An approximation approach for semantic queries of naive
users by a new query language

Ala Djeddai, Hassina Seridi-Bouchelaghem and Med Tarek Khadir
LABGED Laboratory, University Badji Mokhtar Annaba, Po-Box 12, 23000, Algeria

{djeddai, seridi, khadir}elabged.net

Abstract. This paper focuses on querying semi structured data such as RDF da-
ta, using a proposed query language for the non-expert user, in the context of a
lack knowledge structure. This language is inspired from the semantic regular
path queries. The problem appears when the user specifies concepts that are not
in the structure, as approximation approaches, operations based on query modi-
fications and concepts hierarchies only are not able to find valuable solutions.
Indeed, these approaches discard concepts that may have common meaning,
therefore for a better approximation; the approach must better understand the
user in order to obtain relevant answers. Starting from this, an approximation
approach using a new query language, based on similarity meaning obtained
from WordNet is proposed. A new similarity measure is then defined and calcu-
lated from the concepts synonyms in WordNet, the measure is then used in eve-
ry step of the approach for helping to find relations between graph nodes and
user concepts. The new proposed similarity can be used for enhancing the pre-
vious approximate approaches. The approach starts by constructing a graph pat-
tern (GP) from the query and finalized by outputting a set of approximate graph
patterns containing the results ranked in decreasing order of the approximation
value level.

Keywords. Graph matching, RDF, Naive user, Graph pattern, Semantic Que-
ries, Regular Path Queries, Approximation, Similarity, Ranking and WordNet

1 Introduction

In recent years, the amount of information on the web grows increasingly and the
classic information retrieval is not able to find the answer which satisfies the user
queries, therefore, the semantic search may be a proposed solution for such situations.
Most users have not much knowledge about the querying language in the semantic
web, they are not aware of target knowledge base; so the user query does not match
necessary the data structure. It is very hard and difficult to understand intend of naive
users.

In this paper we propose an approach for answering a new query language in-
spired from the conjunctive regular path queries [1], the user query is transformed to a
graph pattern. We use a new method to calculate the approximation level between the
paths of the graph data and the query paths; approximation is enhanced using the

Proceedings ICWIT 2012 50

WordNet database so the method is based on a proposed meaning similarity between
concepts from WordNet

We consider the problem of querying the semi-structured data such RDF data
which is modeled by a graph G = (V,E) and an ontology 0 = (Vo, Eo). Where each
node in V is labeled with a constant and each edge e is labeled with a label drawn
from a finite set of symbols S, V contains nodes representing entity classes or instanc-
es or data values (values of properties), the blank nodes are not considered, the edges
between the class nodes and the instance nodes is labeled by ‘type’, E represents the
relations between the nodes in V,V c Vo and E c Eo.

Users specify their request by a proposed language inspired from the conjunctive
regular path queries CRP which have the next format:

Q : q(X1..Xn):- (Y1R1Z1),..,(YnRnZn))

e Each Yi or Zi is a variable or a constant. The variable is specified by? , we make a
simple modification to the constants for specifying the choices so the user is able to
specify constants which are not necessarily appearing in G and he is able to use
many constants by using the symbol ‘|‘so Yi or Zi is a variable or a constant or ex-
pression (in our approach).

e Regular path expressions {R1,...,Rn}, which are defined by the grammar:

R: = 4&la|_|L|(RLR2)|(R1|R2)|R *, 2)

Where ¢ is the empty string, “a” is a label constant, “ > denotes any label and L is a
label variable.

e X1 ..Xn are head variables and the result is returned in these variables.

In this paper, for helping the naive users, we propose a new simple query lan-
guage, we focus on the regular expression which has a simple format (using only the
.’ and the ‘|”), the query Q1 is an example of the proposed language, We construct
from the user query a graph patterns GP for finding a set of sub graphs in G (approx-
imate graph patterns) whose nodes matches the nodes in GP and its paths have a level

of approximation to the paths in GP.

