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Abstract: In machine learning area, there has been a great interest during the past decade to 
the theory of combining machine learning algorithms.  The approaches proposed and 
implemented become increasingly interesting at the moment when many challenging real-world 
problems remain difficult to solve, especially those characterized by imbalanced data.  
Learning with imbalanced datasets is problematic, since the uneven distribution of data 
influences the behavior of the majority of machine learning algorithms, which often lead to 
poor performance.  It is within this type of data that our study is placed.  In this paper, we   
investigate a meta-learning approach for classifying proteins into their various cellular locations 
based on their amino acid sequences,   A meta-learner system based on k-Nearest Neighbors (k-
NN) algorithm as base-classifier, since it has shown good performance in this context as 
individual classifier and DECORATE as meta-classifier using cross-validation tests for 
classifying Escherichia Coli bacteria proteins from the amino acid sequence information is 
evaluated. The paper reports also a comparison against a Decision Tree induction as base-
classifier. The experimental results show that the k-NN-based meta-learning model is more 
efficient than the Decision Tree-based model and the individual k-NN classifier. 

Keywords: Classification, Meta-Learning, Imbalanced Data,  Subcellular 
Localization, E.coli.  
 
1. Introduction 

Most of the current research projects in bioinformatics deal with structural 
and functional aspects of genes and proteins.  High-throughput genome 
sequencing techniques have led to an explosion of newly generated protein 
sequences. Nowadays, the function of a huge number among them is still not 
known.  This challenge provides strong motivation for developing 
computational methods that can infer the protein’s function from the amino 
acid sequence information.  Thus, many automated methods have been 
developed for predicting protein structural and molecular properties such as 
domains, active sites, secondary structure, interactions, and localization from 
only the amino acid sequence information.  One helpful step for 
understanding and therefore, elucidating the biochemical and cellular function 
of proteins is to identify their  subcellular distributions within the cell.  Most 
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of the  existing predictors for protein  localization sites are used with  the 
assumption that each protein in the cell has  one, and only one, subcellular 
location.   In each cell compartment, specific proteins  ensure specific  roles  
that describe their cellular function which is critical to a cell’s survival. This 
fact means that the knowledge of the compartment or site in which a protein 
resides allows to infer its function. So far, many methods and systems have 
been developed to predict protein subcellular locations and one of the most 
thoroughly studied single cell organism is Escherichia coli (E.coli) bacteria.   

The first approach for predicting the localization sites of proteins from 
their amino acid sequences was a rule based expert system PSORT developed 
by Nakai and Kanehisa [1,2], then the use of a probabilistic model by Horton 
and Nakai [3], which could learn its parameters from a set of training data, 
improved significantly the prediction accuracy. It achieved an accuracy of 
81% on E.coli dataset. Later, the use of standard classification algorithms 
achieved higher prediction accuracy. Among these algorithms, k-Nearest 
Neighbors (k-NN), binary Decision Tree and Naïve Bayesian classifier. The 
best accuracy has been achieved by k-NN classifier,  that the classification of 
the E.coli proteins into 8 classes achieved an accuracy of 86% by cross-
validation tests [4], The accuracy has been improved significantly compared 
to that obtained before. Since these works, many systems that support 
automated prediction of subcellular localization using variety of machine 
learning techniques have been proposed. With recent progress in this domain, 
various  features  of a protein  are considered, like composition of amino acids  
[5], pseudo  amino acids [6], and dipeptide and physico-chemical properties 
[7,8].  The performance of existing methods varies and different prediction 
accuracies are claimed. Most of them achieve high accuracy for the most 
populated  locations,  but are generally  less accurate on the locations 
containing fewer specific proteins.  Recently,  there has been  a great interest 
to the theory of combining classifiers to improve performance [9].  Several 
approaches known as ensembles of classifiers (committee approaches)  have 
been proposed and investigated through a variety of artificial and real-world 
datasets.  The main idea behind is that often the ensemble achieves higher 
performance than each of its individual classifier component. One can 
distinguish two groups of methods: methods that combine several 
heterogeneous learning algorithms as base-level classifiers over the same 
feature set [10], such as stacking, grading and voting,  and methods which 
construct ensembles (homogeneous classifiers)  generated by applying a 
single learning algorithm as base-classifier by sub-sampling the training sets, 
creating artificial data to construct  several learning sets from the original 
feature set,   such as boosting [11], bagging [12] and Random Forests  [13].  
In protein localization sites prediction problem, data distribution is often 
imbalanced. For the best of our knowledge,  there are two major approaches 
that try to solve the class imbalance problems: the one which use resampling 
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methods and the one that modify the existing learning algorithms.  
Resampling strategy balances the classes by adding artificial data for 
improving the minority class prediction of some classifiers.  Here, we focus 
on the resampling methods, since  they are simplest  methods  to increase  the 
size of the minority  class. This article investigates the effectiveness of the 
meta-learning approach DECORATE |14] to create a meta-level dataset 
trained using a simple k-NN algorithm as base-classifier in classifying   
proteins in their subcellular locations in E.coli benchmark dataset  using 
cross-validation and compares the results by using Decision Tree induction as 
base-classifier. 

