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Abstract. Large scale ontology matching is a labour-intensive and time-

consuming process. To alleviate the problem, many automated solutions have 

been proposed. In order to avoid the drawbacks of the existing solutions, this 

paper proposes to cut down the number of concept pairs for which a similarity 

measure must be computed during ontology matching. More important, the 

main contribution is to deal subsets of concepts pair: on the one hand, if two 

concepts are highly similar, we leverage the concept hierarchy to skip subse-

quent matching between sub-concepts of one concept and super-concepts of the 

other concept. On the other hand, if two concepts are weakly similar, we lever-

age the locality phenomenon of matching to skip subsequent matching between 

one concept and the neighbours of the other concept. 
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1 Introduction and Motivation 

In recent years,  many large ontologies are created and maintained in the areas in-

cluding machine translation, information retrieval, e-commerce, digital library, medi-

cine, and life science. These ontologies have more than thousands to millions of con-

cepts and properties, and some of them contain more than billions of instances such as 

Cyc
1
, WordNet

2
, SUMO

3
, Gene Ontology

4
 and UMLS

5
. 

It has been argued that the difficulties of the operations of constructing, matching, 

reusing, maintaining, and reasoning on large ontologies would be extremely simpli-

fied by splitting large ontologies into smaller modules which cover specific subjects 

[6, 8]. Ontology modularization is the collective name of two approaches for frag-
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menting ontologies into smaller, coherent components (modules), which are them-

selves ontologies [5]:  

Ontology Partitioning Approaches. The ontology is partitioned into a number of 

modules {M1, ···, Mn} such that the union of all the modules is semantically equiva-

lent to the original ontology {M1 U M2 U ... U Mn} = O; i.e. the Mi modules are not 

necessarily disjoint. Thus, a function partition (O) can be formally defined as follows:   

Partition (O)        M= {{M1, M2, ...., Mn}| {M1 U M2 U ... U Mn} = O}       (1) 
The partitioning method reduces the search space and thus leads to better efficiency. The 

space complexity of the matching process is also reduced. Four partition based methods 

COMA++ [2], FalconAO [7,3], Taxomap [3], anchor flood [7] will be discussed below. 
Module Extraction techniques. Concepts that form a coherent fragment of an ontol-

ogy O are extracted to form a module M, such that it covers a given vocabulary 

(based on an initial module signature) Sig(M), Such that Sig(M   Sig(O) [9]. In fact 

this task consists in reducing an ontology to the sub-part, the module, that covers a 

particular sub-vocabulary of O, as such M  O [9]. Note that M is now ontology itself. 

A function extract (O, Sig (M)) can be defined as follows: 

Extract (O, Sig (M))          {M | M      O}                                (2) 
There are numerous techniques [4, 5] for module extraction, more than ontology partition-

ing approaches that have been developed for different purposes. The main usage of these 

approaches concerns partial reusing, when an application or a system needs only a part of 

ontology. Broadly speaking, modularization approaches aim to identify the minimal 

set of necessary concepts and definitions for different parts of the original ontology.  
However, ontology partitioning approaches present several drawbacks. They cannot con-

trol the size of blocks, which may be too small or too large for matching [3, 4, 5, 6,9]. 

They can also cause another problem, namely, the partitioning can make the elements on 

the boundaries of blocks lose some semantic information, which in turn affects the quality 

of final matching results. This paper proposes a generic solution to assess preliminary 1: 

n mappings between any two concepts from two given ontologies based on their de-

scriptive (semantic) information. On the one hand, if two concepts are highly similar, 

we leverage the concept hierarchy to skip subsequent matching between sub-concepts of 

one concept and super-concepts of the other concept. On the other hand, if two concepts 

are weakly similar, we leverage the locality phenomenon of matching to skip subsequent 

matching between one concept and the neighbors of the other concept. 
The paper is structured as follows: Section 2 discusses large scale matching tech-

niques. Section 3 presents definitions and basic concepts used throughout the paper. 

Section 4 describes our structure-based matching approach. Finally, Section 5 pro-

vides some concluding remarks. 

2 Related work 

According to Shvaiko P and Euzenat J [1] one of the toughest challenges for 

matching system is handling large scale schemas or ontology. Large-scale ontologies 

are a kind of ontologies created to describe complex real world domains.  So, various 

large scale matching techniques are categorized in [2]: 

- The early pruning strategy is to reduce the search space for matching; one match-

er can prune entity pairs whose semantic correspondence value is very low, thus re-
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ducing search space for the subsequent matcher (Quick Ontology Matching algorithm 

(QOM), Eric peukert et al. schema and ontology matching algorithm).  

