
Semantics of Constraints in RDFS

Álvaro Cortés-Calabuig1,2, Jan Paredaens2

1 Vrije Universiteit Brussel, Belgium
alvaro.cortes@vub.ac.be

2 University of Antwerp, Belgium
jan.paredaens@ua.ac.be

Abstract. We study constraints for RDF-Schema (RDFS) graphs. The
syntax and semantics is defined for constraints in graphs that can contain
RDFS properties and blank nodes. The proposal for constraint satisfac-
tion closely resembles the possible world approach found in various con-
texts of incomplete databases and knowledge bases. Positive decidability
results for checking satisfaction of RDFS constraints under blank nodes
are given. In addition, we present deductive rules for different kinds of
constraints and for several combination of them. Our approach resem-
bles similar deductive rules of relational database contexts, but they are
generalized and adapted to the RDFS data model using homomorphisms
and embeddings.

1 Introduction

RDF (Resource Description Framework) [8] is a World Wide Web Consortium
(W3C) recommendation for publishing structured data on the web. RDF-graphs
arrange information in simple triples consisting of a subject, a property (some-
times referred to as predicate) and an object. Because of this structure, RDF-
graphs are usually conceptualized as directed graphs, where the property of a
triple is a directed edge between subject and object. Unlike standard graphs,
however, in RDF the set of nodes and edges is not disjunctive, as the same
symbol can represent both a property and a domain object.

RDF-graphs convey information about a certain domain under consideration.
As with any other data format, in order to specify conditions that must be
satisfied by an RDF-graph, constraints need to be imposed. In practical settings,
constraints are commonly used for three main tasks: specifying properties of the
data itself; handle contradictions within the database or with respect to the
domain under consideration; or as a help for semantic query optimizations.

In recent years, important progress has been made towards extending the ba-
sic RDF framework with constraints. To the best of our knowledge, the proposals
so far, however, exclude the use of RDFS properties. This simplification restricts
the usability of such constraints in real world domains, where the use of RDFS
coupled with blank nodes is common practice. Hence, one specific goal of this
paper is to tackle this issue by extending the semantics of the RDF constraints
introduced in [1] with RDFS properties and blank nodes.

75

In general terms, this paper is an effort towards a general theory of reason-
ing with constraints in RDF. The concrete contributions of this paper are as
follows. 1. We define the semantics of several types of constraints for RDFS-
graphs with schema properties and blank nodes; 2. We present a number of
decidability results concerning the satisfaction of constraints under blank nodes
in RDFS-graphs; 3. We provide sound and complete deductive rules for different
kinds of constraints and for several combination of them; and 4. We study how
RDFS properties can be expressed by a number of additional triple generating
constraints. We deal with subclass, type, subproperty, domain and range.

This paper is organized as follows. In Section 2 we introduce the basic termi-
nology and preliminary definitions we use throughout the paper. In Section 3 we
study decidability problems on RDF constraints satisfaction and entailment. In
Section 4, we extend our framework to RDFS graphs. Related work is surveyed
in Section 5, which also contains our conclusions.

2 Preliminaries Constraints

In what follows, we use the following vocabulary:

• U , is an infinite set of URI’s;
• V , an infinite set of variables denoted by prefixing them by $;
• B is an infinite set of blank nodes prefixed by .

U , V and B are pairwise disjoint.
Let t1 and t2 be two terms. φt2←↩t1 denotes the function that is equal to the

identity, except that φt2←↩t1(t1) = t2.
A homomorphism from a set of triples of terms S in a set of triples of terms

S′ is a total function1 h : VS ∪ US → VS′ ∪ US′ , such that

• h(u) = u, for each u ∈ US ;
• If (t1, t2, t3) ∈ S then (h(t1), h(t2), h(t3)) ∈ S′;

Definition 1 (RDF-graph). An RDF-graph (or graph) G is a finite set of
triples (s, p, o), subject, property, object, s, o ∈ U∪B, p ∈ U . A graph is grounded
if it does not contain blank nodes.

A term is an element of V ∪ U .
In the following we denote UG and BG the set of elements of U and B that occur
in G.

Definition 2 (Grounding). A grounding θ of a graph G, is a total function
θ : BG∪UG → U , where θ(u) = u, for u ∈ UG. The grounded graph Gθ of G under
θ is defined as Gθ = {(θ(t1), θ(t2), θ(t3)) | (t1, t2, t3) ∈ G}. The set of grounded
graphs of a graph G is denoted

GG = {Gθ | θ is a grounding of G}.
1 h is not necessary a surjection.

2

76

LBD
Text Box

Note that a grounded graph does not contain blank nodes and that every grounded
graph is a graph with only one grounding, i.e. the identity.

Definition 3 (Embedding of a set of triples of terms in Gθ). An em-
bedding of a finite set S of triples of terms in a graph Gθ is a total function
e : VS ∪ US → U2, such that

• e(u) = u, for each u ∈ U ;
• If (t1, t2, t3) ∈ S then (e(t1), e(t2), e(t3)) ∈ Gθ.

3 Constraints in RDF

In this section we discuss four types of RDF-constraints: Equality Generating,
Functional, Triple Generating and Forbidding Constraints.

In general an RDF-constraint is a condition which a graph can satisfy or not.
We say that a graph G satisfies an RDF-constraint C if all the grounded graphs
of GG satisfy C3. We denote that a graph G satisfies an RDF-constraint C as
G |= C.