The rest of the paper is organized as follows. Section 2, presents the 
materials and the methodology adopted and presents a brief description of  
E.coli benchmark dataset as well as the evaluation measures used for 
performance evaluation. Then,  section 3 summarizes and discusses the results 
obtained by the experiments, it also presents  a comparison of Decision Tree 
induction against the k-NN algorithm as base-classifiers to the meta-classifier 
DECORATE.  Finally, section 4 concludes this study. 

 
2. Material and Methods 
2.1 E.coli Dataset 

The prokaryotic gram-negative bacterium Escherichie Coli is an 
important component of the biosphere, it colonises the lower gut of animals 
and humans. The Escherichia Coli benchmark dataset has been submitted to 
the UCI1 Machine Learning Data Repository  [15]. It is well descripted in 
[1,2,3]. The dataset patterns are characterized by attributes calculated from the 
amino acid sequences. Protein patterns in the E.coli dataset are classified to 
eight classes, it is a drastically imbalanced dataset of 336 patterns.  One can 
find classes with more than 130 patterns and other ones with only 2 or 5 
patterns. Each pattern with eight attributes (7 predictive and 1 name 
corresponding to the accenssion number for the SWISSPROT2 database), 
where the predictive attributes correspond to the following features :  (1) mcg: 
McGeoch's method for signal sequence recognition [16], the signal sequence 
is estimated by calculating discriminate score using length of N-terminal 
positively-charged region (H-region);  (2) gvh: Von Heijne's method [17,18] 
for signal sequence recognition.,  the score estimating the cleavage signal is 
evaluated using weight-matrix and the cleavage sites consensus patterns to 
detect signal-anchor sequences;  (3) lip: Von Heijne's Signal Peptidase II 
consensus sequence score; (4) chg: binary attribute indicating presence of 
charge on N-terminus of predicted lipoproteins; (5) aac: score of discriminate 

                                                            
1 Web site: http://archive.ics.uci.edu/ml 
2 Web site:  http://www.uniprot.org/ 
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analysis of the amino acid content of outer membrane and periplasmic 
proteins; (6) alm1: score of the ALOM membrane spanning region prediction 
program, it determines whether a segment is transmembrane or peripheral; (7) 
alm2: score of ALOM program after excluding putative cleavable signal 
regions from the sequence. 

Protein patterns in this dataset are organized as follows: 143 patterns of 
cytoplasm (cp), 77 of inner membrane without signal sequence (im), 52 of 
periplasm (pp), 35 of inner membrane without uncleavable signal sequence 
(imU), 20 of outer membrane without lipoprotein (omL), 5 of outer membrane 
with lipoprotein (omL), 2 of inner membrane without lipoprotein (imL) and 2 
patterns of inner membrane with cleavage signal sequence (imS). The class 
distribution is extremely  imbalanced, especially for imL and imS proteins.  

2.2 Base-Classifiers 
The problem considered here is multi-class, let us denote by Q the number of 
categories or classes, Q≥3.  Each object is represented by its description x  ϵ 
X, where X  represents the feature set and its category y ϵ Y, where Y denotes 
a set of  the Q  categories  and can be identified with the set of indices of the 
categories: Y={1, …,Q}. The assignation of the descriptions to the categories 
is performed by means of a classifier, The chosen classifiers are then 
described in the following subsections. 
 
2.2.1  k-Nearest Neighbors Classifier 
The k-nearest neighbors (k-NN) rule [19] is considered as a lazy approach. It  
is one of the oldest and simplest supervised learning algorithm.   Objects are 
assigned to the class having  the majority of the k Nearest Neighbors in the 
training set. Usually,  Euclidean distance is used as the distance metric. Given 
a test example x with unknown class, the algorithm assigns to the example x  
the class which is most  frequent  among the k training examples  nearest to 
that query example, according to the distance metric.  The classification 
accuracy of k-NN algorithm can be improved significantly if the distance 
metric is learned with specialized algorithms, many studies  try to find the 
best way to improve the k-NN performance taking into account this factor.  In 
practice, k is usually chosen to be odd. The best choice of this parameter 
depends on the data concerned with  the problem at hand. This algorithm has 
shown good performance in biological and medical data classification 
problems.  

