
Chasing Polarized Order Dependencies

Jaroslaw Szlichta1,2, Parke Godfrey1,2, Jarek Gryz1,2

1 York University, Toronto, Canada

 2 IBM Center for Advanced Studies, Toronto, Canada

{jszlicht, godfrey, jarek}@cse.yorku.ca

Abstract. Dependencies have played a significant role in database design for

many years. They have also been shown to be useful in query optimization. In

this paper, we discuss the new type of dependency for polarized lexicograph-

ically ordered sets of tuples. We introduce formally the concept of polarized

order dependencies (PODs). We discuss their potential significance for data-

base systems, and present a chase procedure for testing logical implication for

them.

Keywords: Polarized Order Dependencies, Functional Dependencies, Chase

1 Introduction

Consider the following SQL query in Example 1.

EXAMPLE 1.

select year, quarter, month, sales

from Sales s, Dates d

where s.date_id = d.date_id

group by year, quarter, month, sales

order by year asc, quarter asc, month asc, sales desc

In the schema, Dates is a dimension table with a row per day, and Sales is a large

fact table recording all individual sales. The column date_id is the primary key for

Dates, each row describes a given day with explicit columns as year, quarter,

month, and day that describe the natural date values.

Of course, quarter is logically redundant in the group by, as month (which

follows it in the group by) functionally determines quarter. (First quarter en-

compasses the months of January, February, and March, second quarter, the months

of April, May, and June, and so forth.) The query’s author could not leave quarter

out of the group by, because it is stated in the select. The query optimizer could,

however, remove quarter to accomplish the group by on year, quarter,

month, sales if it recognizes that year, month and year, quarter, month offer

the same partition. This is done by query optimizers today – given the functional

dependency (FD) information that month → quarter is available to the optimizer

– by rewrite [16].

For the query above, the rewrite might still not be applied, however since the query

also specifies the answers to be ordered by year asc, quarter asc, month

168

asc, sales desc. The FD that month → quarter is not logically sufficient

to eliminate quarter from the order by, as it was to eliminate it from the group

by. To see that the functional dependency does not suffice to eliminate quarter

from the order by, imagine the values for quarter were the strings first, second,

third, and fourth. Data would be lexicographically ordered as first, fourth, second,

then third! Of course, we intend that values of quarter are, say, 1, 2, 3, and 4, so

the data would order naturally as by date. It is unfortunate, then, that quarter is, in

fact, redundant (in this query) in the order by also, but that the optimizer does not

have the means to eliminate it. What is missing is the semantic information that

month asc orders quarter asc, which is more than just that month functional-

ly determines quarter. This states that as values rise from one tuple to another on

month, they must rise, or stay the same, from the one tuple to the other on quarter

(that is, the values do not descend from the one tuple to the other on quarter). The

order by criteria can be a mix of asc and desc (as in Example 1). With this

generalization we call it polarized order dependencies (POD). As best we know, po-

larized order dependencies have not been studied before.

Our objective is to bring a reasoning about PODs into the query optimizer. A query

plan for the query above could then eliminate quarter from both the order by

and the group by clauses. We are interested in PODs because polarized

(asc/desc) lexicographical orders are part of SQL via order by, and it is how

ordered tuple streams in a query are ordered. Therefore, PODs could be used to great

effect in query optimization. A first question for any class of a dependencies is the

inference problem: when does one POD logically follow from a collection of pre-

scribed PODs? In this paper, we present a chase procedure for testing logical implica-

tion for PODs. Chase is a fixpoint algorithm enforcing satisfaction of data dependen-

cies in databases [3, 11]. The chase algorithm is used to reason about the consistency

and correctness of data design and in query optimization to rewrite queries.

Contributions. The main contributions of this paper follow. (Our work is the first

work on PODs.)

1. Applications. We demonstrate the utility of the PODs for database systems.

• We illustrate, the connection between PODs and the order by statement.

• We show how polarized order dependencies – a new type of integrity con-

straint – can be used in query optimization.

2. Chase procedure. A chase procedure for polarized order dependencies for lexi-

cographical orders.

• We derive a chase procedure for polarized order dependencies over the sets

of tuples ordered lexicographically, the first such in the literature.

• We prove the soundness and completeness of chase rules for testing logical

implication.