3.1 Types of Constraints

In [1] the following two types of constraints are introduced:

Definition 4 (EGC). An equality generating constraint is a pair (S,E), where

• S is a finite set of triples of terms;
• E is a finite set of equalities, each of the form (t1 = t2), with t1, t2 ∈ VS ∪U .

A grounded graph G satisfies the EGC (S,E) iff for every embedding e of S in
G, and every (t1 = t2) ∈ E holds that e(t1) = e(t2).

Example 1. Consider the constraint C1 = ({($x, a, $y)}, {($x = $y)}).

{(b, b, c), (b, b, a)} |= C1 {(a, a, c), (b, a, a)} 6|= C1
{(a, a, b), (b, a, b)} 6|= C1 {(a, b, b), (a, b, c)} |= C1.

In a similar way as with EGCs, we proceed with defining functional constraints.

Definition 5 (FC). A functional constraint is a pair (S,L→ R), where

• S is a finite set of triples of terms;
• L,R ⊆ VS.

2 We denote US (resp. BS and VS) for the set of elements of U (resp. B and V) that
occur in S.

3 The notion of satisfaction for grounded graphs is separately defined below for each
type of constraint.

3

77

LBD
Text Box

A grounded graph G satisfies the FC (S,L→ R) iff for every two embeddings of
S in G that coincide4 on the variables of L, they also coincide on the variables
of R.

Example 2. Consider the constraint C2 = ({($x, a, $y)}, {$x} → {$y}).

{(b, b, c), (b, b, a)} |= C2 {(a, a, c), (b, a, a)} 6|= C2
{(a, a, b), (b, a, b)} |= C2 {(a, b, b), (a, b, c)} |= C2.

In [1] the following lemma is proved.

Lemma 1. A functional constraint can be expressed in terms of equality gener-
ating constraints.

Definition 6 (TGC). A triple generating constraint is a pair (S, S′), where S
and S′ are both finite sets of triples of terms and VS′ ⊆ VS. A grounded graph G
satisfies the TGC (S, S′) if every embedding e of S in G is also an embedding of
S′ in G.

Example 3. Consider the constraint C3 = ({($x, a, $y)}, {($y, a, $x)}).

{(b, a, c), (c, a, b)} |= C3 {(a, a, c), (c, a, b)} 6|= C3.

While EGCs, FCs and TGCs require properties for all possible embeddings,
forbidding constraints forbid some embeddings.

Definition 7 (FBC). A forbidding constraint has the form (S), where S is a
finite set of triples of terms. A grounded graph G satisfies the FBC (S) iff there
is no embedding of S in G.

Example 4. Consider C4 = ({($x, a, $x)})

{(b, a, b)} 6|= C4 {(a, b, a)} |= C4
{(a, b, c)} |= C4.

Since there is a finite number of embeddings of a finite set of triples into a
grounded graph, by Lemma 1 we can easily prove

Theorem 1. It is decidable whether a grounded graph G satisfies an EGC (S,E),
an FC (S,L→ R), a TGC (S, S′) or a FBC (S).

Let SC be a finite set of constraints and C be a constraint, we say that C is a
logical grounded consequence of SC iff for all grounded graphs G holds

(∀C′ ∈ SC(G |= C′))⇒ G |= C

4 Two embeddings e and e′ coincide on a variable $v iff e($v) = e′($v).

4

78

LBD
Text Box

3.2 Logical Grounded Consequences

Theorem 2. Given a finite set E of EGCs. It is decidable whether an EGC
(S,E) is a logical grounded consequence of E.

By Lemma 1 and Theorem 2 we have

Theorem 3. Given a finite set F of FCs. It is decidable whether an FC (S,L→
R) is a logical grounded consequence of F .

Theorem 4. Given a finite set T of TGCs. It is decidable whether a TGC
(S, S′) is a logical grounded consequence of T .

Proof. Initialize the graph S as S where each variable $x is substituted by a new
URI x. We denote this homomorphism h$. As long as there is a (S1, S

′
1) ∈ T and

an embedding e of S1 in the graph S with e(S′1) 6⊆ S, substitute S by S ∪ e(S′1).
Consider now the final graph S. S |= (S, S′) iff (S, S′) is a logical grounded
consequence of T . �

Theorem 5. Given a finite set FB of FBCs. It is decidable whether an FBC
(S) is a logical grounded consequence of FB.

Proof. Consider the graph S as S where each variable $x is substituted by a new
URI x. ∃(S′) ∈ FB with S |= (S′) iff (S) is a logical grounded consequence of
FB. �

Let T be a finite set of TGCs and E be a finite set of EGCs. T ∪ E can have
more logical grounded EGC consequences than E . Indeed, ({(a, $x, $y)}, {($y =
a)}) is a logical grounded consequences of {({(a, $x, $y)},
{(a, a, $y)}), ({(a, a, $y)}, {($y = a)})} but not of {({(a, a, $y)}, {($y = a)})}.
T ∪ E can also have more logical grounded TGC consequences than T . Indeed,
({(a, $x, $y)}, {(a, a, $x)}) is a logical grounded consequences of {({(a, $x, $y)}, {($y =
a)}), ({(a, $x, a)}, {(a, a, $x)})} but not of {({(a, $x, a)}, {(a, a, $x)})}.

Theorem 6. Given a finite set T E of TGCs and EGCs. It is decidable whether
a TGC (S, S′) is a logical grounded consequence of T E. It is decidable whether
an EGC (S,E) is a logical grounded consequence of T E.

