Demo: X3DOM - Declarative (X)3D in HTML5

Yvonne Jung
Fraunhofer IGD
Fraunhoferstrasse 5
64283 Darmstadt, Germany

yjung@igd.fhg.de

ABSTRACT

In this demo description we present X3DOM, which is an
open source framework and runtime system to support the
ongoing discussion in the Web3D and W3C communities
how an integration of HTML5 and declarative 3D graph-
ics can look like by including X3D elements as part of the
HTML5 DOM tree. The goal here is to have a live X3D
scene-graph integrated into the HTML DOM, which allows
manipulating the 3D content by only adding, removing, or
changing the corresponding DOM elements. No specific plu-
gin or plugin interface, such as the X3D-specific SAI, is re-
quired. X3DOM also supports CSS integration as well as
standard HTML events like “onclick” on 3D objects.

Categories and Subject Descriptors

1.3.6 [Methodology and Techniques]: Standards— Lan-
guages; 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism— Virtual Reality

Keywords
HTML5, CSS3, WebGL, DOM, X3D, Web Integration

1. MOTIVATION AND CONCEPT

Within this demo we like to showcase X3DOM, an open
source framework and runtime system that supports the on-
going discussion in the Web3D and W3C communities how
an integration of HTML5 and declarative 3D graphics can
look like. The idea is to have a live X3D scene-graph in-
tegrated into the HTML DOM by including X3D elements
as part of the DOM tree similar to the SVG HTML inte-
gration. This allows manipulating the 3D content by only
adding, removing, or changing the corresponding DOM ele-
ments without the need for specific plugins or plugin inter-
faces like the X3D-specific SAI. X3DOM also supports CSS
integration as well as standard HTML events on 3D objects.

The X3DOM website including online examples and links to
external showcases can be found on http://www.x3dom.org/

Copyright (©2012 for the individual papers by the papers’ au-
thors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors.
Dec3D2012 workshop at WWW2012, Lyon, France

Jens Keil
Fraunhofer IGD
Fraunhoferstrasse 5
64283 Darmstadt, Germany

ikeill@igd.fhg.de

Johannes Behr
Fraunhofer IGD
Fraunhoferstrasse 5
64283 Darmstadt, Germany

jbehr@igd.fhg.de

and the complete source code is officially available at github:
https://github.com/x3dom/x3dom

One important design question here is, why we build upon
X3D [4]. The open ISO standard X3D provides interactive
3D graphics for the web and is the only standardized 3D
deployment format. It differs from other 3D formats like
the interchange format Collada [1] in that it also includes
the scene’s runtime behavior. However, X3D is still bound to
a plugin-based integration model and, like all plugin-based
systems, has two major drawbacks [2, 3].

First, they plugins are not installed by default on most sys-
tems. Therefore, the user has to deal with installation,
security, and browser or OS incompatibility issues, not to
mention the lack of accessibility. Second, plugin-based sys-
tems define an application and event model inside the plugin,
which is decoupled from the DOM content. Developers, who
try to develop integrated web applications that use both, the
DOM and the plugin-model, have to deal with small plugin-
specific interfaces and synchronization problems.

WebGL [5], Flash 11 with Stage3D [7], and Silverlight 5
[6] now all provide access to the native GPU layer in the
browser without a complicated plugin installation process,
but the issue of the missing DOM integration still exists.
Thus, what is still missing is a better integration with open
architectures, which integrate well with existing web tech-
nologies like CSS3, HTMLS5, JavaScript, DOM scripting and
Ajax. In this regard, the X3DOM project presents a DOM-
based integration model for declarative (X)3D in HTML5
[2, 3], that allows a seamless integration of 3D contents into
the HTML document model by utilizing standard web APIs
for integrating content and interactions.

Besides DOM integration, we additionally propose a new
HTML Profile based on the current X3D [4] standard, which
extends the X3D Interchange profile. Therefore, this profile
does not include X3D-specific concepts like internal Script
nodes, pointing device sensors or support for PROTO types.
Application developers are supposed to script and partition
the content from the DOM/HTML side.

