

Proceedings ICWIT 2012 203

 Model driven approach for specifying WSMO ontology

Djamel Amar Bensaber 1, Mimoun Malki 1
1 EEDIS laboratory, University of Sidi Bel Abbes , Algeria

{amarbensaber@yahoo.com, mymalki@gmail.com}

Abstract. The semantic web promises to bring automation to the areas of web
service discovery, composition and invocation. In order to realize these bene-
fits, rich semantic descriptions of web services must be created by the software
developer. A steep learning curve and lack of tool support for developing such
descriptions thus far have created significant adoption barriers for semantic web
service technologies. In this paper, we present a model-driven architecture ap-
proach for specifying semantic web service through the use of a UML profile
that extends class diagrams. In this paper we describe our efforts to develop a
transformation approach based MDA to translate XMI specifications (e.g.,
XML encodings of UML) into equivalent WSMO specifications via the use of
ATL transformations.

Keywords: Model driven Architecture (MDA), WSMO, ATL, Metamodel.

1 Introduction

The potential to achieve dynamic, scalable and cost-effective infrastructure for
electronic transactions in business and public administration has driven recent re-
search efforts towards so-called Semantic Web services, that is enriching Web ser-
vices with machine-processable semantics. As a matter of fact, describing Web ser-
vices through aforementioned submissions are not easy for service developers to
write. Although, several tools and editors such as OWL-S Editors, WSMO studio [1],
and WSMOViz [2] have been proposed to facilitate writing Semantic description,
developers still need to know the concepts and syntaxes of the Semantic Web service
languages. This lack of knowledge and also the complexity of these languages cause
the adoption of Semantic Web services slow down [3].
In order to tackle this problem, several approaches have been proposed based on
Model driven Architecture (MDA) [4] for automatically generating semantic web
service descriptions from a set of graphical models. MDA is an approach presented by
OMG for developing application system in the way of creating model rather than
code. The portability, interoperability, and reusability are primary goals of MDA,
which are acquired via separation of concerns between the implementation and speci-
fication. In most of MDA-based approaches, Unified Modeling Language (UML) [5]
is used as modeling language due to its widespread adaption among software devel-
opers [6].

In this context, we are developing an approach that allows a developer to focus on
creation of semantic web services and associated WSMO [7] specifications via the

Proceedings ICWIT 2012 204

development of a standard UML model. We describe our efforts to develop a trans-
formation model for translating UML specifications into equivalent WSMO specifica-
tions. The approach relies upon the use of MDA concepts by developing two meta-
models (source and target one) and a transformation model to translate XMI specifi-
cations (e.g., XML encodings of UML) into WSMO via the use of ATL transforma-
tions [8]. By using transformations from equivalent UML constructs, difficulties
caused by a steep learning curve for WSMO can be mitigated with a language that has
a wide user base, thus facilitating adoption of semantic web approaches.

The remainder of this paper is organized as follows. Section 2 describes the related
works for semantic web services approaches, a WSMO overview is presented in sec-
tion 3. The specifics of our approach, details and the main parts of our solution are
presented in Section 4. Sections 5 and 6 discuss implementation and conclusions,
respectively.

2 Related works

In this section we present briefly various approaches which allow to use UML for
the creation of ontologies. Gasevic [9] suggests using an UML profile for ontology as
well as the standards of the OMG concerning the approach MDA. By this method he
wishes to insure the generation automatic of complete ontologies (in OWL [10]) by
using transformations of models. The approach of Gasevic and his colleagues relays
on the principles of MDA and transformation of models. For it they defined an UML
profile named OUP (Ontology UML Profile) which takes back the concepts of ontol-
ogies such as they are defined in OWL. Their second contribution is to supply bidirec-
tional transformations between it profile UML and the ODM (Ontology Definition
Metamodel) metamodel, proposed by the OMG. Their last contribution holds in trans-
formations between ODM and the languages of ontology such OWL.
Brambila et al in [11] present a model-driven methodology to design and develop
WSMO-based Semantic Web services using Business Process Model and Notation
(BPMN) [12] in conjunction with Web Modeling Language (WebML) [13].

MIDAS-S [14] is based on the expansion of MIDAS [15] which is a model driven
methodology to develop Web Information System (WIS). This approach present a
methodology to develop semantic Web service based on WSMO. The four top-level
elements such as ontologies, goals, mediators, and Web services are formed in the
PSM level.