2.2.2 Decision Tree Induction 
A Decision Tree  [20]  is  a powerful way of knowledge representation. The 
model produced by a decision tree classifier is represented in the form of tree 
structure. The principle,  consists in building decision trees by recursively 
selecting attributes on which to split. The criterion used for selecting an 
attribute is information gain.  A leaf node indicates the class of the examples. 
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The instances are classified by sorting them down the tree from the root node 
to some leaf nodes.  Posterior probabilities  are estimated  by the class 
frequencies of the training set in each end node.  In this study, we used a 
decision tree built by  C4.5 [21]. 
 
2.3 Meta-Classifier 
Meta-learners such as Boosting, Bagging and Random Forests provide 
diversity by sub-sampling or re-weighting the existing training examples [14]. 
Decorate (Diverse Ensemble Creation by Oppositional Relabeling of Artificial  
Training Examples) performs by adding randomly constructed examples to 
the training set when building new ensemble members (committee). It has 
been conceived basing on a diversity measure introduced by the authors.  The 
measure defined expresses the  ensemble member disagreement with the 
ensemble's prediction.  If Cj is an ensemble member classifier,   Cj(x) the class 
label predicted by the classifier Cj for the example x and C *(x) the prediction 
of the ensemble, the diversity dj of  Cj on the example x is defined as follows : 

  
The diversity of an ensemble of  M members, on a training set of  N examples 
is computed as follows : 

 
The approach consists in constructing an ensemble of classifiers which 
maximize the diversity measure D. Three parameters are needed: the artificial 
size which is  a fraction of the original training set, the desired number of 
member classifiers and maximum number of iterations to perform. Initially, 
the ensemble contains the classifier (base-classifier) trained on the original 
data.  The members added to the ensemble in the successive iteration are 
trained on the original training data combined with some artificial data.  To 
generate the artificial training examples named as diversity data, the algorithm 
takes in account the specified fraction of the training set size. The class labels 
assigned to the diversity data differ maximally from the current predictions of 
the committee (completely opposite labels). The current classifier is added to 
the committee if it increases the ensemble diversity, otherwise it is rejected. 
The process is repeated until the desired committee size is reached or the 
number of iterations is equal to the maximum fixed. Each classifier Cj  of the 
committee C* provides  probabilities for the class membership of each 
example to classify.  If PCj,k (x) represents the estimated probability of x to 
belong to the class labeled k according to the classifier Cj, to classify an 
example x, the algorithm considers the most probable class as the label for x 
as follows :  

(1) 

(2)
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Where Pk (x) represents the probability that  x belongs to the class labeled k 
computed for the entire ensemble , it is expressed as :  

 
In this paper, we performed two sets of experiments. In the first one, we used 
the k-NN classifier as base-classifier.  In the second one, we used Decision  
Tree as  base-classifier,  which is used in the original DECORATE 
conception. Our goal was to empirically evaluate the two models on the E.coli 
dataset.  For this purpose, we proceed for the two sets of experiments in two 
steps. In the first step, we  evaluated both the two  individual classifiers on 
Ecoli dataset applying cross-validation and in the second step we used the 
meta-learning system applying also cross-validation to  prediction 
performance assessment.  For all experiments, we  made preliminary trials to 
select the appropriate parameters (model selection). 

2.4 Evaluation Measures 
Any results obtained by machine learning algorithms must be evaluated 
before one can have any confidence in their classifications, this aspect of 
machine learning theory is not only usefull but fondamental. There are several 
standard methods for evaluation. In what follows, we present only the 
measures used in this study. 

 
2.4.1 Cross Validation 
In this study, we used  Cross Validation  tests to evaluate the classifier 
robustness, this methodology is most suitable to avoid biased results. Thus, 
the whole training set was divided into five mutually exclusive and 
approximately equal-sized subsets and for each subset used in test,  the 
classifier was trained on the fusion of all the other subsets. So, cross 
validation was run five times for each classifier and the average value of the 
five-cross validations was calculated to estimate the overall classification 
accuracy. 
 