Let T be a finite set of TGCs and FB be a finite set of FBCs. T ∪FB can have
more logical grounded FBC consequences than FB. Indeed, ({(a, $x, $y)}) is a
logical grounded consequences of {({(a, $x, $y)}, {(a, a, $y)}), ({(a, a, $y)})} but
not of {({(a, a, $y)})}.
T ∪ FB has exactly the same logical grounded TGC consequences as T .

Theorem 7. Given a finite set T FB of TGCs and FBCs. It is decidable whether
a TGC (S, S′) is a logical grounded consequence of T FB. It is decidable whether
a FBC (S) is a logical grounded consequence of T FB.

5

79

LBD
Text Box

3.3 Deductive Rules for Grounded Graphs

Next we are giving a sound, independent and complete set of deductive rules for
grounded graphs. A set of deductive rules defines when SC ` C, with SC is a set
of constraints and C a constraint. We prove each time that

SC ` C ⇒ ∀GG((∀C′ ∈ SC(GG |= C′))⇒ GG |= C), soundness

SC ` C ⇐ ∀GG((∀C′ ∈ SC(GG |= C′))⇒ GG |= C), completeness

∀ Rule r(∃C(SC ` C ∧ SC 6`r C)), independent

where GG are grounded graphs and the subscript r means “without using Rule r”.

Let E be a finite set of EGCs. In [1], the following set of deductive rules
for EGCs Rules E0-E8 is proved to be sound, independent and complete for
grounded graphs:

Rule E0 : E ` (S,E), for every (S,E) ∈ E ;
Rule E1 : E ` (S, {(t = t)}), for every finite set S of triples of terms and
t ∈ VS ∪ US ;
Rule E2 : E ` (S, {(t1 = t2)}) implies E ` (S, {(t2 = t1)});
Rule E3 : E ` (S, {(t1 = t2), (t2 = t3)}) implies E ` (S, {(t1 = t3)});
Rule E4 : E ` (S,E) and E1 ⊆ E implies E ` (S,E1);
Rule E5 : E ` (S,E1) and E ` (S,E2) implies E ` (S,E1 ∪ E2);
Rule E6 : E ` (S,E) and h is a homomorphism from S in S1 implies E `
(S1, h(E));
Rule E7 : E ` (S, {(t = t′)}) and E ` (φt←↩t′(S), E) implies E ` (S,E);
Rule E8 : E ` (S, {(a = b)}) for a, b ∈ US and a 6= b implies E ` (S,E) for all
possible E.

Theorem 8 ([1]). Let E be a finite set of EGCs. The set of deductive rules Rule
E0-E8 for EGCs is sound, independent and complete for grounded graphs.

There is no need for deduction rules for functional constraints, since they can
be expressed as equality generating constraints.

Theorem 9. Let T be a finite set of TGCs. The following set of deductive rules
for TGCs is sound, independent and complete for grounded graphs:

Rule T0 : (S, S′) ∈ T implies T ` (S, S′);
Rule T1 : T ` (S, S) for all S;
Rule T2 : T ` (S0, S1) and T ` (S0, S2) implies T ` (S0, S1 ∪ S2);
Rule T3 : T ` (S0, S1) and T ` (S0 ∪ S1, S2) implies T ` (S0, S2);
Rule T4 : h is a homomorphism from S in S1 and T ` (S, S′) implies T `
(S1, h(S′)).

6

80

LBD
Text Box

Proof. Rules T0-T3 are clearly sound. For Rule T4, let G |= (S, S′) and let e be
an embedding of S1 in G. Hence e ◦ h is an embedding of S in G, inducing that
e◦h is also an embedding of S′ in G, concluding that e is an embedding of h(S′)
in G.
Rules T0-T4 are complete. Indeed, referring to the proof of Theorem 4, we
can deduce from Rules T0-T4 that T ` (S, S). Furthermore we have that T `
(S0, S1) and S2 ⊆ S1 implies T ` (S0, S2), as a consequence of Rule T4.
Rules T0-T4 are independent. We show this by giving for each 0 ≤ i ≤ 4 a set
Ti and a TGC TGi that can be deduced from Ti but for which we need Rule Ti:

• T0 = {({(a, b, c)}, {(d, e, f)})} and TG0 = ({(a, b, c)}, {(d, e, f)});
• T1 = {({(a, b, c)}, {(d, e, f)})} and TG1 = ({(g, h, i)}, ∅);
• T2 = {({(a, b, c)}, {(d, e, f)}), ({(a, b, c)}, {(g, h, i)})} and
TG2 = ({(a, b, c)}, {(d, e, f), (g, h, i)});
• T3 = {({(a, b, c)}, {(d, e, f)}), ({(a, b, c), (d, e, f)}, {(g, h, i)})} and
TG3 = ({(a, b, c)}, {(g, h, i)});
• T4 = {({(a, a, $x)}, {(a, $x, a)})} and TG4 = ({(a, a, $y)}, {(a, $y, a)});

�

Lemma 2. 1. S1 ⊆ S0 implies T ` (S0, S1);
2. T ` (S0, S1) and S0 ⊆ S2 implies T ` (S2, S1);
3. T ` (S0, S1) and S2 ⊆ S1 implies T ` (S0, S2).

Proof. 1. follows from Rule T4; 2. follows from Rule T4; 3. follows from 1., 2.
and Rule T3.�

Theorem 10. Let FB be a finite set of FBCs. The following set of deductive
rules for FBCs is sound, independent and complete for grounded graphs:

Rule FB0 : FB ` (S), for every (S) ∈ FB;
Rule FB1 : FB ` (S) and and h is a homomorphism from S in S1 implies
FB ` (S1).