Outline. Section 2 provides background with our notational conventions and defini-

tions. We motivate PODs, and discuss practical applications of them. The core of the

paper is in Section 3, where we devise a chase procedure for testing logical implica-

tion. Related work is presented in Section 4. In Section 5, we make concluding re-

marks and discuss future work.

169

2 Background

We adopt the notational conventions below. We consider a relation � over the set

of attributes	�. Let � be an arbitrary table instance over	�;	 thus,	 a	 set	 of	 tuples

over	�’s	 schema with	 attributes �. We assume a column (#) in R that takes a unique

value per tuple, without loss of generality. This alleviates any need to work with a

table instance as bags of tuples; we consider them as sets. This also removes the pos-

sibility that we might “lose” a row from r when we modify the value of one of its

columns (besides #), since # will still distinguish it from other tuples. Our notational

conventions are as follows.

• Relations. A capital letter in bold italics represents a relation: R. Capital letters

represent single attributes: A, B, C. A small letter in bold represent a relational

instance: r. Tuples are marked with small letters in italics: s, t.

• Sets. Calligraphic letters	stand for sets of attributes:	�, �, �. Proximity is used

for union of sets: �� is shorthand for	� ∪ �. Likewise, A� or	�A, where � is

a set of attributes and A is a single attribute, stands for	� ∪ {A}. AB	 denotes {A,	

B}.

• Lists. Bold letters	stand for lists of attributes: �,	�, �. Note that list X could be

the empty list, []. Square brackets denote a list: [A, B, C]. The notation [A | Z]

denotes that A is the head of the list, and Z is the tail of the list, the remaining

list with the first element removed. Proximity is used for concatenation of lists

of attributes: �� is shorthand for	� ∘ �. Likewise, A� and �A stands respectively

for [A] ∘ � and	� ∘ [A], where � is list of attributes and A is a single attribute. AB	

denotes [A,	B].

2.1 Definition of PODs

We consider ascending (asc) and descending (desc) order in the lexicographical

ordering. (This is part of the SQL’s standard). This also includes mixing of asc and

desc (e.g., order by X desc, Y asc). Our work can be also easily extended

to use of functions in the order directives (e.g., order by -1*X asc, Y asc).

Definition 1. (marked attributes) For each attribute A, the marked attributes of A

are the formal symbols A and A.

Marked attributes are used in the following way, giving us a polarization of attrib-

utes.

Definition 2. (operator ≼�� and operator ≺��) Let L be a list of marked attributes, s

and t be two tuples in relation instance r. Operator ≼�� is defined as follows:

 ! ≼�� "! where L = [H | Z]

if (H is of the form A and # < "#)

or if (H is of the form A and # > "#)

or if ((# = "#) and (Z = [] or � ≼�� "�))

Operator ≺ is defined as follows: � ≺ "� iff � ≼�� "� and "� ⋠�� �.

We are now ready to define polarized order dependency.

170

Definition 3. (polarized order dependency) Let X and Y be a list of marked attrib-

utes. Call �	 ↦ 	� a polarized order dependency over the relation � iff, for every pair

of permissible tuples s and t in relation instance � over � , � ≼�� "� implies

 � ≼�� "�.

Whenever �	 ↦ 	�, we say that � orders �. � and � are order equivalent iff �	 ↦ 	�

and �	 ↦ 	�. We denote this by �	 ↔ 	�.

Table 1 Relation instance r.

A B C D E

s 1 4 4 6 3

t 2 3 4 6 4

The order of the attributes for FDs is not important. For PODs only particular per-

mutations of attributes may hold as dependencies because they are built on lists. The

order of the attributes is important as well as how they are polarized. PODs are pre-

scriptive statements on the relation, as are FDs. That is, they can be used as a type of

integrity constraint to prescribe which instances are admissible.

EXAMPLE 2. Let r be a relation instance over � with attributes {A,	B,	C,	D,	E} as

shown in Table 1. Note � ⊨ 	ACD ↦ EB	but	� ⊭	ACD ↦ BE. Furthermore, � ⊨ 	CA ↦

BDE but � ⊭ 		 CA ↦ EBD.

There is a relationship between PODs and FDs. We show that every POD infers a FD.