3 WSMO Overview

The WSMO initiative aims at providing an overarching framework for handling
Semantic Web services (SWSs). WSMO identifies four main top-level elements:

1. Ontologies that provide the terminology used by other elements;
2. Goals that state the intentions that should be solved by Web Services;
3. Web Services descriptions which describe various aspects of a service;

Proceedings ICWIT 2012 205

4. Mediators: to resolve interoperability problems.

Each of these WSMO Top Level Elements can be described with non-functional
properties like creator, creation date, format, language, owner, rights, source, type;
etc. WSMO comprises the WSMO conceptual model, as an upper level ontology for
SWS, the WSML[16] language and the WSMX [17] execution environment.

The Web Service Modeling Language (WSML) is a formalization of the WSMO
ontology, providing a language within which the properties of Semantic Web Services
can be described.

WSMX provides an architecture including discovery, mediation, selection, and in-
vocation and has been designed including all required supporting components ena-
bling an exchange of messages between requesters and the providers of services.

4 Our approach

The approach relies upon the use of MDA concepts by developing two metamodels
(source and target one) and a transformation model to translate XMI specifications
(e.g., XML encodings of UML) into WSMO.

Figure 1 shows the overview of our approach. The model transformation is based
on ATL language, and its relates two metamodels (source:UML and target: WSMO).
A transformation engine takes a source model as input, and it executes the transfor-
mation program to transform this source model into the target model. The business
model is created by any UML tool, consistent with the UML metamodel (UML pro-
file). The obtained WSML document will be exported and validated by WSMO studio
Tool.

4.1 The source metamodel

A UML profile [18] is a collection of stereotypes, tagged values and custom data
types used to extend the capabilities of the UML modeling language. We use a UML
profile to model various WSMO constructs in conjunction with the UML static struc-
ture diagram. In terms of MDA, the stereotypes, tagged values, and data types serve
to mark-up the platform-independent model, or PIM, in order to facilitate transforma-

WSMO studio Tool

UML Tool

 EMF

 UML

 MDA C2 : Conforms To

 WSMO

 Model.uml Model.wsml

C2

C2 C2

C2

Model Transformation
(ATL)

 Fig.1. Architecture of our approachFig.1. Architecture of our approach

Proceedings ICWIT 2012 206

tion to WSMO specification. Stereotypes work well to distinguish different types of
classes and create a meta-language on top of the standard UML class modelling con-
structs. Tagged values allow the developer to attach a set of name/value pairs to the
model. Figure 2 shows a metamodel of our profile UML, where a group of extensions
UML is introduced. The source metamodel consists of:

• The standard elements of UML: which are represented in the figure 2 by yellow
color, we used: package, comment, Class, Dependency, Usage, Generalization, At-
tribute, Association, and InstanceSpecification. All these elements can be used in
the class diagram for modeling the business model.

• Stereotypes: represented in the figure by the green color, they are introduced to
allow the modeling of the diverse WSMO’s constructs. The WSMO’s constructs
that we used are:

- "Concept", " axiom ", "relation" which extend the " Class " element.
- "Ontology", "ooMediator " which extend the "Package" element.
- "NonFunctionalProperties","axiom" and "NameSpace" which extend the

"comment" element.
- " ImportsOntology " which extends the " Dependency " element.
- "Instance" which extends the " InstanceSpecification " element.
- « subConceptOf» and « subRelationOf » which extend « Generalization »

element.
- « OfType » and « impliesType » which extend « Attribute » element.

 Standard UML 2.0

+Package
+Comment
 +Class
+Dependency
+Usage
+Generalization
+Attribute
+Association
+InstanceSpecification

Standard UML 2.0
Comment

NonFunctionalProperties axiom NameSpace Standard UML 2.0
Package

Ontology

 ooMediator

Standard UML 2.0 Attribute

OfType impliesType

Standard UML 2.0
Class

Concept axiom Relation

Standard UML 2.0
Dependency

importsOntology

Standard UML 2.0
Usage

useMediator

Standard UML 2.0
Association

impliesType reflexive

Transitive

symmetric InverseOf

Standard UML
Generalization

subConceptOf subRelationOf

Standard UML 2.0
InstanceSpecification Instance

Fig.2. The source Metamodel : UML profile for WSMO

Proceedings ICWIT 2012 207

- « symmetric », « InverseOf », « impliesType », « reflexive » and « Transi-
tive » which extend « Association » element.

4.2 The WSMO Ontology Target metamodel

This metamodel [19] is used by our transformation to generate the WSMO ontol-
ogy . It consists of Ontology composed of : Concept, Relation, Axiom, Instance.

The figure 3 shows a fragment of WSMO metamodel.