Proof. Sound: FB1. Let G |= FBC for all FBC ∈ FB. So G |= (S) and there is
no embedding e of S in G. If there would be an embedding e1 of S1 in G then
e1 ◦ h would be an embedding of S in G. So G |= (S1).
Clearly FB0 and FB1 are independent.
Complete: Let FB 6` (S) and consider the graph S of Theorem 5. There is
clearly an embedding of S in the graph S. If there would be an (S′) ∈ FB with
an embedding e of S′ in S, there would be an homomorphism from S′ in S,
implying that FB ` (S). Hence the graph S is a counterexample proving that
(S) is not a logical grounded consequence of FB. �

Theorem 11. Let T E be a finite set of TGCs and EGCs. The following set
of deductive rules for TGCs and EGCs is sound, independent and complete for
grounded graphs:

7

81

LBD
Text Box

Rules T0-T45;
Rules E0-E86;
Rule TE1 : T E ` (S, S′) and T E ` (S′, E) implies T E ` (S,E);
Rule TE2 : T E ` (S, {(t = t′)}) and T E ` (φt←↩t′(S), S′) implies T E ` (S, S′);
Rule TE3 : T E ` (S, {(a = b)}) with a, b ∈ US and a 6= b implies T E ` (S, S′)
for all S′ with VS′ ⊆ VS. (Proof, Cfr. Appendix.)

Theorem 12. Let T FB be a finite set of TGCs and FBCs. The following set
of deductive rules for TGCs and FBCs is sound, independent and complete for
grounded graphs:

Rules T0-T47;
Rules FB0-FB18;
Rule TFB0 : T FB ` (S, S′) and T FB ` (S′) implies FB ` (S);
Rule TFB1 : T FB ` (S) implies T FB ` (S, S′) for every S′ with VS′ ⊆ VS.
(Proof, Cfr. Appendix.)

3.4 Satisfiability of Constraints for Graphs

Two groundings θ1 and θ2 of an RDF-graph G are called isomorphic iff θ1(a) =
θ1(b)⇔ θ2(a) = θ2(b) for every a, b ∈ BG ∪ UG .

Lemma 3. Let θ1 and θ2 be two isomorphic groundings of an RDF-graph G.

1. Gθ1 |= (S,E) iff Gθ2 |= (S,E), with (S,E) an EGC;
2. Gθ1 |= (S, S′) iff Gθ2 |= (S, S′), with (S, S′) an TGC;
3. Gθ1 |= (S) iff Gθ2 |= (S), with (S) an FBC.

Since there are only a finite number of non-isomorphic groundings, GG is finite
for each graph G and hence we have:

Theorem 13. It is decidable whether a graph G satisfies an EGC (S,E), an FC
(S,L→ R), a TGC (S, S′) or a FBC (S).

Let SC be a finite set of constraints and C be a constraint, we say that C is a
logical consequence of SC iff for all graphs G holds

(∀C′ ∈ SC(G |= C′))⇒ G |= C

The next theorem is straightforward consequence of Subsection 3.3:

Theorem 14. Given a finite set SC of EGCs (resp. FCs, TGCs, FBCs). It is
decidable whether an EGC (resp. FC, TGC, FBC) C is a logical consequence of
SC.

5 Substitute T by T E
6 Substitute E by T E
7 Substitute T by T FB
8 Substitute FB by T FB

8

82

LBD
Text Box

Let us consider now sound, independent and complete sets of deductive rules for
graphs. Clearly :

∀GG((∀C′ ∈ SC(GG |= C′))⇒ GG |= C)⇔ ∀G((∀C′ ∈ SC(G |= C′))⇒ G |= C)

where GG are grounded graphs and G are graphs.

Theorem 15. The set E0-E8 (resp. T0-T4, FB0-FB1) of deductive rules for
EGCs (resp. TGCs, FBCs) is sound, independent and complete for graphs.
The set E0-E8, T0-4, TE1-2 of deductive rules for EGCs and TGCs is sound,
independent and complete for graphs.
The set FB0-1, T0-4, TFB0 of deductive rules for FBCs and TGCs is sound,
independent and complete for graphs.

4 Constraints in RDF Schema

4.1 S-Constraints

An RDF Schema (abbreviated as RDFS) is an extensible knowledge representa-
tion language providing basic elements for the description of ontologies, called
RDF vocabularies, intended to structure RDF-resources. The RDF-properties of
RDFS that we will consider are subproperty (sp), subclass (sc), typing (type),
domain (dom) and range (range). In the literature this fragment of RDFS is
called ρrdf [6, 3].

Definition 8. An RDFS triple is a triple containing sp, sc, type, dom or
range. An RDFS-graph is an RDF-graph that includes at least one RDFS triple.