THEOREM 1. (relationship between PODs and FDs) For every instance r of relation

R, if r satisfies OD �	 ↦ 	�, then r satisfies FD � → �	 (in which � is the set of at-

tributes in X, and � in Y).	

PROOF. Let s, t ∈	 r,	 such	 that	 � = "� . Therefore, � ≼�� "� and "� ≼�� �. By the

definition of POD � ≼�� "� and "� ≼�� � as �	 ↦ 	� is given, hence � = "�.

THEOREM 2. (FD/POD correspondence) For every instance r of relation R, r ⊨

�	→	 � iff r ⊨ 	�	 ↦ 	��, for all lists � that order the attributes of � and all lists �

likewise for �.

PROOF. (IF) If	�	 ↦ 	��, then � → ��	 by Theorem 1. By Armstrong’s axiom Re-

flexivity, ��	 → �	 holds. Therefore, by Armstrong’s axiom Transitivity, � → �	 is

true.

(ONLY IF) If �	 ↦ 	�� does not hold, there exists s, t ∈	 rrrr, such that � ≼PL "� but

 �� ⋠PL "��. This implies that � = "� and "� ≺PL �. Therefore � ≠ "� and � = "�,

� → �	is not true.

Note that the weakening rule �	 ↦ 	�� implies �	 ↦ 	� does not hold and as such,

FDs and PODs are distinct.

2.2 PODs in Databases

The concept of functional dependencies has come to have profound importance in

databases, especially in schema design. While functional dependencies are a simple

171

notion in some ways, reasoning over them is, somewhat surprisingly, not nearly as

simple. To gain insight into how sets of FDs behave, and to simplify the reasoning

process over them, Armstrong provided an axiomatization for them [1]. Beyond lay-

out and indexes, FDs play additional important roles in query optimization.

We have introduced PODs in analogy to FDs: FDs are to group by as PODs are

to order by. Order plays pivotal roles on the physical side, in the physical database

and in query optimization. Data is often stored sorted by a clustered (tree) index’s

key. In a query plan, an operator that takes as input the output stream of another op-

erator can benefit in cases when the stream is sorted in a particular way. Given POD

�	 ↦ 	�, if one has an SQL query with order by �, one can rewrite the query with

order by	� instead, and meet the intent of the original query. However, the rewrit-

ten query is not semantically equivalent to the original (unless �	 ↔ 	�)! One could not

legally rewrite the query with order by	� with order by � instead. Strengthening

the order by conditions is permitted, but weakening them is not. (This is true too

inside query plans for ordered tuple streams.)

A POD can be declared as an integrity constraint to prescribe which instances are

admissible. If one knows a collection of PODs,	ℳ – declared as integrity constraints

over relation	� – one might soundly infer additionally PODs that must be true for �

and use them for query optimization. For example, if �	 ↦ 	� and �	 ↦ 	� are true,

then �	 ↦ 	� is true also.

Polarized order dependencies are not just limited to the time domain as used in Ex-

ample 1, however. They arise naturally in many other domains from the real-world

semantics associated with given data. Consider Example 3, which concerns taxes.

EXAMPLE 3. Consider a table Taxes that includes columns for taxable income,

tax bracket, and taxes on the income. The tax brackets are based on the level on

income (the values of the tax brackets are: A, B, C, D and decrease with income lev-

el). Assume taxes go up with income. Then, from [income] ↦ [bracket] and

[income] ↦ [taxes] it follows that [income] ↦ [bracket, taxes]. Assume the table

has a tree (clustered) index on income. Given a query on the table with an order

by on bracket desc, taxes asc, with the POD above, it could be evaluated

using the index on income (for order by income asc), avoiding potentially

an expensive sorting operation.

Instead of being columns with explicit data, bracket and taxes could be derived

by functions or case expressions – say, if Taxes were a view – or generated columns

in the table. In these cases, it would be possible for the database system to derive the

polarized order dependency constraints above automatically. In [12], it was shown

how to derive such monotonicity “constraints” from generated columns via algebraic

expressions (in IBM DB2). Of course, one could prescribe the set of polarized order

dependencies as check constraints directly to benefit by this technique.

