer Science,
pages 289–308. Springer Berlin / Heidelberg, 1997.

8. Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform
integration of higher-order reasoning and external evaluations in answer-set programming.
In Proceedings of the 19th international joint conference on Artificial intelligence, pages
90–96, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc.

9. Islam Elkabani, Enrico Pontelli, and Tran Son. Smodels A – a system for computing answer
sets of logic programs with aggregates. In Chitta Baral, Gianluigi Greco, Nicola Leone, and
Giorgio Terracina, editors, Logic Programming and Nonmonotonic Reasoning, volume 3662
of Lecture Notes in Computer Science, pages 427–431. Springer Berlin / Heidelberg, 2005.

10. O. Elkhatib, E. Pontelli, and T.C. Son. Asp – prolog: A system for reasoning about answer
set programs in prolog. In Proc. of Practical Aspects of Declarative Languages, 6th Inter-
national Symposium, (PADL 2004), volume 3057, pages 148–162, Dallas, TX, USA, 2004.

11. Pierre Flener, Justin Pearson, and Magnus Ågren. Introducing ESRA, a relational language
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