We will now express the semantics of RDFS-properties using triple generating
constraints. We call the following set of TGCs, denoted by CS , S–Constraints.
Consider the RDF-subjects or RDF-objects (that by the way can also be RDF-
properties) S1, S2, S3, the RDF-properties P1, P2, P3, the classes of objects or
subjects (or types) C1, C2 and C3.
Subproperty
The RDFS subproperty is denoted by sp. (P1, sp, P2) indicates that P1 is a
subproperty of P2. The semantics of sp says that

• if P1 is a subproperty of P2 and P2 is a subproperty of P3 then P1 is a sub-
property of P3; this is expressed by the triple generating constraint:({($p1, sp,
$p2), ($p2, sp, $p3)}, {($p1, sp, $p3)})
• if S1 has as property P1 with value S2 and P1 is a subproperty of P2 then S1

has also as property P2 with value S2, formally: ({($s1, $p1, $s2), ($p1, sp, $p2)},
{($s1, $p2, $s2)})
• every property between a subject and an object is a subproperty of itself,

formally: ({($s1, $p, $s2)}, {($p, sp, $p)})
• if P1 is a subproperty of P2 then P1 and P2 are each a subproperty of itself,

formally: ({($p1, sp, $p2)}, {($p1, sp, $p1), ($p2, sp, $p2)})

9

83

LBD
Text Box

Subclass
The RDFS subclass is denoted by sc. (C1, sc, C2) indicates that C1 is a subclass
of C2. The semantics of sc says that

• if C1 is a subclass of C2 and C2 is a subclass of C3 then C1 is a subclass of
C3, formally:({($c1, sc, $c2), ($c2, sc, $c3)}, {($c1, sc, $c3)})
• if C1 is a subclass of C2 then C1 and C2 are each a subclass of itself,

formally:({($c1, sc, $c2)}, {($c1, sc, $c1), ($c2, sc, $c2)})
• Finally, classes are subclasses of themselves:({($S1, type, $C1)}, {($C1, sc,

$C1)})

Typing, Domain, Range
The RDFS typing is denoted by type, the domain of a type by dom, its range by
range. (S1, type, C1) indicates that C1 is a type of S1. (P1,dom, C1) indicates
that C1 is the domain of P1. (P1, range, C1) indicates that C1 is the range of
P1. Their semantics says that

• if C1 is a subclass of C2 and C1 is a type of S1 than C2 is also a type of S1,
formally:({($c1, sc, $c2), ($s1, type, $c1)}, {($s1, type, $c2)})
• if C1 is the domain P1, and S1 has property P1, then C1 is a type of S1,

formally:({($p1,dom, $c1), ($s1, $p1, $s2)}, {($s1, type, $c1)})
• if C1 is the range of the P1, and S2 is a value of the property P1, then C1 is a

type of S1, formally:({($p1, range, $c1), ($s1, $p1, $s2)}, {($s2, type, $c1)})
• if C1 is the domain of P1, P2 is a subproperty of P1 and S1 has property P2

with value S2 then C1 is a type of S1: ({$p1,dom, $c1), ($p2, sp, $p1), ($s1,
p2, $s2)}, {($s1, type, $c1)})

• if C1 is the range of P1, P2 is a subproperty of P1 and S1 has property P2 with
value S2 then C1 is a type of S2: ({$p1, range, $c1), ($p2, sp, $p1), ($s1, $p2,
$s2)}, {($s2, type, $c1)})

• sp, sc, dom, range, type are each a subproperty of itself, formally: (∅, {(v, sp,
v)}),v ∈ {sp, sc,dom, range, type}

• every property that has a domain or a range is a subproperty of itself, for-
mally: ({($p,v, $y)}, {($p, sp, $p)}),v ∈ {dom, range}

• every class that is the domain, the range or a type is a subclass of itself,
formally: ({($x,v, $c)}, {($c, sc, $c)}),v ∈ {dom, range, type}

4.2 Constraint satisfaction in RDFS

In this section we discuss constraint satisfaction in RDFS. We motivate the need
for additional semantic considerations for constraints in RDFS with a simple
example.

Example 5. Consider the EGC C = ({(a, sp, $x)}, {($x = b)}) and the following
graph:

G = {(a, sp, b), (b, sp, c)}.

Observe first that G |= C. Indeed for every embedding of {(a, sp, $x)} in G we
have that $x = b. Under RDFS semantics, however, the constraint should not

10

84

LBD
Text Box

be satisfied. The reason is that RDFS implies the existence of triples that are
not in the graph. In the current example, triple (a, sp, c), for instance, while not
part of G, is induced by the semantics of RDFS but does not satisfy the EGC.

Let us call GI the RDF-graph that is defined (or constructed) from an initial
graph G together with all its logical consequences according to the semantics of
RDFS as defined by the S–Constraints in Section 4.1. In this new scenario, we
check satisfiability of constraints against GI instead of G.

Example 6. Let G be the graph of Example 5. The intentional graph GI is

GI = {(a, sp, b)(b, sp, c), (a, sp, c),
(a, sp, a), (b, sp, b), (c, sp, c)}.

G |= C, but GI 6|= C as triples (a, sp, a) and (a, sp, c) violate the constraint.

We now formalize these notions.

Definition 9 (Intensional Graph). Let G be a graph. The intentional graph
of G, denoted as GI , is defined as the smallest graph with

• G ⊆ GI ;
• GI satisfies the S–Constraints.

Definition 10. Let C be a constraint. We say that the graph G RDFS-satisfies
C, denoted as G |=RDFS C iff GI |= C.

Theorem 16. Let G be and RDF-graph (without containing S-properties) and
C a constraint such that G |= C. Then, G |=RDFS C.

Proof. By definition G |=RDFS C iff GI |= C. But since G contains no RDFS
properties G ≡ GI . We then have as an immediate consequence that G |=RDFS C.

Example 7. Consider the following RDFS-graph:

G = {(a, sp, b)(b, sp, c)}.