Examplel. We assume that a user writes a query Q1 for finding the publications and
the authors in ‘California’ university or ‘Harvard’ university in the ‘ESWC
2012’conference:
(?pub,? author) : — (?pub,writer,? author),

(? author, his_univ.name|location , Calif ornia|Harvard),

(? pub, conf.name, ESWC2012).
Figure 1 shows a GP constructed from Q1, the separate points between symbols rep-
resented by non-labeled nodes, the query paths 1 2 3 correspond to user paths 1 2 3
of Q1. The variable nodes are specified with ‘?” to indicate that only these nodes are
shown in the answer. In our work, the answers for the query is a set of approximated
graph patterns ranked in order of decreasing the approximation level value, every one
contains nodes that correspond to the user variables, the paths in every approximate
graph pattern are an approximation of the paths in GP (every path in GP is corre-
sponding to a single conjuncts query [4]). We use the graph patterns as answers, for

Proceedings ICWIT 2012 51

giving to the user the ability to explore the results for more information about the
result nodes.

Fig.1. A graph pattern GP constructed from Q1

In section 2 related works are discussed and Section 3 presents WordNet and the
new proposed similarity meaning. In section 4 the approximation approach is detailed.
Section 5 is dedicated to the approach implementation and experimentation, whereas
the conclusion and future works are presented in section 6.

2 Related works

Many approaches, methods and query language are proposed for the search in the
semantic web search, and may be classified as follows:

1. Approaches consider structured query languages, such as: Corese [9], Swoogle [11]
and ONTOSEARCH?2 [4].

2. Approaches for naive users, these approaches can themselves be divided into:

v Keyword-based approaches, such as QUICK [8], where queries consist of lists of
keywords;

v’ Natural-language approaches, where users can express queries using natural lan-
guage, such that PowerAqua [10].

In this work we are interested by using the regular path queries with simple regu-
lar expression, this helps the naive users to use the query language as they are able to
write simple regular expression. Our approach combines the two previously cited
classes, so the naive user queries the system using simple structure and the user con-
stants are seen as keywords. Many works are proposed for the approximation such as
[1] and [2], where the approximation is applied to the conjuncts queries. The
ISPARQL [3] is a similarity based approach which added the notion of similarity to
SPARQL queries, where another technique in [7] calculates the approximate answer
from RDF graph using an evolutionary algorithm. Despite their efficiency, the ap-
proaches discard the user influence and opinion. The obtained results do not, there-
fore, often satisfy the latter. In addition to the above approaches, our work propose a
new query language inspired from conjunctive queries, using a technique for the ap-
proximation based on meaning similarity from WordNet for a better understanding of
the user query as well as finding the correspondences between its concepts and the
graph data. The answers are a set of approximate graph patterns ranked in decreasing

Proceedings ICWIT 2012 52

order approximation level so the user can explore these results in order to acquire
more knowledge.

3 Using WordNet

WordNet [5] is a lexical resource for the English language; it groups terms (name,
verbs, adjectives etc.) in sets of synonyms called Synsets. Approaches based on char-
acters strings become insufficient when concepts are systematically close to each
other and when their names are different (example: « car » and « automobile »), the
interrogation of a linguistic resource such as WordNet may indicates that two con-
cepts are similar . For the calculation of the linguistic similarity, the function Syn(c)
calculates the set of WordNet Synsets related to the concept c.

3.1 Definition of a new WordNet Meaning Similarity

In this section we define a new WordNet meaning similarity, this measure is used in
the process of discovering the nodes mapping from the user query and graph data.
LetS_com = Syn(c1) n Syn(c2) the set of common senses between c1 and c2 to be
compared, the cardinality of S_com is : & (S_com) = |Syn(c1) n Syn(c2)| , we use
the following measure:

Let min(|Syn(c1)|, | Syn(c2)|) be the minimum cardinality between the two sets
Syn(cl) and Syn(c2) for the concept cl and c2 respectively, thus our similarity meas-
ure is constructed from analyzing of the next metric [7]:

A (S_com)
min(|Syn(c1)],| Syn(c2)|)

Sim1(c1,c2) = 3)
This metric based on common senses of ¢l and ¢2, it return 1.0 if ¢1 is synonym of c2
but if the set of senses for c1 (or ¢2) are including in the set of senses of ¢2 (or ¢1) so
this metric return again 1.0, for example the concept “machine” has 8 senses and

“motorcar” have 1 sense (included in the 8 sense of “machine”), utilizing this metric:
1