First of all we increased the support level for the networking
component to 2 to include the Inline node, which is needed to
portion the 3D data. Second, we increased the support level
from the grouping component also to 2 to get the Switch
and StaticGroup node. The latter will be used for optimiza-



Figure 1: Some early examples of X3DOM-based
Web applications (e.g., the top left image shows a
line-up of laser scanned Cultural Heritage artifacts.

tion later on. We also increased the support level for the
navigation component to 2 to include Billboard and LOD.
In addition, we included some further standard components
such as Text/ level 1 (since text is essential for web appli-
cations), Shaders/ level 1 (we already run on a GLSL-based
shader pipeline), and the Followers/ level 1 (to get the flex-
ible per-frame updates on the 3D side).

2. APPLICATION EXAMPLES

In this section a few applications are exemplarily showcased
to demonstrate the potential of the proposed framework. In
the area of cultural heritage for instance, working with 3D
scanner data for preservation is getting more and more com-
mon. Figure 1 (top left) shows an example of an interactive
web application for the visualization of scanned historical 3D
objects, which was implemented with the help of X3DOM
and standard web technologies.

The next image shows a simple online car configurator with
a minimalistic UI. The user can choose certain colors from a
given color palette or change the rims in real-time. In addi-
tion, the car can be viewed from any position, since nothing
is prerendered. In contrast to today’s online configurators,
which are using semi-3D presentation methods, this car is
a real 3D model. Hence, even small or complex animations
of the doors or other parts are possible. The communica-
tion between Ul and 3D model is completely implemented
in JavaScript while styling is done with CSS.

The AR application shown next uses X3DOM for hardware-
accelerated rendering of the earth globe, which hovers above
the marker. Like in every AR application, a webcam and a
video image is required to achieve the augmentation effect.
Because native device access is not yet possible in HTML,
a Flash-based marker tracker is used instead. The top right
image shows the simulation of all planets and 100,000 of the
known 480,000 asteroids of the Solar System.

The two screenshots in the middle are external showcases:
the left image shows a GIS application with a floodwater

Figure 2: Architectural walk-through model of Hall
11 of the Fair of Frankfurt — represented and ren-
dered using our new image geometry approach for
fast content delivery and data compression.

scenario, where the user interactively can choose the water-
level, whereas the right image shows an e-learning scenario.
The rightmost image in the middle row and the second image
in the bottom row are showing two similar use-cases (both
also being external showcases): the visualization of the net-
work of twitter friends and of facebook friends respectively.

The leftmost image in the bottom row of Figure 1 shows the
visualization of a flow field simulation, where the respective
color can be retrieved by picking a certain 3D flow region
with the mouse. This color again maps to a specific tem-
perature, which is obtained by inverting the original look-up
value. This kind of application has a huge potential in the
field of automotive for communicating and presenting e.g.
simulation results towards decision makers or consumers,
without distributing a whole application while providing the
user with more information than a static image or fact sheet.

Figure 2 shows some screenshots of a walk-trough applica-
tion realized with X3DOM. To ease the application develop-
ment by excluding the vertex attribute data from the HTML
file on the one hand and to compress this large geometric
data set on the other hand we use so-called image geome-
tries to represent and render vertex data by utilizing images
as data containers. Within the course of this demo we will
also show this new feature of X3DOM in action.

3. REFERENCES

[1] R. Arnaud and M. Barnes. Collada. AK Peters, 2006.

[2] J. Behr, Y. Jung, T. Drevensek, and A. Aderhold.

Dynamic and interactive aspects of X3DOM. In

Proceedings Web3D 2011, pages 81-87, New York,

USA, 2011. ACM Press.

J. Behr, Y. Jung, J. Keil, T. Drevensek, P. Eschler,

M. Zollner, and D. W. Fellner. A scalable architecture

for the HTML5/ X3D integration model X3DOM. In

S. Spencer, editor, Proceedings Web3D 2010, pages

185-193, New York, USA, 2010. ACM Press.

[4] W. Consortium. Extensible 3d (X3D), 2011.
http://www.web3d.org/x3d/specifications/.

[5] C. Marrin. Webgl specification, 2011.
https://www.khronos.org/registry /webgl/specs/1.0/.

[6] Microsoft. Silverlight, 2011.
http://www.microsoft.com/SILVERLIGHT/ .

[7] A. Systems. Flash, 2011.
http://www.adobe.com/products/flashplayer.html.

3



