
Automatic Filling of Web Forms

Gustavo Zanini Kantorski and Carlos Alberto Heuser

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{gzkantorski,heuser}@inf.ufrgs.br

Abstract. Since the only way to gain access to Hidden Web data is
through form submission, one of the challenges is how to fill Web forms
automatically. In this work, we describe an efficient method to select good
values for fields and propose a new approach to minimize the number of
queries that must be generated for the automatic filling of Web forms.

Keywords: Hidden Web, Deep Web, Filling Forms, Crawling

1 Introduction

The surface Web is the portion of the World Wide Web that can be reached by
direct link navigation. However, a vast portion of the information on the Web is
available in online databases and can only be reached through Web form filling
and submission. This portion of the Web is known as Hidden Web [11] or Deep
Web [3] and it is not indexed by conventional search engines. In this context,
one of the challenges is how to automatically fill forms in order to gain access
to the data. This task is not trivial, since forms were designed to be used by
human beings. The simplest solution would be submitting the combination of all
possible field values in a cartesian product. However, this solution is not feasible
when the number of fields and possible values are large.

The state of art deep web crawling approaches has several solutions for au-
tomatic form filling. In Liddle et al. [6], automatic form filling is carried out by
assigning default values to form fields. Text fields are ignored and, if they are
mandatory, user intervention is needed. Barbosa et al. [4] present an approach
for filling forms based on keywords. The discovery of words is based on the data
coming from the database itself, instead of random word generation. On the
other hand, they do not handle Web forms that do not contain keyword fields.
Wu et al [9] present a form filling technique based on a feedback process of the
values filled in the form. The issue with this method is that, in the query, just
one form field can be used at a time. It is not possible to combine form fields
for several queries. Jian et al. [1] present a formal framework based on rein-
forcement learning. Toda et al [8] describe a solution for form filling based on
value extraction from a text document. The approach relies on the knowledge
obtained from the values of previous submissions for each field. The work by
Madhavan et al. [2] describes a system for surfacing the content of the Hidden
Web. The goal is to index the HTML pages resulting from form submissions. The
authors introduce the concept of template for Web forms. A template designates

215

a subset of the inputs, called binding inputs, and the remainder are considered
free inputs. Multiple form submissions can be generated by assigning different
values to the binding inputs. The number of fields (binding inputs) that make up
a template will be referred to as the dimension of the template.They improved
the keyword selection algorithm by ranking keywords by their TFIDF (Term
Frequency Inverse Document Frequency).

In this work, we propose an automatic method for filling forms. Our method
explores two strategies. The first, called FTF (Filling Text Fields), is how to
fill the fields efficiently, specially the text fields, which do not have a set of pre-
determined values. The second strategy, called ITP (Instance Template Prun-
ing), is how to select queries to submit to a particular form in order to retrieve
more data with fewer submissions. The strategy to minimize the set of queries,
i.e., the number of form submissions, involves pruning the set of all possible
queries. As each query is submitted, data extracted from the resulting page is
used to identify wasteful queries and prune them.

Most of the existing work on form filling [1,4,6–8,10] overlooks the problem of
finding good values for these fields. Existing solutions for dealing with text fields
usually rely on a list of values previously built by a specialist [7], on a sample of
known values [2], or they entail the extraction and understanding of the fields [1,
5, 8] (which depends on the language and on the domain of the forms). Our
proposed solution is automatic, requires no training, and relies on feedback from
previous submissions. Furthermore, it can work with forms from any domain
(i.e., books, jobs, hotels, airfares, etc.). Domain often influences value selection
for the fields. Although our method does not use domain knowledge explicitly,
our experiments show that the values generated for the fields are domain-related.
We carried out experiments using real Hidden Web data. The results show that
in most cases, our approach achieves superior coverage compared to a baseline
method.

2 Solution Overview and On-going Work

The problem we address in this work is how to choose values for filling form
fields in a way to maximize the number of distinct database rows retrieved while
minimizing the number of form submissions. Our solution is divided into a se-
ries of steps organized in an architecture. Similar to the work by Madhavan et
al. [2], we rely on the concept of templates. Figure 1 shows the proposed archi-
tecture in which our main contributions are in the highlighted modules Value
Selection and Instance Template Generation and Submission. The Candidate
template generation module represents the HTML form processing to generate
all possible templates. The Value Selection module finds the values to fill each
field in the form. Here the main problem is how to choose values for fields with
infinite domains. FTF is based on a feedback loop, in which each element has
an effect on the next one, until the last element produces feedback on the first
element. The selection of values for text boxes is done by assigning a score r
which aims to select meaningful tokens from previous submissions. The instance