- The partition strategy is performed in such a way that each partition of first on-

tology is matched with only small subset of the partitions of the second ontology. This 

method reduces the search space and thus better efficiency (Coma++, Falcon-AO, 

Taxomap and Anchor flood). 

- The parallel matching technique has two kinds' inter-matcher and intra-matcher 

parallelization. Inter-matcher parallelization deals with parallel execution of inde-

pendently executable matchers while intra-matcher parallelization deals with internal 

decomposition of individual matchers or matcher parts into several match tasks that 

can be executed in parallel (Gross & al. ontology matching algorithm).  

- Other matching tool: RiMOM and ASMOV ontology matching tools, Agree-

mentmaker schema and ontology matching tool. 

3 Preliminaries 

The following definitions and basic concepts are used throughout the paper:  

Definition 1 (schema graph): A schema graph (directed acyclic graph) of an ontol-

ogy is given by (V,E,Labv), where: V = {r, v2, ..., vn} is a finite set of nodes, each of 

them is uniquely identified by an object identifier (OID), where r is the schema graph 

root node. E = {(vi, vj)|vi, vj ∈ V } is a finite set of edges. Labv is a finite set of node 

labels. These labels are strings for describing the properties of the element and attrib-

ute nodes, such as name and data type. 

Definition 2 (neighbor): A neighbor concept c can be defined as follows: Neigh-

bors(c) = {Sub(c) U Sup(c)} avec Sub(c) = {c'| c' sub-concept c} and Sup(c) = {c'| c' 

sup-concept c}     

Definition 3 (strong-Links): Given two schema graph G=(O1, E, Labv) and 

G'=(O2, E', Labv') of ontologies O1 and O2, the similarity values between ai∈S and 

concepts b1, b2, …, bn in ontology O2 are  Sim (a i)={ sim (ai, bj)∈ G X G' | j=1..n}, 

and the strong-Links of a node ai∈O1 is given by SN(ai)= { bj | sim (ai, bj) ≥ thresold}, 

thresold is a high value in [0..1]. 

Definition 4 (low-Links): Given two schema graph G= (O1, E, Labv) and G'= (O2, 

E', Labv') of ontologies, the similarity values between ai ∈O1 and concepts b1, b2, …, 

bn in ontology O2 are Sim (a i)={ sim (ai, bj) ∈ G X G' | j=1..n}, and the low-Links 

of a node ai∈O1 is given by LN(ai)={bj | sim (ai, bj) < thresold}, thresold is usually a 

small value in [0..1]. 

Through these two last definitions, the matching process can reduce maximum 

times of similarity computation and thus reduce the time complexity significantly. 

4 Structure connected Links 

Our structure-based matching approach is realized by: 
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Step1. This phase is concerned with the representation of heterogeneous ontologies 

as sequence representations. First, each ontology is parsed and represented internally 

as a rooted ordered labeled graph, wherein each graph component (element and/or 

attribute) is represented as a node, while edges are used to represent relationships 

between components. Each node in the schema graph carries the associated element 

properties.  

Step2. Compute preliminary similarities between any two entities for two given on-

tologies based on their descriptive information i.e. generate set of concepts pairs or 

links. It utilizes both structural and linguistic information for initial alignment and 

then applied subsequent similarity propagation strategy to produce more alignments if 

necessary. It main function is to match the heterogeneous ontologies. 

Step3. The first issue is to extract two kinds of virtual sub-graph for highly / weak-

ly similar concepts (links) across ontologies. The second issue is to reduce the search 

space (i.e. Space and time complexity of the matching process), concerning wide-

scale semantic heterogeneity in matching: this phase specifies all the similarity to be 

computed, and among these calculations, several links can be skipped in matching 

process. 

Step4. During matching process, if credible alignments are computed, the corre-

sponding high similarity links are isolated. Such links are to predict the ignorable 

similarity calculations in the remaining matching process. Also if the incredible 

matching results are found, the corresponding negative reduction' Links according to 

the locality of matching are also constructed, and such links to predict the ignorable 

similarity calculations are utilized. The similarity measure between entities from the 

two ontologies is computed by analyzing the literal and structural information in se-

mantic subgraph extract in previous part. 

Step 5. Repeat the two last steps for more alignment. 

To this end, this process aims at providing high quality alignments between con-

cept pairs with a time processing limit reasonable and it not needs to modularize or 

partition the large ontologies. 

