
288

Reverse Engineering Process for Extracting Views from

Domain Ontology

Soraya Setti Ahmed1 and Sidi Mohamed Benslimane2

1 Mascara University, Computer Science Department, Algeria
{settisoraya@yahoo.fr}

2 Djillali Liabes University, Research Laboratory, Computer Science Department
Sidi Bel Abbes, Algeria

 benslimane@univ-sba.dz

Abstract. Ontology Modularization is one of the techniques that bear good

promises of effective help towards scalability in ontology design, use, and

management. The development of proper ontological modules should provide a

mechanism for packaging coherent sets of concepts, relationships, axioms, and

instances, and a means for reusing these sets in new environments, possibly

heterogeneous with respect to the environment the modules were first built. The

main contribution of this paper is to describe an approach for extracting views

from domain ontology using existential dependency (ED) by reverse

engineering process. The extraction process based on ED could provide a

coherent fragment of ontology parts together with transitive closure of

dependant parts. The goal of reverse engineering process is to output a possible

conceptual model, which is more readable to extracting the views, on the basis

of the code in which the ontology is implemented. Thus, a set of translation

rules is used to convert owl ontology in a UML class diagram.

Keywords: Modularization, Reverse Engineering, Existential Dependency,

Ontology Views, Guizzardi Metamodel, UML profiles, OWL.

1 Introduction
Ontology Modularization techniques identify coherent and often reusable regions

within an ontology. The ability to identify such modules, thus potentially reducing the

size or complexity of an ontology for a given task or set of concepts is increasingly

important in the Semantic Web as domain ontologies increase in terms of size,

complexity and expressivity[1].

In conceptual modelling, the Foundational Ontology is needed as domain independent

theoretical basis to guide and validate models of particular domains, as using of right

modelling concepts and rules is making a great influence on the quality of

Information Systems [2]. For such purpose, the transformations between conceptual

models (expressed, for example, in UML) and ontological models, expressed in

ontological languages (for example, OWL) are needed. The extraction process using

lightweight ontologies like UML and OWL generates strictly unnecessary classes and

individuals, for this reason the first step of our approach is based on the reverse

engineering process whose goal is to output a possible conceptual model, which is

more readable to extracting the views, on the basis of the code in which the ontology

289

is implemented [3] and [4]. Thus, a set of translation rules is used to convert owl

ontology in a UML class diagram.

The rest of the paper is organized as follows: In section 2 we describe the architecture

and the main steps of our approach. Section 3 introduces implementation of our

system. Finally, we conclude this paper and outline our future work in section 4.

2 Our approach
In this section, the global architecture of our system is presented. Figure 1 illustrates

the main steps of the proposed approach.

2.1 Reverse engineering process

The designer initiates transformation of domain ontology described in OWL file

into UML class diagram by reverse engineering transformation. At first, system

transforms ontology classes, then object and data type properties, and finally

constraints.

Fig.1. Main steps of our approach

Owl

Ontology

Reverse

Engineering

Process

UML Class

Diagram

GM Conversion

process

Enriched

System GM

Views extraction

process with ED

Extracted

Views

Evaluation

290

 Algorithm of mapping OWL Ontology to UML class diagram

Input: OWL file ontology

Output: UML class diagram

Begin

For all OWL class (concept) defined into ontology do

Create UML class with same name.

 If the ontological class is sub class of restriction then

For all restriction do

If type of this restriction is : cardinality, minCardinality or maxCardinality then

transforme these in multiplicities for propriety specified on Property of restriction

 Else

Define the name of role of toClasse classe with object property name specified in onProperty.

 Endif

 Endfor

 Endif

 If this class is sub class of other class then

Define UML generalisation element

 Endif

 Endfor

 For all DataTypeProperty Do

Create an attribute whose domain is class and whose range is the type of property

 Endfor

 For all ObjectProperty Do

Create UML association whose domain is class and whose range is class

 Endfor

End

Table 1 summarised the important rules of mapping Owl2Uml

OWL constructer UML constructer

DatatypeProperty Property ownedAttribute

ObjectProperty

Property memberEnd

InverseOf Binary Association

subClassOf,

subPropertyOf

Cardinality,

MinCardinality,

MaxCardinality

Ontology

superClass,Genearlization

Multiplicities

Package Ontology

Union, Intersection

one of

Individual

Generalization isDisjoint,

isCovering

Enumeration

Instance

 Table 1. Rules of mapping Owl2Uml

291

2.2 GM conversion process

A Conversion tool implements a transformation from UML class diagram obtained in

step 2 to Guizzardi Metamodel (GM) [5]. We introduce a formal ontology, the GM to

resolve some highlighted anomalies. We adopt GM to enrich our diagram with several

existential dependencies and to define some extraction rules under tree main structural

relationships in GM such as association, subtype and part whole.

Guizzardi’s concepts kind, subkind, phase, role and relator are all represented as

stereotypes of the UML metaclass Class, for example, and all inherit the semantics of

Class in UML. Any UML metaclass can be stereotyped.

Some examples of transformation rules:

Rule1: In UML Class Diagram, a collection of instances of classes are,

respectively, instances of UML G-M profiles including concrete classes (<<kind>>,

<<subkind>>, <<quantity>>, <<collective>>, <<phase>> and <<role>>).

Rule 2: In UML Class Diagram, concrete classes (and their instances) are related

via UML G-M profiles including properties (<<mediation>>, <<derivation>>,

<<characterisation>>, <<material>> and <<formal>>) as well as complex objects or

part-whole (subQuantityOf, subCollectionOf, memberOf, componentOf).