216

HTML Form

Text Select

Candidate
Template

Generation
Value Selection

Instance
Template

Generation and
Submission

Data
Extraction

Informativeness
Template
Evaluation

Results page

Instance
Template
Filtering

Informative
Instance

Templates
Instance Templates

Extracted
Data

next template

Fields
Fields

+
Values

Template and Instance Pruning Phase

Fig. 1. Proposed Architecture

template generation and submission module attaches input values to each field
of each template, creating its set of instance templates. The templates are pro-
cessed in order of dimension. First all 1-dimension instance templates are gener-
ated and submitted, then, the results of these submissions are used to generate
2-dimension instance templates and so on. We present the Instance Template
Pruning (ITP) method, used to prune the wasteful instances of a template. The
Data extraction module extracts the information from the pages resulting from
form submissions. This extraction is needed to find where the data region is
located in the result page. Information about ads and presentation from the re-
sult page are discarded. The extracted data is used to evaluate each template.
This data is also used to populate a database, which is used to generate values
for fields with infinite domains (Value Selection module). The intuition is that
higher coverage may be achieved if instead of using randomly select data, values
resulting from previous submissions are used. The informativeness evaluation
module checks if the template is informative after the submission of the selected
instance templates. A template is informative if its instance templates retrieve
sufficiently distinct data. If a template t is considered non-informative, higher
order templates including t will be discarded. At the end of the process, after
processing all templates, the Filtering Instance Templates module determines
the minimum number of instance templates needed to retrieve all distinct rows
extracted from the pages resulting from form submissions.

For our purposes, we divide the Web forms in two types: those that contain
only text boxes and those that contain, besides text boxes, finite domain fields,
such as selection lists. The division is necessary, because depending on the type
of form, the generation of initial values for the fields is different. The select fields
are filled by the values extracted from the code of the form, in the option tag from
HTML form. Queries are generated by values extracted from option tag and then
submitted. The query results are stored in a database. The order of submission
of queries always starts by finite domain fields followed by infinite domain fields.
The database containing query results will be used later to generate values that
are used to fill infinite domain fields. The information inside the HTML page

217

which contains the form is extracted only when the form has just infinite domain.
These information are seed values for text fields.

Several experiments were performed in order to evaluate the proposed strate-
gies for input value selection and instance template pruning. All experiments
were carried out using real Web forms. The proposed strategies and the archi-
tecture are domain independent. Forms from several domains (such as, Jobs,
Books, Movies and Food), and sizes were used in experiments. Table 1 shows
details about the forms used in experiments. The number of web forms used in
our experiments is similar to what is used in related work ([4,6–8]). Our baseline
is an implementation based on the method proposed by Madhavan et al. [2]

Three metrics were used in the evaluation. The coverage [4] Cf , of a form
f is the number of distinct records extracted during the whole process, i.e.,
the total information obtained by the informative templates. The execution ef-
ficiency [10], EEf , for a form f evaluates the coverage Cf compared to the cost
of the method, that is, the ratio between coverage and the number of URLs sub-
mitted (Totalsubmitted) in the process. The indexing efficiency, IEf , for a form
f evaluates the relationship between coverage Cf and the cost of indexing of
each method, i.e., the average number of records obtained for each distinct URL
indexed (Totalindexed).

In all forms tested, the coverage for the ITP method had the best perfor-
mance, because it makes further exploration of the submission possibilities, since
it uses all templates. For the FTF method, the number of URLs indexed by our
method was higher in all forms. This is true because the generated values are of
better quality, that is, they retrieve more rows. Thus, the likelihood of a template
be informative is higher for our method than for the baseline. Another observa-
tion is that, for forms that contain only text fields, the templates with dimension
larger than one have a small probability of being informative. Our experiments
showed that all dimension-1 templates are informative, increasing the chance of
templates with higher dimension being also informative. FTF method reached a
higher coverage, compared with the baseline. The overall average coverage from
baseline was 47,8%, while average by FTF was 81,8%. This shows the efficiency
of our method. Our method, FTF, was always better for forms that contain only
text box fields.

Id Web Form #Indexed

URL

FTF

#Indexed

URL

Baseline

#URL

Find

values

fields

text select

1 http://www.beerintheevening.com/pubs/search.shtml 1034 248 300 3 1

2 http://www.foodandwine.com/search/recipe.cfm 549 99 500 3 1

3 http://www.mymusic.com/advancedsearch.asp?curr=1 1013 952 650 6 2

4 http://www.posteritati.com/advanced_search.php 175 96 100 1 1

5 http://www.e4s.co.uk/ 1973 1685 100 1 2

6 http://www.whoprofits.org/Advanced%20Search.php 1730 1299 400 2 1

7 http://www.mldb.org/search-bf 1974 1969 400 4 0

8 http://usajobs.opm.gov/ 782 288 250 2 0

9 http://www.movlic.com/k12/search.asp 118 51 250 2 0

10 http://jobs.careerbuilder.com/ 890 50 250 2 0

Id Web Form # fields

text select

Id Web Form #Fields

text select

Forms for FTF Method Forms for ITP/ITTP Methods

1 http://www.beerintheevening.com/pubs/ 3 1 1 http://www.foodandwine.com/search/ 3 1

2 http://www.foodandwine.com/search/ 3 1 2 http://www.global-standard.org/ 1 3

3 http://www.mymusic.com/advancedsearch.asp 6 2 3 http://onlineraceresults.com/search/index.php 2 0

4 http://www.posteritati.com/advanced_search.php 1 1 4 http://www.phillyfunguide.com/ 1 2