Sim1(machine, motocar) = — i % =1, so “machine” is the synonym of “motor-
car” but this is wrong because “machine” is the generalization of “motorcar”, so from
this idea we propose the next new measure which is based on the different senses
between two concepts:

Let S_dif = ((Syn(c1) U Syn(c2)) - (Syn(cl) n Syn(c2)): the set of different senses
between cl and c2, so S_Dif = union — intersection. |S_dif| =|(Syn(c1) U Syn(c2)) | —

|(Syn(c1) n Syn(c2)) |, the set of union is defined as: U = Syn(c1) U Syn(c2), our met-

ric is:
Sim2 (Cl. CZ) =1— |differe1tLt senses| =1— |lunion \—Iin?ersectiunl (4)
[union| [union|
Sim2(cl,¢2) =1 — |5[5lifl —1_lu \—l\Sl;lcomI 5)

If Syn(c1) = Syn(c2) (no different senses cl is synonym of ¢2) then Sim2(c1,c2) =

7
1 — 0 = 1. Sim2(machine, motorcar) = 1 — 5= 1 - 0.87 = 0.13 (7 common senses).

Proceedings ICWIT 2012 53

In this paper we use the next measure which takes advantage of Sim1 (common sens-
es) and Sim?2 (deferent senses):

Sim_senses(c1,¢2) = ul * Sim1 4 U2 * Sim2 (6)

where, ul and u2 are the widths associated to Siml and Sim2 respectively, ul =
0.5,u2 = 0.5 by default i.e. same importance, we adjust uland U2 according the
preference of the user.

Example 2.Table 1 shows values of similarity for some pair of concepts. We cannot
find a significant similarity between these concepts if we use a metric based on syntax
only, the Levenshtein similarity indicates that “house” and “mouse” are similar but
this is wrong, this highlights the importance of the proposed measure as it is used to
find relationships between terms of the semantic regular path queries and the nodes of
the graph data.

Conceptl | Concept2 Siml | Sim2 | Sim_sense | Levenshtein
Car Automobile | 0.5 0.16 0.33 0.0

Location | Placement | 0.33 0.16 0.245 0.22

House mouse 0.0 0.0 0.0 0.86

Table 1. Some similarity values calculated using Sim_sense and Levenshtein

4 Approximating the naive user queries

We start by defining the problem that is: how to satisfy the user in case if he specifies
concepts that do not exist in the graph data? This is a big difficulty, as the approxima-
tion is the solutions for finding results and approximating the user query. However, it
must take into account the concept meaning, this is the goal of the new proposed query
language and the meaning similarity. This helps to better understand the user and helps
the discovery a set of concepts in the structure which are relevant to user concepts in
order to begin the process of exploration and finding the responses for the variables.

The proposed approach may be divided in three steps:

1- Discovering nodes which correspond to discovering user concepts in GP.

2- Finding for every query path its approximate paths in the graph data.

3- Generation of the results which are a set of approximate graph patterns with its
approximation level value, these graph patterns contain the nodes results corre-
sponding to the projection of the user variables.

The procedure is based on the following objectives:

v Giving to ability to the naive user to take advantage from the power of semantic
search, in this case we let him specify his needs by writing simple regular paths.

v Understanding the naive user query by finding relationships between the user paths
and the knowledge base (RDF graph). Most user concepts do not appear in the
structure, for this reason, we propose a new query language and a meaning similari-
ty leading to a better understanding of the user needs on one hand and discovering
the correspondences between the query concepts and the graph nodes on the other
hand. The user, however, still plays an important role in the query answer para-
digm.

v' The outputted answer must be understandable for the user and it should be simple.

Proceedings ICWIT 2012 54

We make clear the procedures have been omitted, in the rest of the paper, because of
pages limitation; we cannot describe the approach in detail so only the main steps are
mentioned.

4.1 Mapping from Nodes in GP to Nodes in G

The mapping process is necessary to find the correspondences of the nodes in GP
(variables and constants in the conjuncts query); these nodes are used for finding the
set of the approximate paths in G. Because the user have lack knowledge of the graph
data structure so he is able to use concepts not necessarily appearing in the graph and
the process of mapping is important for discovering the nodes matches these concepts
using WordNet. In order to enhance the matching we use a similarity metrics based on
syntax (characters strings) (like: Levenshtein, NGram, JaroWinkler) and our meaning
similarity (using the WordNet ontology) for discovering the senses (the meaning)
commons between the concepts.