Rule3: In UML CD, concrete classes (and instances) can be categorised

accordingly by UML G-M profiles via abstract classes (<<category>>,

<<roleMixin>> and <<mixin>>) and other rules.

2.3 Views extraction process with ED

This step present extraction cases and rules for how these views can be extracted

using existential dependency, especially where the ontology is constructed using the

GM formal ontology. We note that user in this case should specify certain individuals

and classes. The extraction process produces a more focused and smaller portion and

reduces the costs to the user. There are several systems under the 3G-M like systems

of (kind, phase, role, mixin, quality, formal, relator, material, mode, Q-parthood, C-

partood, M-parthood and system of CF-parthood). All these systems contribute to the

ED.

Some examples of extraction cases and rules:

System of Kind: Super kind is Mandatory (+M), subkind is mandatory (+M), siblings

are optional (-M): This case applies general rules “requires all superclasses’ and

‘siblings optional”.

System of Relator: A relator is mandatory (+M) and mediated classes are mandatory

(+M)

A mediated class is mandatory (+M), a relator is mandatory (+M) and a pair of

mediated classes is mandatory (+M): Every instance of mediated class does not make

sense without every instance of another (pair) mediated class witch the relator

mediates to.

292

System of Role:

Superkind is an ultimate substance sortal that supplies a principle of identity.

Superkind does not make sense without the roles and vice versa. Supermixin (role

mixin) is optional (-M) since it does not supply a principle of identity.

An application may not (-M) need sibling roles since they carry an incompatible

principle of identity supplied by its superkind respectively. An individual must be not

a member of its siblings. This case applies general rules: “some superclasses

optional” and “siblings optional”.

Superkind is mandatory (+M), role is mandatory (+M), supermixin is optional (-M)

and sibling roles are optional (-M).

2.4 Evaluation

Correctness of the extracted views translates the fact that no information is lost in the

process.

Information preservation may be defined as the fact that the result of a query

addressed to the collection is functionally (i.e., not from a performance viewpoint) the

same as the result of the same query addressed to the original ontology.

3 Implementation

The architecture of our system has been conceived to follow a Model-Driven

Approach. In particular, we have adopted the OMG MOF (Meta-Object Facility)

metamodeling architecture [6]. In order to describe constraints in UML/MOF (meta)

models, the OMG also proposes the declarative formal language OCL (Object

Constraint Language) [7]. On the formalization of the UML profile we have used

OCL expressions mainly to: define how derived attributes/associations get their

values; define default values of attributes/associations, i.e., define their initial values;

specify query operations and specify invariants, i.e., integrity constraints that

determine a condition that must be true in all consistent system states.

The full set of OCL expressions including: OCL expressions to specify derivation

rules; OCL expressions to define default values; OCL expressions to specify

operations created to support some OCL derivation rules and invariants, and

invariants to model the constraints stated on the UML profile. An example of an OCL

invariant representing the essential parthood axioms is shown in the code below. One

can notice that in this expression the modal existential dependence constraint of

essential parthood from UFO (Unified Foundational Ontology) is emulated via the

existence condition (lower cardinality ≥ 1) plus the immutability constraint

(isReadOnly = true).

Inv: if (self.isEssential = true) then self.target-> forAll(x | if x.oclIsKindOf(Property)

then ((x.oclAsType(Property).isReadOnly = true) and ((x.oclAsType(Property).lower

>= 1)) else false endif) else true endif

293

4 Conclusion and future work

In This paper we describe our approach for extracting views from domain ontology by

reverse engineering process witch consists of transforming the OWL file ontology of

E-Tourism into UML class diagram. there is an implementation of the metamodel

proposed by Guizzardi [8] by using MDA (Model-Driven Architecture) technologies,

in particular, the OMG MOF (Meta-Object Facility) and OCL (Object Constraint

Language).

Future work will concern the implementation of process of extracting views with rules

proposed here to confirm the useful of our approach.

References

1. Doran,P.,Tamma, V.,Payne,T,R Pal misano,I . : An entropy inspired measure for evaluating

ontology modularization. in :5th International conference on knowledge

capture(KCAP’09).(2009)

2. Rajugan,R.,Tharan,S.,T.S.Dillon.: Modeling views in the layered view model for XML

using UML, journal of Web information System 2 (2006) 95-117.

3. Chikofsky,E.J.,Cross II, J. H., 1990 Reverse engineering and design recovery: a taxonomy.

Software Magazine 7 (1990) 13-17.
4. Fernandez-Lopez,M.,Gomez Pérez,A.: Overview and analysis of methodologies for building

ontologies. The Knowledge Engineering Review, Vol. 17:2, 129– 156. © 2002, Cambridge

University Press

5. Guizzardi, G., “On Ontology, ontologies Conceptualizations, Modeling Languages, and

(Meta)Models”, Frontiers in Artificial Intelligence and Applications, Databases and

Information Systems IV, Olegas Vasilecas, Johan Edler, Albertas Caplinskas (Editors),

ISBN 978-1-58603-640-8, IOS Press, Amsterdam, (2007).

6. Object Management Group (OMG):Meta Object Facility MOF core Specification, v2.0,Doc

ptc/06-01-01 (2006)

7. Object Management Group (OMG): Object Constraint Language, v2.0, Doc.# ptc/06-05-01

(2006)

8. Guizzardi,G.: Ontological Foundations for Structural Conceptual Models, Ph.D. Thesis,

University of Twente, The Netherlands (2005)

http://arnetminer.com/expertisesearch.do?searchBtnType=lucky&keyword=Paul%20Doran