2.4.2  Classification  Accuracy Measurements 
Some of the most relevant evaluation measures are precision, recall and  F-
measure.  In this study, we adopted the three measures, for evaluating the 
effectiveness of the classification for each class and the classification 
accuracy for all the classes as performance measures.  A confusion matrix 

        (3) 

       (4) 
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(contingency table of size QXQ has been used, M = (mkl)1≤k,l≤Q, where mkl 
denotes the number of examples observed in class k and classified in class l. 
The rows indicate different classes observed and the columns show the result 
of the classification method for each class. The number of correctly classified  
examples is the sum of diagonal elements in the matrix, all others are 
incorrectly classified. The  F-measure  has two components, which are: the 
Recall and the Precision. The Recall is the ratio of the number of positive 
examples (correctly classified) of class k and the number of all positive 
(observed) examples in class k. We can express this ratio using confusion 
matrix elements as follows: 

 

The  Precision is the ratio of number of correctly classified examples of class 
k and the number of examples assigned to class k, it can formulated as 
follows: 

 

The F-measure is then defined as : 

 

The  classification accuracy is the ratio of number of all correctly classified 
examples and the total number of examples (both positive and negative), it is 
given by : 

 

3. Experimental Results 
In this section we report the results for each experiment by highlighting for 
each step the evaluation measure values.  The most important evaluation 
values are shown with bold typeface.  It is important to note, that adding 
training instance which is common characteristic of DECORATE implies 
increasing training time. This is visible when performing with a great number 
of needed classifiers for the ensemble and the desired number of artificial data 
to create for learning the meta-classifier.   

 (5) 

(6) 

(7)

(8) 
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The tables given above report the results of ensembles versus individual 
classifiers. In this experiment, we applied 5-fold cross-validations. The E.coli 
dataset is randomly partitioned approximately equally sized subsets. Table 1 
and Table 3 summarize the performance in test of each individual classifier 
for each class. Table 2 and Table 4 give the number of patterns obtained for 
each class using DECORATE-based k-NN (Dk-NN) and DECORATE-based 
C4.5 (DC4.5). The best results for k-NN were obtained when setting k=9. 
 

 

 

 

 

 

 

 

 

 

 

 

The confusion matrix of Dk-NN in Table 2 shows a gain in classifying om 
and imU proteins. Whereas, no improvement has been observed for the two 
minority class proteins namely imL and imS, which are the most difficult to 
classify. 

 

 

 

 

Observed Predicted
cp im pp imU om omL imL imS

cp (143) 141 0 2 0 0 0 0 0
im (77) 3 63 1 9 0 1 0 0
pp (52) 3 1 47 0 1 0 0 0

imU (35) 1 10 0 23 0 1 0 0
om (20) 0 0 4 0 15 1 0 0
omL (5) 0 0 0 0 0 5 0 0
imL (2) 0 1 0 0 0 1 0 0
imS (2) 0 1 1 0 0 0 0 0

Observed Predicted
cp im pp imU om omL imL imS

cp (143) 141 0 2 0 0 0 0 0
im (77) 3 63 1 9 0 0 1 0
pp (52) 3 1 47 0 1 0 0 0

imU (35) 1 7 0 26 0 1 0 0
om (20) 0 0 2 0 17 1 0 0
omL (5) 0 0 0 0 0 5 0 0
imL (2) 0 1 0 0 0 1 0 0
imS (2) 0 1 1 0 0 0 0 0

Observed Predicted
cp im pp imU om omL imL imS

cp (143) 137 2 2 0 2 0 0 0
im (77) 2 59 1 13 2 0 0 0
pp (52) 4 2 45 0 1 0 0 0

imU (35) 1 12 1 20 1 0 0 0
om (20) 1 1 4 0 14 0 0 0
omL (5) 0 0 2 0 1 2 0 0
imL (2) 0 1 0 0 0 1 0 0
imS (2) 0 1 1 0 0 0 0 0

Table 1. Confusion matrix of k-NN as individual classifier on E.coli dataset using 5-CV 

Table 3. Confusion matrix of C4.5 as individual classifier on E.coli dataset using 5-CV 

Table 2. Confusion matrix of  k-NN based-DECORATE  (Dk-NN) on E.coli  dataset using 5-CV 
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Table 3 and Table 5 show that Decision Tree used as individual classifier 
performs poorly than the individual k-NN. However,  in Table 4 the 
improvement is well observed in both cp, im and om proteins.  Not 
suprisingly, Dk-NN gives better results than  DC4.5, which confirms once 
again its power in this context. What is important to notify is that even the 
ensembles Dk-NN and DC4.5  fail in classifying  pp and imU with high 
confidence and fail completely for umL and imS. The influence of the number 
of ensembles (size) needed for the meta-classifier on the performance of the 
two ensembles Dk-NN and DC4.5 is shown in Fig.1.  