It is the case that: G 6|=RDFS ({(a, sp, $x)}, {($x = b})}; G 6|=RDFS ({(a, sp, $x)},
{a} → {$x}); G 6|=RDFS ({(b, sp, $x)}, {(a, sp, $x)}); G 6|=RDFS ({(a, sp, c)}).

With the semantics machinery in order, we now turn to the problem of deciding
constraint satisfaction in RDFS-graphs.

Lemma 4. Let G be an RDFS-graph. Then GI is computable.

Theorem 17. Let G be and RDFS-graph and SC a finite set of constraints. It
is decidable checking whether ∀C ∈ SC (G |=RDFS C).

We now deal with the use of some of the techniques and results of Section 3 in
the context of RDFS-graphs.

11

85

LBD
Text Box

Lemma 5. Let G be an RDFS-graph and SC a finite set of constraints. It holds
that ∀C ∈ SC, ∀C′ ∈ CS GI |= C ∪ C′ iff G |=RDFS C.

Theorem 18. Let C be a finite set of EGC (resp. TGC, FC or FB) and G an
RDFS-graph such that G |=RDFS C. Let C′ be an EGC constraint (resp. TGC,
FC or FB). Then it holds that (C ∪ CS) ` C′ iff G |=RDFS C′.

Proof. Assume (C ∪ CS) ` C′. From Lemma 5 and G |=RDFS C, we know that
GI |= C ∪ CS . From Theorem [14] we have, in addition, that G |= C′. As a
consequence, we have that G |=RDFS C′. The other direction is trivial. �

5 Related Work and Conclusions

5.1 Related Work

RDF is a W3C recommendation and the reader interested in a thorough treat-
ment of the language may find useful the official W3C document available at [9].
In [4], Gutierrez et al. provide formal foundations for RDF-graphs and propose
a query language coupled with a study of its computational properties. Theoret-
ical aspects of SPARQL, the de-facto query language for RDF, are investigated
in [7, 2].

Constraints were first introduced into an RDF framework by Lausen at al. [5].
The authors’ main motivation for adding constraints was the need to migrate a
relational database with primary and foreign keys into an RDF-graph, without
losing semantic information. The authors show how constraints such as keys
and foreign keys can be encoded into the resulting RDF-graph by means of
introducing additional nodes in an extended RDF vocabulary. FCs are defined
in terms of properties of RDF interpretations over objects of the same type
(or class). In [10], Smith et al. exploit the knowledge encoded in constraints
(tuple generating and equality generating dependencies) in order to speed up
the processing time for solving SPARQL queries. In [1], the authors study EGCs
and FCs from a computational point of view. In particular, chasing algorithms
that compute all the logical consequences of a given initial set of constraints are
proposed.

5.2 Conclusions

We have studied constraints in RDFS-graphs in the presence of blank nodes.
Included in this paper are decidability results for entailment of different types of
constraints, sound and complete deductive rules for several combination of con-
straints, and the analysis of constraint satisfaction in RDFS-graphs. Future lines
of research include the development of efficient methods for detecting constraints
violation in RDFS-graphs and inconsistency handling.

12

86

LBD
Text Box

References

1. Waseem Akhtar, Alvaro Cortés-Calabuig, and Jan Paredaens. Constraints in RDF.
In Semantics in Data and Knowledge Bases - 4th International Workshops, SDKB
2010, Bordeaux, France, July 5, 2010, Revised Selected Papers, pages 23–39, 2010.

2. Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In Pro-
ceedings of the International Semantic Web Conference (ISWC08), pages 114–129,
2008.

3. Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. Foundations of RDF
databases. In Reasoning Web, pages 158–204, 2009.

4. Claudio Gutierrez, Carlos A. Hurtado, and Alberto O. Mendelzon. Foundations
of semantic web databases. In Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS04),
June 14-16, 2004, Paris, France, pages 95–106, 2004.

5. Georg Lausen, Michael Meier, and Michael Schmidt. Sparqling constraints for
RDF. In Proceedings 11th International Conference on Extending Database Tech-
nology (EDBT08), Nantes, France, March 25-29, pages 499–509, 2008.

6. Sergio Muñoz, Jorge Pérez, and Claudio Gutiérrez. Minimal deductive systems for
RDF. In The Semantic Web: Research and Applications, 4th European Semantic
Web Conference, ESWC 2007, Innsbruck, Austria, June 3-7, 2007, Proceedings,
pages 53–67, 2007.

7. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity
of SPARQL. ACM Trans. Database Syst., 34(3), 2009.

8. RDF primer. http://www.w3.org/TR/rdf-primer/, 2004.
9. RDF semantics. http://www.w3.org/TR/rdf-mt/, 2004.

10. Michael Schmidt, Michael Meier, and Georg Lausen. Foundations of SPARQL
query optimization. In Proceedings International Conference Database Theory
(ICDT10), 13th International Conference, 2010.