In [16], the authors expounded on the important role of order in query optimiza-

tion. They demonstrated numerous examples of how better reasoning over interesting

orders in the query optimizer could lead to significantly better performing query

plans. They introduced query rewrites in IBM DB2 that could replace one labeled

interesting order by another, when it is known the two order in the same way (that is,

172

are order equivalent, as we have defined it). For that, they use notion of FDs. They

showed how these rewrites could allow the optimizer to consider additional query

plans that process join, order by, group by, and distinct operators more

efficiently. However, they could not reduce the order by year asc, quarter

asc, month asc, sales desc to year asc, month asc, sales desc as

we did in Example 1, since their techniques do not employ the idea of PODs.

By recognizing that a tuple stream ordered with respect to some criteria is equiva-

lently ordered with respect to other criteria, a sort on input can be removed for a sort-

merge join. Order by and group by operators can be satisfied with no need for a

sorting or partitioning operation more often. Likewise, as the distinct operator is

exchangeable with group by, the need for a sorting or partitioning operation to

satisfy distinct can be lessened. In [16], they introduced a rewrite algorithm for

order by called Reduce Order. It sweeps the order by attribute list from right to

left, seeking to eliminate attributes. At each iteration through the list, the prefix set

with respect to the current attribute – that is, the set of attributes to the left of the cur-

rent – is checked to see whether it functionally determines the current attribute. If so,

the attribute is dropped from the list. We can augment that algorithm – call it Reduce

Order* – to do an additional step. At each iteration through the list, it can additionally

be checked whether any postfix list with respect to the current attribute – that is, the

list of attributes to the right of the current – orders the current attribute, where the

asc and desc gives us a polarization.

3 A Chase Procedure for PODs.

A goal in any dependency theory is to develop algorithms for testing logical implica-

tion; that is, testing whether a dependency is satisfied based on a given set of depend-

encies. In this section, we show how to test logical implication for PODs using chase

procedure.

Definition 4. (equalize) Let s and t be two tuples in relation instance r, and let A be

a single attribute. Also let x = min(#, "#). The operation equalize(r, A, s, t) returns a

relational instance r', with s and t modified in r so # = x and "# = x.

EXAMPLE 4. Consider Table 2 and Table 3 as an example of an operation equalize.

Table 2 Instance r = {s, t}

A

s 0

t 1

Table 3 Instance r' = equalize(r, A, s, t)

A

s 0

t 0

Now, we are going to introduce chase rules, which are applied to two rows in a rela-

tion instance with respect to set of PODs ℳ.

Definition 5. (chase rules) Let s and t be two tuples in relation instance r, and let X

and Y be lists of marked attributes such that X ↦ Y is falsified in r (� ≼�� "� but

 � ⋠�� "�), let A be the first attribute in X such that # ≠ "# (if such an attribute A

exists) and let B be first attribute in Y such that "B ≠ B. Two chase rules are defined.

173

• Split rule: If � = "�, then r' = equalize(r, B, s, t).

• Swap rule: If # ≠ "# and B ≠ "B, then r' = equalize(r, B, s, t).

EXAMPLE 5. Let ℳ = {A ↦	BC, B ↦ C} and let r be an instance over R with	 attrib-

utes {A, B, C}. From Table 4 to Table 5 demonstrates an example of applying the

split rule (A ↦	BC is falsified in r in Table 4). From Table 5 to Table 6 demonstrates

applying the swap rule (B ↦ C is falsified in r' in Table 5).

Let ℳ be a set of prescribed PODs, and let r = {"C, … , "E} be an instance relation over

R. The chase algorithm is as follows.

Algorithm 1 (chase(r, ℳ))

1. Current := r;

2. Previous := {}; //empty instance

3. while Current ≠ Previous {

4. Previous := Current;

5. if (∃ t,s ∊ Current, ∃ X ↦ Y in ℳ such that � ≼�� "� but t � ⋠�� "�) {

6. Apply one of the chase rules (split or swap from Definition 5) to s and t,

7. assigning the table which is returned from equalize operation to Current.

8. }

9. } return Current;

EXAMPLE 6. Let ℳ = {A ↦	BC, B ↦ C} be a set of PODs and r an instance over R

with	 attributes {A, B, C}. The sequence from Table 4, Table 5, to Table 6 is an exam-

ple of applying Algorithm 1 (chase(r, ℳ)) to r as in Table 4. In Table 6, there is no s

and t that matches (as in step 5 of Algorithm 1), so the procedure terminates with it.