Definition 1. Two concepts c1 € GP, c2 € Gare similar if Sim_senses(cl,c2) >
T (WordNet similarity), T is predefined threshold, if Sim_senses(c1,c2) = 0 then we
test sim_synt(cl,c2) > T, the values of Sim_senses,Sim_synt and T is defined in
[0,1].
Sim_senses and Sim_synt (any syntax similarity) use the labels of nodes and edges.
In the rest of the paper we usesim(cl,c2) for the value returned
by Sim_senses or Sim_synt.

For finding the sets of node mapping the procedure get_nd_map returns for every
node ni" € GP(i € {1,2} i.e. the first or the last node in the query path QP;), the set

NdM apij contains the nodes in G which are similar to n{ using its label by the similari-
ty based senses (or based syntax), in addition this procedure use a strategy for discov-
ering another nodes in G from the first and last edge in the query path QP; .

4.2 Computing the Approximate Paths

In this section we introduce the notion of approximation level between two paths and
describe the method for calculating its valuesapx_lev, this section is for the computa-
tion of the approximate paths from G, the finale answers (approximate graph patterns)
are calculated in the next sub section. This calculation is started after the generation of

the set of nodes mapping NdMapij for every node n] € QP; .The procedure

get_apx_paths take as input a query path QP; and outputting the set of tuples answer

tup_ans; ,every tuple (V,V,,p, apx_lev) containing two node : V; is first node in the

approximate path p, V, is the last node and ap_lev is the value of the approximate

level between QP; and p, the sets of tuples answer are used for constructing the ap-

proximate graph patterns for GP.

We consider the next points in the calculation process of apx_lev :

e The number of edges in p similar to the edges in QP; (similarity # 1), each simi-
lar edge in p is a non-direct substitution for its corresponding edge in QP; so we
added the value of substitution to apx_lev .

Proceedings ICWIT 2012 55

e The number of additional edges in p (cost_ad), not appearing in QP; , each addi-
tional edge in p is an insertion.

e We also take into account the two values: similarity value between the first node
in p and the first in QP;, similarity value between the last node in p and the last
in QP;.

e The order of edges in the query path QP; for respecting the preference of the user.
Our approach considers common and similar edges, therefore common edges are

not associated to a value of ‘0’ but ‘1°, as well as the similarity values for similar

edges. Before starting the process of finding the approximate local answer, the proce-
dure get_apx_paths generates the set of all paths ApxPths; from the two sets of nodes
mapping NdMap] and NdMap),.

Definition 2. Let p a path in G, QP a query pathin GP , p is an approximate path for
QP if the value of the approximation level between p and QP is higher than T_apx (
predefined threshold of approximation), T_apx € [0,1].

The procedure get_apx_path use the similarity obtained between two nodes v,
and v,,v1€ QP;, v, € pathp .If v, is labeled with more than one term by the symbol ’[*
so all terms are compared to the label of v,and only one value of similarity is returned
1.e. the MAXvalue.

Example 3. Figure 2 shows the computation of the approximation level apx_lev for the
paths P € G and P’ € G for the query path QP;. For QP; € GP : the first node nj is
labeled with the variable ‘?pub’ and has the set of nodes mapping NdMap3 = {publi-
cation, publ, pub2}, the last node is labeled with constant ‘ESWC2012’ and has the
set of nodes mapping NdMap; = {ESWC2012, ISWC2012}.The similar edges by
discontinued line, additional edges by double line, first and last nodes by the dark
circle; the values of similarity between edges and nodes are in italic,). The common
edges are represented by single continued line. In the path P, number of similar or
common edges is 2 (with two values of similarity: 0.95, 1), 1 = sim(? pub, pub2) =
0.90, sim2 = sim(ESW (2012, ESW(2012) = 1, the approximate level associated with
Pis:

_ Y valsimilarity __ _Costaq . .
apx_lev = (nb vatsmeriy T (1 p.length) + siml + szm2>/4 @)
apx_lev =224+ (1-3) +090+1)/4 =097 (8)

The tuple answer corresponding to P is: (pub2, ESW(€2012, P, 0,97).

