

Proceedings ICWIT 2012 40

Building Semantic Mashup

Abdelhamid Malki, Sidi Mohammed Benslimane

 EEDIS Laboratory , University of Djilali Liabes , Sidi Bel Abbes, Algérie
 abdelhamid.malki@gmail,Benslimane@univ-sba.dz

Abstract. Mashups allowed a significant advance in the automation of interac-
tions between applications and Web resources. In particular, the combination of
Web APIs is seen as a strength, which can meet the complex needs by combin-
ing the functionality and data from multiple services within a single Mashup
application. Automating the process of building Mashup based mainly on the
Semantics Web APIs facilitate to the developer their selection and matching. In
this paper, we propose SAWADL (Semantic Annotation for Web Application
Description Language), an extension of the WADL language that allows the
semantization of the REST Web Service. We introduce a reference architecture
with five layers representing the main functional blocks for annotating and
combining web APIs, and therefore make the engineering process of Mashup
applications more agile and more flexible.

Keywords: Semantic Mashup, Matching, API, SOAP, REST, SAWADL,
SAWSDL.

1 Introduction

Dynamics, agility and efficiency are concepts of the future. The World Wide Web
is undergoing an evolution from a static environment to a dynamic world in which
mashups will play a central role. The Mashups are web applications developed by the
combination of data, business logic, and/or user interfaces of web sources published
and reused via APIs [8]. Thus, Mashups are designed to reduce the cost and develop-
ment time of web applications.

Despite these advantages, engineering of Mashups applications requires the inter-
vention of the developer which needs not only programming skills but also to under-
stand the structure and semantics of APIs that wants to integrate. Currently, several
tools Mashup (e.g. IBM WebSphere1, Yahoo-pipes2, etc.) are used by end-users (i.e.
with less programming skills) to facilitate the building of Mashup applications. How-
ever, the intervention of the professional developer is required when the application
Mashup is complex, thing that has prompted researchers to find effective solutions for
creating Mashups, So that end users can build an application with a tool Mashup that
guarantees the discovery, selection, and automatic or dynamic superposition of APIs

1http://www-01.ibm.com/software/webservers/
2http://pipes.yahoo.com/pipes/

Proceedings ICWIT 2012 41

based on the semantic approach, the so-called ‘‘Semantic Mashups’’. The semantic
Mashups is a Mashup whose combined APIs are supported (or annotated) by a seman-
tic layer that allows to select and compose them in an automatic way (unambiguous).

We propose in this work SAWADL, a novel language for the semantization of
REST web services [1]. SAWADL uses WADL3 description to enrich RESTful APIs
with a semantic layer that allows the discovery and automatic superposition of APIs
in order to automatically build Mashup applications. SAWADL is more flexible and
adaptive with respect to other approaches of semantization such as SAWSDL [2]
which is used to annotate the WSDL4 description of SOAP web services with onto-
logical concepts.

The rest of the paper is organized as follows. Section 2 presents briefly the seman-
tic Mashup, and presents some related work for the semantization of REST web ser-
vices. In Section 3, we introduce SAWADL, a semantic annotation language for
REST APIs. Our approach to build Semantic Mashup is described in Section 4. Final-
ly we conclude and give some perspectives in Section 5.

2 Related Works

 Web services enable applications to call remote procedures and to exchange data
by passing well-defined messages. This can easily be used for Mashup application as
a way to orchestrate different web applications. For instance, Amazon Web Service5
allows users to access most of the features of Amazon.com by using SOAP-based
web services and REST-based web services. The semantic Mashup is Mashup whose
combined APIs are annotated by a semantic layer that allows to select and compose
them in an automatic way. In order to build an automatic Mashup, it is necessary to
semanticize these APIs.
 For SOAP-based Web services there are two types of semantization approaches.
The first (service ontology) consists of developing a complete language that describes
Web services and their semantics in a single block (e.g. OWL-S, WSMO, etc.). The
second approach (semantic annotation) consists of annotating existing web services
with semantic information. WSDL-S, SAWSDL used to manually annotate a WSDL
description with elements referring to ontologies.
 As SOAP-based Web services, semantic REST-based Web services can be
classified in two approaches. The first approach consists of developing an ontology
that describes the REST-based Web services and their semantics in a single block.
The second approach consists of annotating existing languages with semantic infor-
mation. In the following, we present different propositions for the second approach.