Therefore, considering structural information is a natural way for enhancing ontol-

ogy mapping as illustrated by: Given two entities ai from O1 and bj from O2, we first 

apply and compute the similarities between entities based on the similarities of words 

e.g. the string-based and WordNet-based methods: 

String-based method. the similarity measure between words wi and wj is defined 

as:           

simStr(wi,wj) = comm(wi,wj) - diff(wi,wj) + winkler(wi,wj)                          (3) 

where comm(wi,wj) stands for the commonality between wi and wj , diff(wi,wj) for 

the difference between wi and wj , and winkler (wi,wj) for the improvement of the 

result using the method introduced by Winkler in [7]. 

WordNet-based method. We use an electronic lexicon, WordNet, for calculating 

the similarity values between words. The similarity between two words wi and wj is 

measured by using the inverse of the sum length of the shortest paths [6]:  

simWN(wi,wj) =1 /(llength + rlength)                               (4) 
Where llength is the shortest path from word node wi to its common hypernym with word 

node wj and rlength denotes the shortest path from wj to its common hypernym with wi. 
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Instead of matching to all concepts by traversing taxonomies completely, the goal is to 

find Links between ontologies, at this step, it only considers on finding Links from the 

Cartesian product (X) of the two ontologies. These Links, are very important matching 

concepts, are used to reduce the time complexity in matching without exploring other 

commonalities between neighbors from the corresponding Links (initial Links generation). 

The algorithm proposed here generates a set of matching concepts as the initial links (see 

Algorithm1). The function Sim is an aggregated similarity function incorporating name 

and structural similarities (step 2): 

Algorithme 1: 

 

Input: Two ontologies O1,O2 

Output: Neighbor-set 

For each pair (ai,bj)  O1xO2 do 

  Compute sim(ai,aj) 

  If (sim (ai,bj) > 0)  

       then Links        U {(ai,bj)} 

  End 

  Return (Neighbor-set) 

End 

 

Algorithme 2: 

 

Input: Ontology O1, Ontology O2, Links 

Output: Set of Strong-Links 

Links are generated by algorithme1 

Getstrong-Links             ai 

SN         Ø  

For each bj  O2 do 

Compute sim(ai,bj) 

If sim(ai,bj) > threshold  

                       then  SN         U {bj} 

End 

End 

Return Getstrong-Links 

For finding efficient results, two possibly solutions are provided: 

─ If concept A matches concept B, it needs not to calculate the similarity between 

sub-concepts (/super-concepts) of A and super-concepts (/sub-concepts) of B, thus 

we can reduce the total times of similarity calculations.  

─ If A does not match B, it is very possible that their neighbors also do not match 

each other that imply we can ignore many similarity calculations. 

Obviously, it needs to discover the high-Links and the low-Links dynamically in 

matching, and then uses these Links to optimize similarity calculations. For 

SN(ai)={b1, b2,…,bn} , the strong-Links set RSN (ai) is calculated by: 

                   
k 

RSN (ai)= j=1 RSN (ai|bj)=[sub(ai)Xsup(lub(b1,…, bk))] U [sup(ai)Xsub(glb(b1,…, bk))] 

                 

With lub(b1,…, bk) and glb(b1,…, bk) are the least upper bound and the greatest lower 

bound for (b1,…, bk). Apparently, the total strong-Links sets during the matching 

process is RSN = U RSN (ai) i=1,n (see Algorithm2 & 3): 

Algorithme 3: 

Input: Ontology O1, Ontology O2, Strong-Links 

Output: total strong-Links sets 

 StrongLinks are generated by algorithme2 

 Matchedset            strong-Links (ai) 

 Generates the neighbors of ai         {sub(ai) | sup(aj)} 

For each bj  SN 

Generates the neighbors of bj          {sub(bj) | sup(bj)} 
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RSN             U {[sub(ai) X sup(lub(b1,…, bk))] U [sup(ai) X sub(glb(b1,…, bk))] }    

     End 

     Return   Matchedset   

5 Conclusion  

First of all, the analysis in the existing matching systems depicts that there is al-

ways a tradeoff between effectiveness and efficiency. The main goal of this paper is 

to deal with wide-scale semantic heterogeneity in large scale ontology matching. For 

this purpose, we focus on reducing complexity, concerning wide-scale semantic het-

erogeneity in space matching. To accomplish this, we propose to skip subsequent 

matching between sub-concepts of one concept and super-concepts of the other con-

cept (of shortcuts) of ontologies as input. However, it may be asked if this solution 

is quite adapted to find the most correct mappings between two concepts and the off-

line discovering mappings from different ontologies. As a future work, we aim at 

answering these questions. 
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