In the path P’ there is one additional edge the (the edge type) so cost_ad = 1 and,
number of similar or common edges is 2 (with two values of similarity: 0.95, 1),
sim1 = sim(? pub, publication) = 0.70, sim2 = sim(ESW (2012, ISW(C2012) = 0.20,
so the approximate level associated with P’ is :

254 (1-2)+070+020)/4 =064)

apx_lev = (

The tuple answer corresponding to P is: (pubublication, ISWC2012, P, 0,64).
apx_lev for P is greater than apx_lev for P'so the path P have a good approximation
than P'.

Proceedings ICWIT 2012 56

P Query path QP; p'

publication

type

siz—1 O e
<> S o,
EswWcC2012 ESWC2012 ISWC2012

apx lev=0.97 apx_lev—0.64

Fig. 2. Computing the approximation level apx_lev for the paths P and P’

4.3 Computing the Approximate Graph Patterns

In this section we describe how the final answers (Approximate graph patterns) are
computed from the approximate paths discovered in the previous step, The final an-
swers for the approximation is returned in form of tuples and every tuple represented
by (v1, vy, ..., vy, apx_gp, apx_gp_lev), where v; to v ; are the nodes corresponding to
the nodes variable in GP (the nodes answers corresponding to the variables in the user
query). apx_gp is the approximate graph pattern constructed from the approximate
paths returned in tup_ans; and apx_gp_lev is the approximation level between GP and
ApxGP i.c. the mean of the values apx_lev of the approximate paths used for the con-
struction of apx_gp.

In [1] and [2], the final answers are a set of nodes corresponding to the variable in
the query, in addition; as our approach based on graph patterns, a graph pattern with
each nodes result is returned for a better answers understanding.

For computing the final answer we must generate the set of tuples answer
tup_ans; for every path QP; € GP , exploring the paths in every tuple and combining
same paths for the generation of the graph patterns answer € G.

Definition 3. Let GP a graph pattern constructed from a regular conjunctive queryQ,
Let GP’ a graph patterne G. GP' is an approximate graph pattern for GP, if the value of
approximate level apx_gp_lev between GP and GP’ is higher than T_apx_gp (prede-
fined threshold of approximation for GP), T_apx_gp € [0,1].

The procedure final_ans is called with the set tup_ans; and its first tuple. The
procedure final_ans explores all tuples in any tup_ans; to generate all approximate
graph patterns, added them in the final set final_ans with its nodes variables and its
approximation level. For the process of ranking, the value apx_gp_lev is used to rank
the tuples in final_ans, the tuples are outputted ranked in a decreasing order.

5 Implementation and Experimentation

Our approach is implemented in Java and Jena API, we use JAWS (Java API For
WordNet Searching) for the implementation of the proposed meaning similarity. The
RDF data set used is a sub set from the SwetoDblp ontology which is large size ontol-
ogy focused on bibliography data of Computer Science publications where the main
data source is DBLP, it has 4 millions of triples. The used subset contains a collection

Proceedings ICWIT 2012 57

of books and its book chapters. For making the execution faster, an offline phase
which contains: RDF triples normalization, (getting triples that are closely to the
natural language), building 2 indexes, is computed in order to allow quick finding of
the approximate paths. The thresholds T, T_apx, T_apx_Gp are automatically initialized
and updated according the query structure, this update allows the reduction of the
found answers number.

For experimentation purposes and because our query language is inspired from the
conjunctive path queries for helping the naive (non-expert) users, a query benchmark
is created. The benchmark contains a set of queries, with different intends that are
executed over the RDF subset. For every query, from the subset; we computed, man-
ually, the set of the relevant solutions (RS) for evaluating Precision and Recall:

.. the number of relevant solutions returned (included in RS)
Precision = . (10)
number of solutions found by the system
the number of relevant solutions returned(included in RS
Recall = ¢) (11)

the number of solutions in RS

In comparison with SPARQL, our work can be used by a non-expert users and it
allows specifying a query paths between variables and constants for a better under-
standing of the user intend. It is difficult for the naive user to use SPARQL efficiently
because its complexes structure. Table 2 includes some queries, used for the evalua-
tion whereas Figure 4 shows the precision and recall for some queries, proving the
effectiveness of the approach.