Fig.3. Fragment of WSMO Ontology metamodel

4.3 UML to WSMO transformations

4.3.1 Principle
The overview of the transformation is detailed in Figure 4. The set is split between

two areas of modeling: MDE for space engineering models in which is defined the
different metamodels described above and the transformation between UML and

Proceedings ICWIT 2012 208

WSMO, and WSMO space that defines the WSMO ontologies. In M3 layer we find
ECORE language of metamodelisation. The both metamodels (UML and WSMO)
and ATL metamodel located in M2 layer are based on ECORE.

At M1 layer we found the source model expressed in UML 2.0 conforms to our
metamodel WSMO UML Profile, the model transformation UML2WSMO imple-
mented in ATL language, WSMO ontology model resulting from the transformation
process which is conforms to WSMO target metamodel in M2 layer, and a WSMO /
WSML projector. This projector is a particular transformation that allows to switch
from one model space to another. In our case it is used to transform the WSMO on-
tology in WSML document. Now we will explain in detail the transformation rules
between our UML profile and WSMO ontology.

4.3.2 Transformation UML into WSMO
In our approach, a transformation definition is implemented in ATL language

based on a mapping specification; we use the term mapping as a synonym for
correspondance between the elements of two metamodels, while a transformation is
the activity of transforming a source model into a target model in conformity with the
transformation definition.

The source metamodel UML profile includes stereotypes, tagged values and con-
straints, each of which map to a particular construct in target metamodel WSMO de-
scription, as shown in table1. The left hand column provides the abstract type repre-
sented by the constructs. The middle column shows the UML constructs used to spec-
ify semantic services. Finally, the right hand two colomns name the corresponding
target construct in WSMO specification and present the target elements which are
defined in this transformation.

Once mappings are specified between the two metamodels (e.g. UML and
WSMO), transformation definitions are implemented using transformation languages
such as Atlas Transformation Language (ATL). An extract of these rules is illustrated
below.

M3

M2

Ecore

MDE

WSMO

WSMO/WSML
Projector

WSMO

 WSMO
Ontology

WSML

ATL UML

 MODEL MODEL

UML2WSMO

Legend

 : transformation : ConformsTo
Space modeling

: Projector

Fig. 4. UML to WSMO transformations

Proceedings ICWIT 2012 209

Table 1. UML to WSMO Mapping

UML TYPE UML Construct WSMO Construct Elements defined in target
 WSMO construct

Package « ontology » stereotype Wsmo Ontology URI,nonfocntionnal properties,imports ontolo

gy,usesmediators,concept,relation,axiom,instances

Class « Concept » stereotype WSMO Concept Concept name,subconceptof, nonfonctionnal

properties, atribute

Class « Relation » stereotype Wsmo relation Relationname, nonfonctionnalproperties,

para meters,subrelationof

Class « axiom » stereotype Wsmo axiom Name, Type,className,attributeName

Attribute « oftype » attribute Wsmo attribute Name, Type,className,attributeName

Association « implies type » stereotype Wsmo attribute Name, Type,className,attributeName

Association « transitive_impliesType » stere. WSMO attribute Name, Type,className,attributeName

Association « symmetric_impliesType »stere. Wsmo attribute Name, Type,className,attributeName

Dependency « importsOntology» stereotype WSMO import ontology supplierName, clientName

Depenency « usemediator» stereotype Wsmo usemediator supplierName, clientName

Comment « nonfonctionalProperties» stereo. Wsmo nonfonctional

Properties

Name, body

Comment « namespace » stereotype Wsmo namespace Name, body

Comment « axiom » stereotype Wsmo axiom Name, expression_definition

Instance

Specification

« instance Speciication» stere. Wsmo Instance Instance Name, memberOf, attributeValue

Instance

Specification

« instanceproperty » stereotype Wsmo attribute value Instance Name,Instance, attributeNname

• Rule : UMLClass2WSMOConcept
This rule allows to create a concept WSMO from a class UML stereotyped "Con-

cept". Any class UML stereotyped "Concept" is transformed into WSMO concept.
This one is defined by the concepts from which it inherits “subConceptOf” , by a
Name, NonFunctionalProperties and by these attributes.

rule UMLClass2WSMOconcept {
 from s : UML!"uml::Class" (s.hasStereotype('WSMO_Profil::Concept'))
 to t : b_Ontology_WSMO!Concept (
 Nom_concept <- s.name->debug('Cette Class Est Un Concept '),
 SubConceptOf <- if s.general.oclIsUndefined()then ''
 else s.general->collect(a|a.name).first() endif,
 NonFunctionalProperties<-

b_Ontology_WSMO!NonFunctionalProperties.allInstances() ->select(b|b.Nom_De = s.name)-
>collect(b1|b1.Corps).first(),

 Attribute <- b_Ontologie_WSMO!Attribute.allInstances() ->
 select(b|b.Nom_De_Class = s.name)->collect(b1|b1.Nom_Attribute)) }

 The helper " hasStereotype " receives a string and returns a boolean. It is used to

know if the current UML element is stereotyped as the string taken in parameter.