• SOOWL-S advertisements (a social-oriented version of OWL-S advertisements)
The SOOWL-S advertisements [6] proposes an extension of the OWL-S ontology in
order to semanticizes the different types of APIs (e.g. SOAP, REST, JS, RSS, etc.)
used in the construction of Mashup applications.

SOOWL-S ontology annotates just the I/O parameters and non-functional proper-
ties of a Web service (using the service-Profile module of the OWL-S ontology).

3 http://www.w3.org/Submission/wadl/
4 http://www.w3.org/TR/wsdl
5http://aws.amazon.com/

Proceedings ICWIT 2012 42

Thus, SOOWL-S ontology allows searching and automatic selection of APIs, but
not their combination owing to the absence of the extension of service-Model
module of the ontology OWL-S.

• SA-REST(semantic annotation for REST)
According to J. Lathem [4], most of RESTful web services use HTML pages to de-
scribe to users what the service does and how to invoke it. However, HTML is de-
signed to be human legible but not machine readable. In order to solve this prob-
lem, [4] have used the RDFa micro formats10 which allows the integration of RDF
triples above HTML description in order to add semantics to REST service and
make it visible and interpretable by the machine.

• SWEET (Semantic Web Services Editing Tool)
Maleshkova et al [5] propose an integrated approach to formally describe the se-
mantics of RESTful web services. The approach enables both the creation of ma-
chine-readable RESTful service descriptions using the hRESTS (HTML for REST-
ful Services) Microformat [3], and the addition of semantic annotations by the
MicroWSMO Microformat6, in order to better support discovering services, creat-
ing mashups, and invoking them.

Table 1. shows a comparison between the different approaches of semantics REST
web services.

Table 1. Comparison between the different approaches of semantics REST Web services

 SOOWL-S SA-REST SWEET
Type of semantization Service Ontology Annotation Annotation
Publication of services + - +/-
Discovery of services + + +
Combinaton of services - + +
Annotated description Absent, is a Service Ontology HTML HREST
Type of accepted ontology Owl All All
Type of API semantized SOAP, REST, RSS REST REST

3 SAWADL

In this section we propose an annotation language that allows the semantization of
RESTful web services to strengthen the selection and superposition of these services
in Mashups applications.
SAWADL, the extension of WADL language that we propose is part of those ap-
proaches that add semantic annotations above the service description while most ap-
proaches are based on a semantic annotation above a description based on HTML
which gives less homogeneity between semanticized REST web services. SAWADL
does not specify a language for representation of semantic models. Rather, it provides
mechanisms for referencing ontological concepts defined in the external of WADL
document.

6 http://www.w3.org/TR/rdfa-syntax/

Proceedings ICWIT 2012 43

The methods of annotation in SAWADL are summarized in two mechanisms:
modelReference and SchemesMapping. This is done by the attribute "sawadl"
followed by the appropriate extension.

ModelReference attribute used to associate a WADL's component to a concept
of a semantic model. The items annotated a REST web service described by WADL
description are the methods (<method id="method1" name="GET">) and param-
eters of input / output (<param name = "name" type="xsdtype"/>) of the
service. The semantic concept (ontological) associated to elements of WADL through
the modelReference attribute is represented by zero or more URLs separated by
spaces, which are references to ontological concepts.

 The mechanism of schemesMapping is achieved through two other attributes
liftingSchemesMapping and loweringSchemesMapping. These attributes are
used to specify the mappings between semantic data and WADL elements. The mech-
anism of schemaMapping is very interesting to understand. In fact, we employ the
loweringSchemesMapping attribute when an element annotated in the WADL
description matches more than one ontological concepts, and the URIs of the
loweringSchemesMapping attribute point to files containing SPARQL7 queries and
XSLT8 transformations. While we use liftingSchemesMapping when several
elements annotated in the WADL description represent a single ontological concept,
and URIs can point to files that contain XQuery9 queries or XSLT transformations.