13

87

LBD
Text Box

6 Appendix

Proof of Theorem 11. The soundness of the rules is quite obvious.
Independence: The rules E0-E8 are independent, since they are independent in
Theorem 8 (suppose there are no TGCs in T E). The rules T0-T4 are indepen-
dent, since they are independent in Theorem 9 (suppose there are no EGCs in
T E).
We need Rule TE1 to derive
{({(a, a, $x)}, {(b, b, $x)}), ({(b, b, $x)}, {($x = a)})} ` ({(a, a, x)}, {($x = a)}).
We need Rule TE2 to derive
{({(b, b, a)}, {(b, b, b)}), ({(b, b, $x)}, {($x = a)})} ` ({(b, b, b)}, {($x = b)}).
We need Rule TE3 to derive
{({(b, b, a)}, {(a = b)})} ` ({(b, b, a)}, {(c, c, c)}).
Completeness: Without loss of generality we suppose that all EGCs have a sin-
gleton set of equalities and all TGCs have a singleton second set of triples.
Let T E = {(Si, {(ti = t′i)}) | 1 ≤ i ≤ n} ∪ {(Si, {si}) | n + 1 ≤ i ≤ q},
T E 6` (S, {(t = t′)}) and T E 6` (S, {s′}). We will construct a graph G that sat-
isfies all the constraints of T E but does not satisfy (S, {(t = t′)}) nor (S, {s′}),
inducing that (S, {(t = t′)}) nor (S, {s′}) are a logical grounded consequences of
T E .
We first define a finite sequence of sets Σ0, . . . , Σp and a finite sequence of func-
tions Φ0, . . . , Φp on VS ∪ U :

1. Σ0 = S and Φ0 is the identity on VS ∪ U ;
2. ∀m, 0 ≤ m < p

(2.1) ∃jm, 1 ≤ jm ≤ n and ∃ hm a homomorphism from Sjm in Σm (a)
with hm(tjm) 6= hm(t′jm) and {hm(tjm), hm(t′jm)} 6⊆ U . If hm(tjm) ∈ V and
hm(t′jm) ∈ U interchange tjm and t′jm . DefineΣm+1 = φhm(tjm)←↩hm(t′jm)(Σm)

(b) and Φm+1 = φhm(tjm)←↩hm(t′jm) ◦ Φm; or

(2.2) ∃jm, n + 1 ≤ jm ≤ q and ∃ hm a homomorphism from Sjm in Σm (a)
with hm(sjm) 6∈ Σm. Define Σm+1 = Σm ∪ {hm(sjm)} (c) and Φm+1 = Φm.

3. (3.1) ∃jp, 1 ≤ jp ≤ n and ∃ hp a homomorphism from Sjp in Σp with
hp(tjp) 6= hp(t

′
jp

) and {hp(tjp), hp(t
′
jp

)} ⊆ U or

(3.2) ∀ hp a homomorphism from Sjp in Σp holds that ∀jp, 1 ≤ jp ≤ n holds
that hp(tjp) = hp(t

′
jp

) and ∀jp, n+ 1 ≤ jp ≤ q holds that hp(sjp) ∈ Σp.

Clearly for ∀m, 0 ≤ m ≤ p,
Φm = φhm−1(tjm−1

)←↩hm−1(t′jm−1
) ◦ . . . ◦ φhi(tji)←↩hi(t′ji

) ◦ . . . ◦ φh0(tj0)←↩h0(t′j0
) and

Φm is a homomorphism from S in Σm.
We now prove that

• ∀m, 0 ≤ m ≤ p and 1 ≤ jm ≤ n holds that T E ` (S, {(hm(tjm) = hm(t′jm))})
(d);
• ∀m, 0 ≤ m ≤ p and n+ 1 ≤ jm ≤ q holds that T E ` (S, {hm(sjm)}) (e).

We actually will prove by downward induction on k:
∀m, 0 ≤ m ≤ p and ∀k, 0 ≤ k ≤ m holds:

14

88

LBD
Text Box

• T E ` (Σk, {(hm(tjm) = hm(t′jm))}), if 1 ≤ jm ≤ n (f);
• T E ` (Σk, {hm(sjm)}), if n+ 1 ≤ jm ≤ q (g).

Since T E ` (Sjm , {(tjm = t′jm)}), if 1 ≤ jm ≤ n and T E ` (Sjm , {sjm}), if
n + 1 ≤ jm ≤ q and hm is a homomorphism from Sjm in Σm, by (a) we have
that
T E ` (Σm, {(hm(tjm) = hm(t′jm))}) (h) if 1 ≤ jm ≤ n by Rule E6 and
T E ` (Σm, {hm(sjm)}) (i) if n+ 1 ≤ jm ≤ q by Rule T4.
Hence (f) and (g) hold for k = m.
By downward induction on k, if 1 ≤ jm ≤ n, using Rule E7,
T E ` (Σk−1, {(hk−1(tjk−1

) = hk−1(t′jk−1
))}) by (h) and

T E ` (φhk−1(tjk−1
)←↩hk−1(t′jk−1

)(Σk−1), {(hm(tjm) = hm(t′jm))}) by (b) and by

induction induce
T E ` (Σk−1, {(hm(tjm) = hm(t′jm))}).
and if n+ 1 ≤ jm ≤ q, using Rule TE1,
T E ` (Σk−1, Σk−1 ∪ {hk−1(sjk−1)}) by (i) and
T E ` (Σk, {(hm(tjm) = hm(t′jm))}) by (c) and by induction induce
T E ` (Σk−1, {(hm(tjm) = hm(t′jm))}), proving (f). By downward induction on
k, if 1 ≤ jm ≤ n, using Rule TE2,
T E ` (Σk−1, {(hk−1(tjk−1

) = hk−1(t′jk−1
))}) by (h) and

T E ` (Σk, {hm(sjm)}) by (c) and by induction induce
T E ` (Σk−1, {(hm(sjm)}).
and if n+ 1 ≤ jm ≤ q, using Rule T3,
T E ` (Σk−1, hk−1(sjk−1