Table 4 Table instance r ⊭	

ℳ				

A B C

s 1 1 2

t 1 1 1

u 3 3 3

Table 5 r' ⊭	ℳ,	using	split	
rule	for	rows	s,	t.

A B C

s 1 1 1

t 1 1 1

u 3 3 3

Table 6 chase(r, ℳ) ⊨ ℳ,

using swap rule for rows t, u.

A B C

s 1 1 1

t 1 1 1

u 3 3 1

LEMMA 1. (termination and satisfaction) Algorithm 1 terminates and the resulting

table of Algorithm 1 satisfies set of PODs ℳ.

PROOF. Consider a given relational instance r, and any relational instance s, over

schema R. Without loss of generality let all values in r and s be zero or greater. Let

∑L be the sum of all the values of all the columns in s. Let there be an applicable

chase rule – split or swap – on s with respect to ℳ, and s' be the result of its applica-

tion. Instance s' has the same number of rows as s. Also ∑LM <	 ∑L as the equalize

replaced a value in some column of some row by a smaller value. (Note that equalize

does not introduce new values.) Zero is the lower bound on the ∑LM. As a chase proce-

dure is a finite sequence of such transformations starting with r, it must terminate.

174

The remaining step is to show that the resulting table of Algorithm 1 satisfies a set

of PODs ℳ. The instance chase(r, ℳ) satisfies ℳ as no split or swap with respect to

ℳ applies. If not the chase procedure would not have terminated at that point. □

THEOREM 3. Let relation instance r be over R and let ℳ be a set of PODs. Then

r ⊨ ℳ iff r = chase(r, ℳ).

PROOF. (IF): If any split or swap applies to table instance s with respect to ℳ, for

the resulting s', ∑LM <	 ∑L. Then clearly s ≠ s'. Thus r = chase(r, ℳ) if no swap or

split applies, meaning r ⊨ ℳ. (ONLY IF): From Definition 5 it follows that chase

rules split or swap are only used if it breaks a dependency in ℳ. □

Let us define a table template.

Definition 6. (table template) Let R be relation schema with n attributes and m be a

POD �	 ↦ 	�, where list of marked attributes �	contains attributes [XC, … , XP]. A table

template for a POD m, denoted as �Q, is a table consisting of two tuples s and t, such

that is either equal to �R or �S , for j in 1,..., k. In �R and �S , symbols pT and qT repre-

sents one of the following three cases, where the ordering of variables bT and tT is

defined as bT < 	 tT:

a) pT = bT and qT = bT,

b) pT = bT and qT = tT,

c) pT = tT and qT = bT.

Table 7 Template �V

XC XW R – {XC, … , XW}

s bC … bW pWXC … pE

t bC … bW qWXC ... qE

Table 8 Template �Y

XC XSZC XS R – {XC, … , XS}

s bC … b[ZC b[p[XC … pE

t bC … b[ZC t[q[XC ... qE

Please note that we apply chase rules split and swap on table templates using order-

ing bT < 	 tT which is part of the Definition 6.

Definition 7. (mapping �Q to ö(�Q)) Let �Q be a table template from Definition 6. A

mapping of �Q to ö(�Q) is any instance with values that satisfy the ordering from

Definition 6.

EXAMPLE 7. Consider Table 9 as one of possible mappings from Definition 7. (In

fact it can be any relation instance which satisfies the Definition 6 of ordering of vari-

ables).

Table 9 Table template �_.

A B C D

s bC b` ba hb

t bC b` ta bb

Table 10 Instance ö(�_).

A B C D

s 1 4 0 8

t 1 4 1 7

LEMMA 2. Let �Q be a table template from Definition 6, where m is a POD �	 ↦ 	�.

Then �Q ⊨ ℳ iff �Q = chase(�Q, ℳ).

175

PROOF. The proof follows directly from Theorem 3 by replacing �Q with r and ap-

plying chase rules split and swap on variables bT, tT using ordering defined in Defini-

tion 6. □

LEMMA 3. Let �Q be a table template from Definition 6 and ö(�Q) be mapping from

�Q (Definition 7). Then �Q ⊨	X ↦ Y iff ö(�Q) ⊨	X ↦ Y.