3.1 Annotation of methods

SAWADL provides mechanisms to annotate methods in a WADL documents. To
illustrate these mechanisms, we use a domain ontology of tourism TravelOnto
(which we implemented in OWL) to annotate the BookFlight operation of Flight
API. Although traditionally the inputs and outputs provide an intuitive semantics of
an operation, a simple semantic annotation can be helpful. Thus we will annotate the
BookFlight operation by associating through the modelReference attribute with a
BookFlight concept in the TravelOnto ontology (Figure.1).

3.2 Annotation of Inputs/Outputs parameters

In SAWADL, the Input/Output parameters annotation is done in two different ways:

Internal Annotation. This annotation consists in associating each parameter in-
put/output “<param…>”of a method to a concept in an ontology. This supposes that
for each parameter input/output of a method there exist a corresponding concept in the
ontology. For example, the input of the operation BookFlight is composed of name
and age of the passenger, and the number and class of Flight. We suppose that for
each attribute, there exists a concept that corresponds to it in the TravelOnto ontol-
ogy. In the case where there is no match, the semantics of the input/output parameters
is not specified. Figure 2 show an example of internal annotation.

7 http://www.w3.org/TR/rdf-sparql-query/
8 http://www.w3.org/TR/xslt
9 http://www.w3.org/TR/xquery

Proceedings ICWIT 2012 44

 Fig. 1. Annotation of methods with SAWADL

1 <resources base=" http://localhost/ApiRest/Flight ">
2 <method id="BookFlight" name="GET">

3 <request>

4 <param name="la_name" type="xsd:string" sawadl:modelReference=”TravelOnto#LastName"/>

5 <param name="fi_name" type="xsd:string" sawadl:modelReference="TravelOnto#FirstName"/>

6 <param name="Age" type="xsd:int" sawadl:modelReference=”TravelOnto#Age"/>

7 <param name="NFlight" type="xsd:string" sawadl:modelReference=” TravelOnto#Flight" />

8 <param name="Class" type="xsd:String" sawadl:modelReference=”TravelOnto#ClassType"/>

9 </request>…

Fig. 2. Internal Annotation

External Annotation. In this case, the parameters are annotated globally via the
tag ‘‘<request>’’, however, it must create a schémaMaping for specifying the trans-
formation rules between the input’s/output’s parameters and the domain ontology.

As an illustration, we take the example of credit card defines in WADL and the
OWL ontology TravelOnto (see Figure 3). In this ontology there is no individual
correspondence for the two attributes last_name and first_name. However, the
Owner concept of ontology is the merger of these two attributes. To establish the
correspondence between the inputs of the credit card API and CreditCard con-
cept, it must first associate using sawadl:modleReference and then define a trans-
formation scheme using an XSL style sheet via the attribute
sawadl:liftingSchemaMapping (see Figure 4).

1 <resources base="http://localhost/ApiRest/Billet">

2 <method id="buyBilletOp " name="GET">

3 <request sawadl:modelReference=TravelOnto#CreditCard"

4 sawadl:liftingSchemaMapping=http://localhost/Mapping.xsl/>

6 <param name="La_name" type="xsd:string"/>

7 <param name="Fi_name" type="xsd:string/>

8 <param name="Number" type="xsd:int"/>

9 <param name="Type" type="xsd:string"/>

10<param name="ExpirDate" type="xsd:date"/>

 Fig. 3. External Annotation

1 <resources base="http://localhost/ApiRest/Flight">

2 <method id="BookFlight" name="GET"

3 sawadl:modelReference=TravelOnto#BookFlight">

4 <request>

5 <param name="la_Name" type="xsd:string"/>

6 <param name="fi_name" type="xsd:string"/>

7 <param name="Age" type="xsd:int"/>……

Proceedings ICWIT 2012 45

<xsl:transform version="2.0"

 xmlns:Travel=http://localhost/ApiRest/Billet# xmlns:TravelOnto="http://localhost/TavelOnto#>

 <xsl:output method="xml" version="1.0" encoding="iso-8859-1" indent="yes"/>

 <xsl:template match="/">

 <rdf:RDF>

 <TravelOnto:CreditCard>

 <hasOwner rdf:resource="#Owner">

 <xsl:value-of select="concat(Travel:./param[@name='La_name'],Travel:./param[@name='fi_name'])"/>