5 http://www.e4s.co.uk/ 1 2 5 http://www.whoprofits.org/ 2 1

6 http://www.whoprofits.org/ 2 1 6 http://www.hcareers.com/seeker/search/ 1 5

7 http://www.mldb.org/search-bf 4 0 7 http://www.rtbookreviews.com/rt-search/books 1 2

8 http://usajobs.opm.gov/ 2 0 8 http://formovies.com/search/combined.html 3 0

9 http://www.movlic.com/k12/search.asp 2 0 9 http://www.careerbuilder.com/ 2 1

10 http://jobs.careerbuilder.com/ 2 0 10 http://www.policechiefmagazine.org/magazine/ 1 2

A tabela 1 mostra algumas observações interessantes. Em todos os formulários o número de URLs indexadas

para o nosso método foi maior. Isso é comprovado, pois os valores gerados são de melhor qualidade, isto é,

retornam mais informações. Assim, a chance de um template ser informativo é maior por meio do nosso

método que pelo baseline. Outra observação é que para formulários que contém somente campos texto, a

chance de um template de dimensão maior que um ser informativo é menor. Madhavan afirma que quando um

template de dimensão 1 é considerado não informativo é grande a chance de ele ser uma caixa de texto.

Nossos experimentos mostraram que todos os templates de dimensão 1 são informativos, aumentando a

chance de templates com dimensão superior também serem informativos.

We also evaluate the cost and the efficiency between FTF and baseline. Para analisar o custo da nossa

proposta, podemos dividi-lo em duas parcelas: o custo de descobrir valores para os campos texto mais o custo

de recuperar os dados escondidos atrás dos formulários.

Dessa maneira, se considerarmos o mesmo custo da busca dos dados independente do método utilizado,

podemos analisar o custo adicional da nossa proposta como sendo o custo da descoberta de valores. Esse

custo foi discutido na seção 4.1. A tabela 1 mostra na coluna # URLFTF o custo para descobrir os valores em

cada formulário.

Considerando-se o número de campos de texto nos formulários, temos uma média de 125 URLs por campo

para encontrar valores que aumentam a cobertura em relação ao baseline. Vamos considerar somente os

Table 1. Form properties

218

3 Conclusions and Future Work

In this work, we describe two methods for improving the search on the Hidden
Web: i. a method to minimize the number of queries submitted on the form and
ii. an automatic method for selecting values for text fields. The ITP strategy
reduces the number of submissions that not return new distinct data. The FTF
method is totally automatic and can be used in any Web form that has text fields.
Although FTF method is domain-independent, the selected values for text box
fields adapt for domain. Our experiments demonstrate that our approaches are
able to properly deal with text fields and, query selection and have verified to
be useful as an alternative to automatically filling Web forms. For future work,
we will carry on with the research into two phases. In the first phase, we will use
a statistical model to combine field values in templates with order higher than
one. The second phase will entail the definition of a new method to determine
values for text fields considering the number of distinct rows and the order of
instance template submissions to assess the quality of the selected values.

Acknowledgments. This research was partially supported by the National
Counsel of Technological and Scientific Development, CNPq, project number
480283/2010-9.

References

1. Jiang, L. and Wu, Z. and Zheng, Q. and Liu, J.: Learning Deep Web Crawling
with Diverse Features. WI/IAT, (2009) 572–575

2. Madhavan, J. and Ko, D. and Kot, L. and Ganapathy, V. and Rasmussen, A. and
Halevy, A.: Google’s Deep Web Crawl. Proc. of the VLDB Endowment. VLDB
Endowment,(2008), Vol. 1,Number 2,1241–1252.

3. Bergman, M.K.: The Deep Web: Surfacing hidden value. Journal of Electronic
Publishing. (2001), Vol. 7, Number 1, 07–01.

4. Barbosa, L. and Freire, J.: Siphoning Hidden-Web Data through keyword-based
interfaces. SBBD, 309–321, (2004).

5. Khare, R. and An, Y. and Song, I.Y.: Understanding deep web search interfaces:
A survey. SIGMOD Rec., ACM, 39(1): 33–40. (2010).

6. Liddle, S. and Embley, D. and Scott, D. and Yau, S.: Extracting data behind web
forms. Advanced Conceptual Modeling Techniques. Springer, 402–413, (2003).

7. Raghavan, S. and Garcia-Molina, H.: Crawling the Hidden Web. VLDB, 129–138,
(2001).

8. Toda, G.A. and Cortez, E. and da Silva, A.S. and de Moura, E.: A probabilistic
approach for automatically filling form-based web interfaces. Proc. of the VLDB
Endowment, 4(3): 151–160. (2010).

9. Wu, P. and Wen, J.R. and Liu, H. and Ma, W.Y.: Query selection techniques for
efficient crawling of structured web sources. ICDE, IEEE, 47–47. (2006)

10. Ntoulas, A. and Zerfos, P. and Cho, J.: Downloading textual hidden web content
through keyword queries. JCDL, 100-109. (2005).

11. Florescu, Daniela and Levy, Alon and Mendelzon, Alberto.: Database techniques
for the World-Wide Web: a survey. SIGMOD Rec. ACM. 27(3): 59-74. Sep. (1998).

219