PROOF. The proof follows from the definition of ordering of variables in Definition

6. Since ordering of values in ö(�Q) corresponds with ordering of variables in �Q

respectively (Definition 7). □

Definition 8. (tableaux cQ) Let m be a POD X ↦ Y. We define cQ to be the set of

all table templates �Q , as defined in Definition 6.

Note that cQ is not just a single table template. It is a set of table templates (each

consisting of two rows). The chase of cQ is defined as follows.

Definition 9. (chase of tableaux cQ) The chase of cQ over a set of PODs ℳ , denot-

ed as CHASEcf,ℳ is defined by CHASEcf,ℳ = {chase(�Q , ℳ) | �Q ∊ cQ }.

CHASEcf,ℳ satisfies X ↦ Y, denoted by CHASEcf,ℳ⊨ X ↦ Y, if, for all �Q ∊ cQ,

chase(�Q , ℳ) ⊨ X ↦ Y. CHASEcf,ℳ satisfies ℳMdenoted by CHASEcf,ℳ ⊨ ℳ ', if

for all X ↦ Y ∊ ℳ', CHASEcf,ℳ⊨ X ↦ Y.

THEOREM 4. (chase procedure for PODs is sound and complete) Let ℳ be a set of

PODs over R and m be a POD X ↦ Y. Then ℳ ⊨ X ↦ Y iff CHASEcf,ℳ ⊨ X ↦ Y.

PROOF. (IF): Assume CHASEcf,ℳ ⊭ X ↦ Y. By Definition 9, there exists

�Q ∊ cQ , such that chase(�Q , ℳ) ⊭ X ↦ Y. Note chase(�Q , ℳ) ⊨ ℳ, by Lemma 1.

Hence, there is a mapping ö to generate a relation instance ö(chase(�Q ,ℳ))	and by

Lemma 3, ö(chase(�Q ,ℳ))	⊨ ℳ, but ö(chase(�Q ,ℳ)) ⊭ X ↦ Y. This implies that

ℳ	⊭ �	 ↦ 	� because we have found a relation instance which satisfies ℳ but does

not satisfy �	 ↦ 	�. Therefore, if ℳ ⊨ X ↦ Y then CHASEcf,ℳ ⊨ X ↦ Y.

(ONLY IF): Assume CHASEcf,ℳ⊨ �	 ↦ 	�. Let s, t be any two tuples in any relation

r such that � ≼��
 "� and satisfying ℳ. We would like to present that � ≼��

 "�. Let

�Q ∊ cQ , let �Q = {p, q} be the template relation such that ö(p) = s and ö(q) = t. It is

possible always to find such a pair of tuples �Q since cQ considers all possibilities of

two tuples which satisfy the condition � ≼��
 "�. Therefore, we have ö(�Q) = {s, t}

and ö(�Q) ⊨ ℳ . By Lemma 3, it follows that �Q ⊨ ℳ . Therefore, it follows by

Lemma 2 that �Q = chase(�Q , ℳ). Since we have assumed that CHASEcf,ℳ⊨ �	 ↦ 	�,

we have chase(�Q , ℳ) ⊨ �	 ↦ 	� . As ö(�Q) = ö(chase(�Q , ℳ)), it implies that

ö(�Q) ⊨ �	 ↦ 	� by Lemma 3. So � ≼��
 "�. Hence, if CHASEcf,ℳ ⊨ X ↦ Y, then ℳ

⊨ X ↦ Y. 	□

THEOREM 5. (decidable) The implication problem of the PODs is decidable.

PROOF. Testing implication problem of the PODs is decidable as the chase proce-

dure is a sound and complete inference algorithm for PODs (Theorem 4). 	□

THEOREM 6. (complexity of chase procedure for PODs) The complexity of building

templates is exponential for the PODs chase procedure.

176

PROOF. According to Definition 6 there are 3hZP templates for �R and 3hZS tem-

plates for each, �S . Therefore there are 3hZP + (3hZP +…3hZC) templates in total.