 </hasOwner>

 <hasCardNumber rdf:datatype="xs:Int"><xsl:value-of select="Travel:./param[@name='Number']">

 </hasCardNumber>

 <hasType rdf:datatype="xs:string"> <xsl:value-of select="Travel:./param[@name='Type']">

 </hasType>

 <hasExpritionDate rdf:datatype="xs:Date"> <xsl:value-of select="Travel:./param[@name='ExpirDate']">

 </hasExpritiondate>

 </TravelOnto:CreditCard>

 </rdf:RDF>

 </xsl:template>

</xsl:transform>

Fig.4. XSL style sheet via the attribute sawadl: lifting Schema Mapping

4 Building semantic Mashup

The construction of automatic Mashups necessarily requires a semantic layer on
top of APIs (web services). As the dynamic composition of standard web services, the
semantic Mashup allows a more rapid development and transparent composition to
the user. But unlike to that of traditional web services, the Mashups are composed of
APIs of different nature which makes their combination process more difficult.

Figure 5 shows reference architecture for Semantic Mashup. This architecture con-
sists of five layers. The layers represent the main functional blocks for automatic
generation of Mashup. The ontology is used to enrich the engineering process by a
semantic layer that allows him an automatic selection and a combination of APIs
included in the Mashup application.

Proceedings ICWIT 2012 46

Fig. 5. Reference architecture of a Semantic Mashup .

4.1 API Layer:

 At this level several types of APIs are concerned. In particular APIs based on
SOAP and RESTful which are the most widely used in engineering applications
Mashups.

4.2 Description Layer:

 At this layer, WADL and WSDL languages are used respectively to describe
SOAP and REST APIs.

4.3 Annotation Layer:

 In addition to the SAWADL language that we propose in this paper, several lan-
guages of web services annotation are considered at this level. In particular,
SAWSDL which is used to semanticize SOAP-based web services by annotating the
input/output of WSDL file with ontological concepts. This layer will be used in the
automatic construction of Mashups, by allowing discovery, selection and combination
of unambiguous way of the various APIs.

4.4 Matching Layer:

 The heterogeneities between different annotation languages are resolved at this
layer. In the following, we propose four rules to match SAWSDL and SAWADL
annotation languages.

Proceedings ICWIT 2012 47

Rules1. A method described by the tag "<method>" of a resource or a sub-
resource "<resource>" of a SAWADL file corresponds to an operation described by
the tag "<operation>" of a SAWSDL file.

Rules2. An input described by the tag "<param>" for a set of inputs "<request>"
of a SAWADL file corresponds to an entry described in the web service’s XML
schema by the tag "<element> " of a "<complexType>" of an operation's Input
described in SAWSDL file.

Rules3. An output described by the tag "<response>" of a SAWADL file corre-
sponds to an output described in the web service’s XML schema by the tag "<ele-
ment>" of a "<complexType>" of an operation’s output described in SAWSDL file.

Rules4. The "modelReference", "liftingSchemaMapping",
"loweringSchemaMappin" attributes of a SAWADL file correspond to the
"modelReference", "liftingSchemaMapping", "loweringSchemaMapping"
attributes of a SAWSDL file.
 Correspondences between APIs are established based on of semantic similarity [7]
which allows calculating a distance between the ontological concepts of Input/Output.
This distance will be compared with a predefined threshold in order to know if an API
could be combined with another or not.

 The matching score between a pair of matching services ࡿ and ࢚࢛ࡿ is calculated
using the following formula:

,ࡿሺࢎࢉ࢚ࢇࡹ ሻ࢚࢛ࡿ ൌ כ ࢎ כ ∑ ሺ െ ,ሺ࢚࢙ࢊ ሻ
 ሻ /ሺ ࢚࢛ሻ

Where is the number of query attributes of the service ࡿ And ࢚࢛ is the
number of annotated attributes present in service ࢎ ,࢚࢛ࡿ is the number of annotated
attributes of services ࢚࢛ࡿ that have been matched out of , and finally ࢚࢙ࢊሺ, ሻ
is the ontological distance score between the jth term in service ࢚࢛ࡿ and a correspond-
ing query term.