M Precision
M Recall
Fig. 3. Evaluation results for some queries
o
2 152 |88, 3 | ®
user query BsZ|2¢2 £ Z g g
|28 | 3B) =
=] -]
(?Book_Chapter, title.contains, web)
User intend: Find all Book_chapters that 52 59 50 0.84 0.96
have title contains «web »
- (?Book_Chapter, book chapter included
in the book, Prolog and Databases)
- (?Book_Chapter, pages number, ? pages
(T p. pag p‘g) 20 20 20 1.0 1.0
User intend: Find all Book Chapters in-
cluded in the book: «Prolog and Databases
», associated with the pages number.

Proceedings ICWIT 2012 58

- (?Book, year of publication, 2000)
- (?Book, book isbn, ?isbn)

- (?Book, has publisher, ?publisher) 5 6 5 0.83 1.0
User intend: Find Books published in 2000,
associated with its isbn and the publisher.

Table 2. Some user queries used for the evaluation

6 Conclusion and Future Works

In this paper a novel approach for query approximation based on meaning similarity
from WordNet is proposed, using a proposed query language inspired from the con-
juncts queries. Using this technique, the naive users are able to write simple queries
that not necessarily match the data structure. Our approach can be used as an exten-
sion to other approaches for a better understanding of the user query and obtaining
results that satisfies the user’s needs. It has been shown that the answers are a set of
graph patterns ranked following the approximation level decreasing order. The work,
is not considering only RDF graph but it can be seen as a general approach which
may be applied to any semi-structured data that is modeled as graph, Future work will
consist in applying the proposed approach to specific domains such as geographic,
medical, biologic and bibliography, using query interface and building new indexes
for scaling a huge number of triples.

References

1. A. Poulovassilis and P. T. Wood Combining Approximation and Relaxation in Semantic
web Path Queries. In Proc. ISWC, 2010.

2. C. A. Hurtado, A. Poulovassilis, and P. T. Wood. Ranking approximate answers to seman-
tic web queries. In Proc. ESWC, pages 263-277, 2009.

3. C. Kiefer, A. Bernstein, and M. Stocker. The fundamentals of iSPARQL: A virtual triple
approach for similarity-based semantic web tasks. In Proc. ISWC, pages 295-309, 2007.

4. E. Thomas, J. Z. Pan, and D. H. Sleeman. ONTOSEARCH2: Searching ontologies seman-
tically. In Proc. OWLED-2007, CEUR Workshop Proceedings 258. CEUR-WS.org, 2007.

5. Eyal Oren, Christophe Guéret, Stefan Schlobach. Anytime Query Answering in RDF
through Evolutionary Algorithms, International Semantic Web Conference pp.98-113,
2008.

6. Fellbaum, C.: WordNet, an electronic lexical database. MIT Press, Cambridge (1998)

7. Fellah, A., Malki, M and Zahaf, A., « Alignement des ontologies : utilisation de WordNet
et une nouvelle mesure structurelle CORIA 2008 - Conférence en Recherche d'Informa-
tion et Applications, Trégastel, France, 2008.

8. G. Zenz, X. Zhou, E. Minack, W. Siberski, and W. Nejdl. From keywords to semantic
queries -Incremental query construction on the Semantic Web. J. Web Sem., 7(3):166-176,
2009.

9. 0. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying the Semantic Web with Corese
search engine. In Proc. ECAI-2004, pp. 705-709. 10S Press, 2004.

10. Lopez, V., Fernndez, M., Motta, E., Stieler, N.: PowerAqua: Supporting Users in Querying
and Exploring the Semantic Web Content. Semantic Web Journal. IOS Press (2011).

11. T. W. Finin, L. Ding, R. Pan, A. Joshi, P. Kolari, A. Java, and Y. Peng. Swoogle: Searching
for knowledge on the Semantic Web. In Proc. AAAI-2005, pp. 1682—1683.

Proceedings ICWIT 2012 59