Because (3hZP +…+ 3hZC) is geometric progression this can be simplified to the form

3hZP + 3hZP(1 - 3P)/(1-3) which is equal to (3h+ 3hZP)/2. So the complexity of build-

ing the templates is shown to be O(3E). 	□

4 Related Work

Ordered sets and lattices have been a subject of research in mathematics. Our con-

cept of polarized order dependency is equivalent to order-preserving mappings be-

tween ordered sets [6]. The work in mathematics has concentrated on investigating

properties of, and relationships between, ordered sets rather than among the map-

pings. To the best of our knowledge, no inference system for describing relationships

between mappings has been proposed.

Order dependencies were introduced for the first time in the context of database

systems in [8]. However, the type of orders, hence the dependencies defined over

them, were different from the ones we presented here. A dependency1 � ↝ 		� holds

if order over the values of each attribute in � implies an order over the values of each

attribute of �. This dependency is defined over the sets of attributes then, rather than

lists. The distinction between these two types of dependencies was later aptly de-

scribed as pointwise versus lexicographical order dependency [13]. An instance of a

database satisfies a pointwise order dependency � ↝ 		� if, for all tuples s and t, for

every attribute A in � , s[A] op t[A] implies that for every attribute B in � ,

s[B] op t[B], where op ∈ {<,=, >,≤,≥}. In [8], a sound and complete set of inference

rules for such dependencies is defined together with an analysis of the complexity of

determining logical implication. A practical application of the dependencies for an

improved index design is presented in [7].

Dependencies defined over lexicographically ordered domains were introduced in

[14] under the name lexicographically ordered functional dependencies. The order

dependencies are defined as we do in this paper, but do not concern polarization (a

mix of	 asc and desc). Call these all-ascending order dependencies. A set of infer-

ence rules (proved to be sound and complete) is introduced for pointwise dependen-

cies (simpler than the one defined in [8]), but not for all-ascending order dependen-

cies. A chase procedure is defined for the latter. In [18], we presented an axiomatiza-

tion for all all-ascending order dependencies, and proved the axiomatization to be

sound and complete. An interesting extension of relational algebra to ordered domains

is presented in [14]. Our work is the first work on PODs.

Sorting is at the heart of many database operations: for instance sort-merge join,

index generation, duplicate elimination and ordering the output through the SQL

order by operator. The importance of sorted sets for query optimization and pro-

cessing has been recognized very early on. The query optimizer of System R [15] paid

particular attention to interesting orders by keeping track of all such ordered sets

1 For simplicity, we use the arrow ↝ for any different type of orders.

177

throughout the process of query optimization. In more recent work, [9, 10] explored

the use of sorted sets for executing nested queries. The importance of sorted sets has

prompted the researchers to look beyond the sets that have been explicitly generated.

Thus, [12] shows how to discover sorted sets created as generated columns
2
 via alge-

braic expressions. For example, if column A is sorted, so is the generated column G

defined as G = A/100	 + 	A − 3	 (that is, A ↝	G). We show in [17] how to use rela-

tionships between sorted attributes discovered by reasoning over the physical schema.

The chase presented here provides a formal way of discovering) previously unknown

sorted sets. Based on this work, many other optimization techniques from relational

query processing can also be adapted.

5 Conclusions

While order of tuples is purposely excluded in the relational model – an answer to a

query is a set of tuples – order plays a vital role in the evaluation of queries and in

real-world query languages as SQL with order by. (In other data/query models,

order is part of semantics, as for XML/XQuery.) We provide a sound and complete

chase procedure for the inference problem for PODs. The goal of this work was to

develop a theory behind dependencies over polarized lexicographically ordered sets.

To the best of our knowledge, this is the first attempt to develop a procedure for test-

ing logical implication for PODs. We explored some correspondence between FDs

and PODs. The story of PODs is not over. We plan next to pursue the following.

• We would like to extend our work for all-ascending order dependencies [18] into

an axiomatization for polarized (asc/desc) order dependencies. Such an axio-

matization can provide insight into how PODs behave to devise useful, logically

sound rewrites rules for queries. An axiomatization also can provide basis for de-

veloping an efficient theorem prover (inference procedure) for PODs.

• Our chase procedure demonstrates the inference procedure is decidable (Theorem

5), but it is not efficient (Theorem 6). We would like an efficient theorem prover

[1, 11]. Given a set of PODs ℳ and an arbitrary dependency	� ↦ � we would like

to efficiently decide whether ℳ logically implies	� ↦ �. Such a theorem prover

would be a useful tool for the use of PODs in query optimization. (An axiomatiza-

tion, as discussed above, could be instrumented for this.)