)) by (i) and
T E ` (Σk, {hm(sjm)}) by (c) and by induction induce
T E ` (Σk−1, {(hm(sjm)}), proving (g).
Taking k = 0 we have proved (d) and (e).
In case (3.1) we have that T E ` (S, {(hp(tjp) = hp(t

′
jp

))}), hp(tjp) 6= hp(t
′
jp

) and

{hp(tjp), hp(t
′
jp

)} ⊆ U , so for all t, t′ we have by Rule E8 T E ` (S, {(t = t′)})
and for all S′ with VS′ ⊆ VS we have T E ` (S, S′) by Rule TE3 .
In case (3.2) we take now G to be the graph obtained by substituting each vari-
able $x in Σp by a new URI x. Clearly, by (3.2) we know that G satisfies all the
EGCs and TGCs of T E .
Suppose, by contradiction, that G satisfies (S, {(t = t′)}), hence for every em-
bedding e of S in G holds that e(t) = e(t′). Since Φp is such an embedding we
have that Φp(t) = Φp(t

′).
Φp = φhp−1(tjp−1

)←↩hp−1(t′jp−1
) ◦ . . . ◦ φhi(tji)←↩hi(t′ji

) ◦ . . . ◦ φh0(tj0)←↩h0(t′j0
).

This means that there is a sequence t = τ0, . . . , τk, . . . , τm = t′ with for ∀k, 0 ≤
k < m:
∃i, 0 ≤ i < p:

• τk = hi(tji) and τk+1 = hi(t
′
ji

) or
• τk = hi(t

′
ji

) and τk+1 = hi(tji).

Hence T E ` (S, {(τk = τk+1)}), for all 0 ≤ k < m, and hence T E ` (S, {(t =
t′)}), which is a contradiction.

15

89

LBD
Text Box

Suppose furthermore, by contradiction, that G satisfies (S, {s′}), hence for every
embedding e of S in G holds that e(s′) ∈ G. Since Φp is such an embedding we
have that Φp(s

′) ∈ G. But G = Σp = S
⋃

1≤m≤p,n+1≤jm≤q{hm(sjm)}, which
implies that T E ` (S, {s′}), which is a contradiction. �
Proof of Theorem 12. The soundness of the rules is straightforward. We
need Rule TFB0 for {({(a, a, a)}, {(b, b, b)}), ({(b, b, b)})} implies ({(a, a, a)}).
We need Rule TFB1 for {({(a, a, a)})} implies ({(a, a, a), (b, b, b)}).
Completeness: Let T FB = {(Si, S′i) | 1 ≤ i ≤ n} ∪ {(Si) | n + 1 ≤ i ≤ q},
T FB 6` (S) and T FB 6` (S, S′). We will construct a graph G that satisfies all
the constraints of T FB but does not satisfy (S) nor (S, S′), inducing that (S)
nor (S, S′) are a logical grounded consequences of T FB.
Clearly we have that T FB ` (S, S′) and S1 ⊆ S′ then T FB ` (S, S1) as a
consequence of Rules
Let us define a finite sequence of sets Σ0, . . . , Σp :

1. Σ0 = S ;
2. ∀m, 0 ≤ m < p ∃jm, 1 ≤ jm ≤ n and ∃ hm a homomorphism from Sjm in Σm

with hm(S′jm) 6⊆ Σm (a); Define Σm+1 = Σm ∪ hm(S′jm) (b);
3. ∀jp, 1 ≤ jp ≤ n ∀hp a homomorphism from Sjp in Σp with hp(S

′
jp

) ⊆ Σp (c).

We prove by induction that for ∀m, 0 ≤ m ≤ p holds:

• if S′ ⊆ Σm then T FB ` (S, S′) (d).
• if ∃i, n + 1 ≤ i ≤ q ∃h, a homomorphism from Si in Σm then T FB ` (S)

(e);
• if ∃i, n+ 1 ≤ i ≤ q ∃h, a homomorphism from Si in Σm then T FB ` (S, S′),

for all S′ with VS′ ⊆ VS (f).

Clearly for m = 0 (d) holds because of Lemma 2, (e) holds because of Rule FB0
and FB1, (f) holds because of (e) and Rule TFB1.
By induction on m (d) holds because of Rules T0-T4, (e) holds because of Rule
FB0 and FB1, (f) holds because of (e) and Rule TFB1.
Let ξ be the function that transforms each variable in Σp into a new URI, and
let ξ(Σp) = GS .
We have to prove that the graph GS satisfies all the constraints of T FB but does
not satisfy (S) nor (S, S′):

• for ∀i, 1 ≤ i ≤ n holds that GS |= (Si, S
′
i), because of 3. above;

• for ∀i, n + 1 ≤ i ≤ q holds that GS |= (Si). Indeed, let ∃i, n + 1 ≤ i ≤
q with GS 6|= (Si); then there is an embedding e of Si in GS ; ξ−1 ◦ e is
a homomorphism from Si in Σp; hence by Rule FB1 T FB ` (Σp) and
since T FB ` (S,Σp) we obtain T FB ` (S) by Rule TFB1, which is a
contradiction.
• GS 6|= (S, S′); let on the contrary GS |= (S, S′), then every embedding of S

in GS is also an embedding of S′ in GS ; hence every homomorphism from S
in Σp is also a homomorphism from S′ in Σp and S′ ⊆ Σp, but by (d) with
m = p, we deduce T FB ` (S, S′), a contradiction;
• GS 6|= (S), since ξ is an embedding of S in GS .

�

16

90

LBD
Text Box