Proceedings ICWIT 2012 210

helper context UML!"uml::Element" def: hasStereotype(name : String) : Boolean =
 self.getAppliedStereotype(name)->oclIsKindOf(UML!Stereotype);

• Rule : Property2Attribute
This rule allows to create attributes WSMO from UML properties stereotyped "

OfType ". Any property UML stereotyped "OfType" is transformed into WSMO at-
tribute. This one is defined by a Name, Type, class names and Attribute name.

rule Property2Attribut
{ from P : UML!Property (P.hasStereotype('WSMO_Profil::ofType'))
 to A : b_Ontology_WSMO!Attribute (
 Nom_Attribute <- P.name + ' ofType' + ' ' +
 P.type.toString().substring(4,P.type.toString().size()),
 Type_Attribute <- P.type.toString().substring(4,P.type.toString().size()),
 Nom_De_Class <- P.class.name),
 At : b_Ontologie_WSMO!AttRelation (
 Nom_Attribute <- ' ofType ' +P.type.toString().substring(4,P.type.toString().size()),
 --Type_Attribute <- P.type,
 Nom_De_Class <- P.class.name) }

• Rule : InstanceSpecification2WSMOInstance
This rule transforms UML instance into WSMO instance. This one is defined by

the classes that are “ MemberOf”, InstanceName and AttributeValues.

rule UMLInstance2WSMOInstance
{ from I : UML!InstanceSpecification
 to Ins : b_Ontology_WSMO!Instance (Nom_Instance <- I.name,
 MemberOf <- I.classifier->collect(a|a.name),
 AttributeValues <- b_Ontology_WSMO!AttributeValue.allInstances()
 ->select(b|b.name = I.name)->collect(a|a.Nom_Att_Ins)) }

4.3.3 WSMO2WSML Projector
A projector consists of one or several transformations allowing realizing the pro-

jection of an artefact belonging to a technological space towards another. In our case,
the artefact is a model in compliance with the WSMO metamodel, belonging to the
technical space of MDE. We aim to project this artefact towards the WSMO space in
WSML syntax. A model in the MDE space is serialized in the XMI format, whereas a
document in the WSMO space is in WSML format. The projector implemented here
includes a single ATL query file allowing the transformation of WSMO model into a
WSML document. Among the main rules which compose the transformation file
named Ecore2wsmo, we quote the first rule:

• Rule 1 : This rule allows to translate the "concept" element of WSMO modeled
in ECORE Format into WSML syntax.

helper context UML!Concept def : toString_b() : String =
 '\n'+' concept ' + self.Nom_concept + if self.SubConceptOf->iterate(e; acc : String =

'' |acc + e.toString()+ '') = 'OclUndefined' then '\n'

Proceedings ICWIT 2012 211

 else
' subConceptOf '+self.SubConceptOf->iterate(e; acc : String =' ' |acc + e.toString() +' ') + '\n'

 endif
 + if self.NonFunctionalProperties.oclIsUndefined() then ''
 else ' nonFunctionalProperties '+ '\n' + self.NonFunctionalProperties + '

endNonFunctionalProperties ' + '\n' endif
 + if self.Attribute.size() <> 0
 then self.Attribute->iterate(e; acc : String = '' |acc + e.toString() + '\n') + '\n'
 else '' endif;

5 Implementation

To show the feasibility of our approach, we have developed a tool on the Eclipse
environment (Eclipse Ganymade 3.4.2), an ATL project is created, the UML
metamodel profile is modeled by UML diagrams 2.1 Integrated in EMF eclipse, and
the WSMO metamodel is modeled by the Ecore language (Ecore diagram), then two
ATL files containing the transformation rules (UML2WSMO and WSMO2WSML)
are written in ATL. For each execution, we introduce a source model conforms to our
source metamodel and we obtain a WSMO document.

 Fig.5. Class diagram of source model

Proceedings ICWIT 2012 212

To illustrate our approach, we take the human ontology as an example, the source
model is expressed in a UML2.0 class diagram in conformity with our source
metamodel (see Fig.5). The transformation engine takes the source model serialized in
XMI [20] format as input and executes the transformation rules contained in
UML2WSMO ATL file that generates a WSMO ontology in Ecore format, then the
projector tool executes the ATL query file WSMO2WSML to transform the resulting
WSMO ontology into WSML format. The obtained WSML document of the human
ontology is depicted in Fig. 6. At the end, the output of our system is imported by the
WSMO STUDIO tool to validate the correctness of our transformations.