4.5 Mashup Layer

 At this layer, an application mashup is really created based on the results obtained by
matching layer. The Mashup layer integrates APIs that have a matching value greater
than or equal to a threshold predefined by domain experts. The combination of APIs
can be made using different technologies (e.g. Ajax, PHP, JSP, etc.).

5 Conclusion and perspective

 The Mashups are web applications developed by combining data, business process-
es, and/or user interfaces of web sources published and reused via APIs. Thus,
Mashups aimed at reducing the cost and development time of web applications. How-
ever in order to address the shortcomings of existing languages and protocols estab-
lished by the IT community, we saw that the work related to engineering the Mashups
applications are particularly oriented towards the semantic level.

Proceedings ICWIT 2012 48

The aim through the use of semantics is to enable machines to interpret the pro-
cessed data and seize their significance in an automatic way in order to automate the
selection and combination of APIs used to build the Mashup application.

Many languages and semantic annotations have been proposed for the semantic de-
scription of RESTful APIs. However, they did not give a great success and are not
simple to implement. For example, SA-REST and SWEET approaches require an
HTML web page that describes the API and that will be later transformed into a ma-
chine readable description to add semantic annotations. One thing that is not always
true and that makes it more difficult especially if the REST API does not have a web
page that describes it. In order to respond to these problems, that we conducted our
research. Our work focuses on the semantics, and more particularly towards a pro-
posal for an annotation language for semantic REST Web services. Our language
SAWADL is one of the approaches that add semantic annotations on top of the ser-
vice description. Unlike approaches that annotate on top of an HTML description, we
use the WADL description which is used to describe syntactically REST web ser-
vices. Semantization APIs is not sufficient to design and implement an automatic
Mashup. Thus a process of matching is necessary to find correspondences between
the different APIs, and to discover automatically the Mashable components followed
the needs of users.

Finally, several perspectives can be considered in order to contribute more to the
agility and flexibility of the semantic Mashup building. We cite as an examples:
• The Semantization of other Web APIs such as javascript or RSS / ATOM that rep-

resent Mashable components widely used in the development of Mashups. Howev-
er, the absence of a structured and modular description of these APIs makes this
task a big challenge.

• The use of ontological resource and service like OWL-S and WSMO.
• The use of the semantic approach in the construction of process-oriented enterprise

Mashups that allows a user to automate her tasks.

REFERENCES

[1] R.Fielding, Architectural Styles and the Design of Network-based Software Architectures,
PhD thesis, University of California, 2000.

[2] J.Kopecký, T.Vitvar, C.Bournez, J.Farrell: SAWSDL: Semantic Annotations for WSDL and
XML Schema, IEEE Internet Computing, vol. 11, no. 6, pp. 60–70, November-December
2007.

[3] J.Kopecky , K.Gomadam, T.Vitvar: hRESTS: an HTML Microformat for Describing REST-
ful Web Services , Proceedings of the 2008 IEEE/WIC/ACM Inter-national Conference on
Web Intelligence (WI-08), 2008.

[4] J.Lathem, K.Gomadam, P. Sheth; SA-REST and (S)mashups Adding Semantics to RESTful
Services , Proceedings of the First IEEE International Conference on Semantic Computing
(ICSC 2007), September 17-19, 2007, Irvine, California, USA. IEEE Computer Society
2007.

Proceedings ICWIT 2012 49

[5] M.Maleshkova, C.Pedrinaci, J.Domingue, Supporting the Creation of Semantic RESTful
Service Descriptions, 2009, In: 8th International Semantic Web Conference (ISWC 2009),
25-29 Oct 2009, Washington D.C., USA.

[6] G.Meditskos, N. Bassiliades , A combinatory framework of Web 2.0 mashup tools, OWL-S
and UDDI, Expert Systems with Applications, vol. 38, no. 6, pp. 6657–6668,June 2011.

[7]H.Ngu Anne, P.Carlson Michael, Z.Quan Sheng. Semantic-based Mashup of Composite
Applications, IEEE Internet Computing, vol. 3, no. 1, pp. 2–15,January-March 2010.

[8] J.Yu, B.Benatallah, F.Casati, F.Daniel. Understanding Mashup Development and its Differ-
ences with Traditional Integration, , IEEE Internet Computing, vol. 12, no. 5, pp. 44–
52,September-October 2008.