• Integrity constraints have been widely used in query optimization through query

rewrites. For example, functional dependencies have been shown to be useful in

simplifying queries with distinct, order by, and group by operations

[16], whereas inclusion dependencies can be used to remove certain joins over

primary and foreign keys [5]. Polarized order dependencies can be used in similar

ways to simplify queries with the order by operation [18].

• It is possible PODs have a role in database design [4]. Functional dependencies are

by far the most common integrity constraints in the real world. The notion of the

key derived from a given set of FDs is a fundamental to the relational model. The

2 In DB2, a generated column is a column that can be computed from other columns in the schema.

178

determination of polarized order dependencies might be an important part of de-

signing databases in the relational model, too. It can be used in database normaliza-

tion and denormalization. Polarized order dependencies can reveal redundancies

that cannot be detected using functional dependencies alone. It would be an inter-

esting research topic to extend the results obtained there to the design of relational

databases.

Acknowledgments. We thank Calisto Zuzarte and Wenbin Ma from IBM laboratory

in Toronto for their encouragement and helpful suggestions throughout the project.

6 References

1. Armstrong, W.W., 1974, Dependency structures of data base relationships. In Proceedings

of the IFIP Congress, Stockholm, 580-583, North-Holland
2. Abiteboul, S., Hull, R., Vianu, V., 1995. Foundations of Databases. Addison-Wesley Pub-

lishing Company, Inc.

3. Aho, A.V., Sagiv, Y., Ullman, J.D., 1979. Equivalence of relational expressions. SIAM J.

Comptng., 218-246.

4. Bernstein, P., 1976. Synthesizing third normal from relations. ACM TODS, 277-298.

5. Cheng, Q., Gryz. J., Koo, F., Leung, T.Y.C, Liu, L., Qian, X., Schiefer, K.B., 1999. Imple-

mentation of Two Semantic Query Optimization Techniques in DB2 Universal Database.

VLDB.

6. Davey, B.A., Priestley, H.A., 2002. Introduction to Lattices and Order (2. ed.). Cambridge

University Press, 1-298.

7. Dong, J., Hull, R., 1982. Applying Approximate Order Dependency to Reduce Indexing
Space. SIGMOD Conference, 119-127.

8. Ginsburg, S., Hull, R., 1981.Ordered Attribute Domains in the Relational Model. XP2

Workshop on Relational Database Theory.

9. Graefe, G., 2003. Executing Nested Queries. Datenbanksysteme für Business, Technologie

und Web, Tagungsband der 10. BTW-Konferenz, 58-77.

10. Guravannavar, R., Ramanujam, H.S., Sudarshan, S, 2005. Optimizing Nested Queries with
Parameter Sort Orders. VLDB, 481-492.

11. Maier, D., Mendelzon A.O., Sagiv, Y., 1979. Testing implication of data dependencies.

ACM Transactions on Database Systems, 455-469.

12. Malkemus, M., Padmanabhan, S., Bhattacharjee, B., Cranston, L, 2005. Predicate Deriva-

tion and Monotonicity Detection in DB2 UDB. ICDE, 939-947.

13. Ng, W., 1999. Lexicographically Ordered Functional Dependencies and Their Application

to Temporal Relations. IDEAS 279-287.

14. Ng, W., 2001. An extension of the relational data model to incorporate ordered do-

mains. ACM Trans. Database Syst., 344-383.

15. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G., 1979. Access

Path Selection in a Relational Database Management System. SIGMOD Conference, 23-34.

16. Simmen, D.E, Shekita, E.J., Malkemus, 1996. Fundamental Techniques for Order Optimi-
zation. SIGMOD, 57-67.

17. Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Pawluk, P., Zuzarte, C., 2011, Queries on dates:

fast yet not blind. EDBT 497-502.

18. Szlichta, J., Godfrey, P., Gryz, J., 2012, Fundamentals of Order Dependencies. VLDB.

19. Ullman, J.D., 1988. Principles of Database and Knowledge-Base Systems, Vol. I, 378-379,
Computer Science Press, Rockville, MD, 376-423.

179