Fig.6. The resulting Human ontology file in WSML format

6 Conclusions and Future Work

Semantic Web Services can potentially change the way software is both developed
and used. In order to realize that great promise, the software development community
must embrace the technology. The barriers to adoption must be bridged in a manner
that leverages the capabilities of developers.

We have been developing an MDA-based approach for facilitating such adoption
by using Metamodels at PIM levels in such way that it more adequately hides the
details of semantic web service technologies and allows the developer to focus on
creating models of semantics web services, Then a transformation model consisting of
a defined set of rules that specify the correspondence between the elements of both
source and target metamodels, is applied to generate a WSMO ontology encoded in
WSML.

Proceedings ICWIT 2012 213

Our current investigations involve developing the framework in such a way that it
improves the transformation model by handling the logical expressions to cover "axi-
om" and covers the other parts of WSMO like capability, mediators and goals.

7 References

1. "WSMO Studio." vol. 2010, 2009: http://www.wsmostudio.org.
2. Kerrigan M.: "WSMOViz: An ontology visualization approach for WSMO," London,

United kingdom, 2006, pp. 411-416.
3. Timm,, J.T.E.: "A model-driven framework for the specification, grounding, and execution

of semantic Web services." vol. PH.D: Arizona State University, 2008, p. 170.
4. Mukerji J.M.: "MDA Guide Version 1.0.1." vol. 2010: OMG Group, 2003.
5. O. M. Group, "OMG Unified Modeling Language (UML)." vol. 2010: Object
6. Wang Q., Garousi V., Madachy R., Pfahl D., Bendraou R., J.-M. Jezéquél J.M. and F.

Fleurey F. : "Combining Aspect and Model-Driven Engineering Approaches for Software
Process Modeling and Execution," in Trustworthy Software Development Processes. vol.
5543: Springer Berlin / Heidelberg, 2009, pp. 148-160.

7. Roman D., Lausen H., and Keller U.. Web service modeling ontology (WSMO). Final
Draft D2v1.3, WSMO, 2006. Available from:http://www.wsmo.org/TR/d2/v1.3/.

8. Jouault, F., Kurtev, I. : Transforming Models with ATL, Proceedings of the Model Trans-
formations in Practice Workshop at MoDELS’05, Montego Bay, Jamaica, 2005.

9. Gasevic, D., Djuric, D., Devedzic, V. : MDA-based automatic OWL ontology develop-
ment, International Journal on Software Tools for Technology Transfer, June 2006.

10. Hori, M., Euzenat, J., Patel-Schneider, P., F. : OWL (Web Ontology Language) XML
Presentation Syntax W3C Note 11 June 2003, http://www.w3.org/TR/owl-xmlsyntax/

11. Brambilla M., Ceri S., Facca F.M. , Celino I., Cerizza D., and Valle E.D.: "Model-driven
design and development of semantic Web service applications," ACM Transactions on In-
ternet Technology, vol. 8, 2007.

12. "Business Process Model and Notation (BPMN)," in Version 1.2. vol. 2010: OMG, 2009.
13. Stefano C., Piero F., Aldo B., Marco B., Sara C., and Maristella M. :Designing Data-

Intensive Web Applications: Morgan Kaufmann Publishers Inc., 2002.
14. Sanchez D.M. , Acuna C.J., Cavero J.M. , and Marcos E. : "Toward UML-Compliant se-

mantic web services development," International Journal of Enterprise Information Sys-
tems, vol. 6, pp. 44-56.

15. Cáceres P., Marcos, E., Vela, B. A. :"MDA-Based Approach for Web Information System
Development," in Workshop in Software Model Engineering, 2003.

16. Lausen H., Bruijn J., Polleres A., and Fensel D. : WSML - A Language Framework
forSemantic Web Services. In Proc. of the W3C Workshop on Rule Languages for In-
teroperability, Washington DC,USA,2005.

17. Haller A., Cimpian E., Mocan A., Oren E., and Bussler C. WSMX - A Semantic
ServiceOriented Architecture. In Proceedings of the International Conference on Web Ser-
vice (ICWS 2005), 2005.

18. Atkinson, C. and Kühne, T.: Profiles in a strict metamodeling framework, Science of
Comp.Prog., Vol. 44, No. 1 (2002) 5-22

19. http://www.w3.org/Submission/2005/SUBM-WSMO-20050603/.
20. OMG. XML Metadata Interchange (XMI) specification, version 2.0, formal/03/05/02, may

2003.