Observed Predicted
cp im pp imU om omL imL imS

cp (143) 142 0 1 0 0 0 0 0
im (77) 2 66 0 8 0 0 0 1
pp (52) 4 2 46 0 0 0 0 0

imU (35) 1 13 0 21 0 0 0 0
om (20) 0 0 2 0 18 0 0 0
omL (5) 0 0 1 0 0 5 0 0
imL (2) 0 1 0 0 0 1 0 0
imS (2) 0 1 1 0 0 0 0 0

Classifiers Measures Classes Correctly 
classified 

Accuracy 

cp im pp imU om omL imL imS 

k-NN Precision 95.3 82.9 85.5 71.9 93.8 55.6 0 0  

294 
 

 

87.5 
Recall 98.6 81.8 90.4 65.7 75.0 100 0 0 

F- 96.9 82.4 87.9 68.7 83.3 71.4 0 0 

C4.5 Precision 94.5 75.6 80.4 60.6 66.7 66.7 0 0  

277 
 

 

82.4 
Recall 95.8 76.6 86.5 57.1 70.0 40.0       

0
0 

F- 95.1 76.1 83.3 58.8 68.3 50.0 0 0 

 

Dk-NN 

Precision 95.3 86.3 88.7 74.3 94.4 55.6 0 0  

299 
 

 

88.9 
Recall 98.6 81.8 90.4 74.3 85.0 100 0 0 

F- 96.9 84.0 89.5 74.3 89.5 71.4 0 0 

 

DC4.5 

Precision 95.3 79.5 92.0 72.4 100 83.3 0 0  

298 

 

88.6 
Recall 99.3 85.7 88.5 60.0 90.0 100.0 0 0 

F- 97.3 82.5 90.2 65.6 94.7 90.9 0 0 

Table 4. Confusion matrix of  C4.5  based-DECORATE (DC4.5) on E.coli dataset using 5-CV 

Table 5. Test  performance using 5- CV on  E.coli dataset 
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The results reported for this study show that the classification attempts of  
inner membrane with lipoprotein (imL) and inner membrane with cleavable 
signal sequence (imS) proteins failed for each classifier and consequently also 
for Dk-NN and DC4.5. This situation is caused by the extremely low number 
of examples in these classes (one example used for training and one example 
for testing). On the other hand,  outer membrane with lipoprotein (omL) 
proteins were classified with 100% success rate by kNN classifier and both 
Dk-NN and DC4.5. The cytoplasm (cp) proteins were relatively well 
classified by almost all  classifiers. Fig.2 highlights the performance in test of 
each classifier and shows well the superiority of the ensembles Dk-NN and 
DC4.5 in classifying E.coli patterns. Finally; it  should be  emphasis that this 
results are better than those obtained by combining heterogeneous classifiers 
by majority voting rule, since an average classification success of 88.3% was 

Fig. 2. Accuracy comparison between the four classifiers on E.coli dataset 

Fig. 1. Comparison of the classification performance (y axis), according to the desired size of 
classifiers (x axis) between the two ensembles Dk-NN and DC4.5 on E.coli dataset the 
individual classifiers (x axis) 
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achieved [22].  Nevertheless, all these results prove that combining classifiers 
is indeed a fruitful strategy. 
 
4. Conclusion 

More recently, several ensemble learning algorithms have emerged that have 
different strengths regardless the type of data involved for the problem in 
question. One is often confused to make an effective choice among them. 
Protein cellular localization sites prediction is one among the most 
challenging problems in modern computational biology. Various approaches   
have been proposed and applied to solve this problem but the extremely 
imbalanced distribution of proteins over the cellular locations make the 
prediction much more difficult. In this study, we applied  DECORATE 
ensemble learning, investigating two standard machine learning approaches to 
improve the performance in classifying E.coli proteins to their cellular 
locations, based on their  amino acid sequences.  The experiments show  that 
the k-NN-based meta-learning model outperforms  the individual k-NN 
classifier  and achieves better classification accuracy than the Decision Tree-
based model.  Further investigations will be carried out to provide a much 
more improved ensemble model. 
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