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Abstract. Many real-world applications require accurate segmentation
of images into semantically-meaningful regions. In many cases one needs
to obtain accurate segment maps for a large dataset of images that depict
objects of certain semantic categories. As current state-of-the art meth-
ods for semantic image segmentation do not yet achieve the accuracy
required for their use in real-world applications, they are not applicable
in this case. The standard solution would be to apply interactive segmen-
tation methods, however their use for a large number of images would be
laborious and time-consuming. In this work we present an online learning
framework for interactive semantic image segmentation that simplifies
processing of such image datasets. This framework learns to recognize
and segment user-defined target categories using the ground truth seg-
mentations provided by user. While the user is working on ground truth
image segmentation, our framework combines online-learned category
models with the standard stroke-propagation mechanisms that are typ-
ically used in interactive segmentation methods. Our implementation of
this framework in a software system has specific interface features that
minimize the required amount of user input. We evaluate the implemen-
tation on several datasets from completely different domains (Sowerby
dataset containing 7 different semantic categories, sheep & cows dataset
containing 3 categories, and 6 different flower datasets with 2 categories
each). Usage of our system requires substantially less user effort com-
pared to the traditional interactive segmentation methods.

1 Introduction

Many applications, such as aerial and space image processing, defect detection,
and medical imaging require accurate segmentation of large image datasets into
some semantically-meaningful zones. Despite the substantial progress made, cur-
rent state-of-the art methods for automatic semantic image segmentation [1] do
not yet achieve the accuracy required for their use in real-world applications.
The standard solution to obtain accurate segmentations for a dataset of images
would be to apply interactive segmentation methods. Moreover, in some cases
interactivity and providing feedback for the computational algorithms to per-
form segmentation, can not only overcome the inherent difficulties of automatic
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Fig. 1. Image segmentation is used in medical imaging, processing aerial, space images,
and detection of road defects. In many applications one needs to accurately segment
objects of the some target semantic categories from a large dataset of images. In this
work we present a framework that automates this process and substantially reduces
the user effort

semantic segmentation, but may also be desirable because the user may want
to be able to control the segmentation process and review the results. However
applying standard interactive segmentation software for large image datasets
would be an extremely laborious and time-consuming task.

In this work we consider the case when one needs to perform segmentation of
a large image dataset into a number of semantically-meaningful categories. We
aim at developing a general framework that would work with any user-defined
target categories and learn these categories from the user input as semantic seg-
mentation methods do. On the other hand, we want to give the user as much
control on the segmentation results as interactive image segmentation methods
provide. Our main goal is to minimize user effort while allowing her to produce
accurate image segmentations. Most existing methods for interactive image seg-
mentation work with a single image [2–4], which limits their power. For example,
segmentation of an image from MSRC dataset with our system takes less than
a minute compared to 15–60 minutes for manual annotation [5].

Related task of inducing segmentation from example was looked at [23]. In
this approach a non-parametric model of the provided training pair is con-
structed by selecting a set of patch-based representatives inside each labeled
region in the training image. These representatives are used to quantify the de-
gree of resemblance between small regions in the input image and the labeled
regions in the training set.

Adaptive learning of object detection was considered in [6]. The models for
new categories may benefit from the detectors built previously for other cate-
gories. [7] presented a framework for dynamic visual category learning using
incremental support vector machine. That method exploits a previously built
classifier to learn the optimal parameters for the current set of training images
more efficiently, which is faster than batch retraining. In contrast to those works,
we consider a problem of interactive semantic segmentation and our framework
enables both adding new categories and incremental learning of the existing ones.

The paper is organized as follows. Next section describes the general work-
flow of our system and our semantic segmentation algorithm. In Section 3 we
describe the online random forest. Section 4 describes the experiments, and the
last section is left for conclusions.
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2 Interactive Semantic Segmentation Framework

2.1 Interactive Semantic Segmentation Workflow

Suppose one needs to process a large image dataset and obtain accurate segmen-
tation of the objects of certain categories. In framework, a user examines images
from the dataset in sequence. Each image is presented as a set of superpixels
(Section 2.2). The first image is segmented manually: a user should label each
superpixel with one of the category labels. The newly-obtained labelling is used
to update the appearance model. When the user opens one of the consequent
images, segmentation is performed automatically using the current appearance
model. Then the user may correct mistakes of the automatic method by changing
superpixel labels. Each time the user approves the (possibly corrected) segmen-
tation result, the system learns from the newly obtained examples of object
categories and background. As training goes, user time spent on correction of
category map reduces, thus the rate of image labelling increases.

Our implementation provides a set of tools to simplify the process of error
correction for the user. The brush tool is used to modify superpixel labels. It is
possible to change labels of groups of neighbouring superpixels by choosing the
appropriate brush size. Each time the user applies it, the system also updates
the global labelling using the newly observed labels as context. Therefore, one
brush stroke usually changes labels of a large number of pixels. We use hierar-
chical clustering to obtain superpixels, so the user can switch between different
scales of superpixels and choose appropriate scale for correction of errors in the
segmentation. We also provide a user with a set of sliders, each one controls the
trade-off between false positive and false negative rates of one object category.
The sliders help to significantly reduce the amount of manual work in the be-
ginning of the image set processing, when few images have been seen, and the
classifiers are likely to be biased towards some categories.

The output of the most time-consuming operations (such as over-segmentation
and feature extraction) can be cached, so in practice those operations are per-
formed offline, before the user starts working with the system. We use efficient
methods for inference of the optimal segmentation and learning the appearance
models of object categories (see Sections 3 and 2.2), thus a user gets immediate
response from the system.

2.2 Semantic segmentation algorithm

We obtain pixelwise object segmentation by assigning category labels to a set
of superpixels obtained by clustering the joint color and coordinate space with
mean-shift algorithm [8]. Usage of superpixels improves computational efficiency
as well as makes segmentation more robust. Texture and color features are com-
puted from the image by applying a filter bank [9]. We use texton histograms
over superpixels generated by mean shift similarly to [10]. To take the geo-
metric information into account we use simple geometric features like variance,
elongation, orientation and area of a superpixel.
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We use a simple pairwise conditional random field (CRF) that allows efficient
inference. The vector of superpixel labels c = {ci} is determined as the one that
minimizes the following energy function:

E(c) = −
∑
i

Ψi (ci|I)−
∑
(i,j)

Φij (ci, cj |I) , (1)

where the first term sums the appearance potentials of individual superpixels,
the second sum is over the neighbouring pairs of superpixels.

The unary potential for assigning the object category ci to the i-th superpixel
in the image I is computed as Ψi (ci|I) = log p (ci|Si, I)+η(ci), where p (ci|Si, I)
is the probabilistic output of the online random forests (Section 3) for ci-th class
on the superpixel Si. The second term η(ci) is the slider value that can be treated
as the prior that prefers some categories over the others.

Pairwise potentials consist of the two terms: Φij (ci, cj |I) = θ (ci, cj |I) +
τ (ci, cj) . The first term is the inverse of the boundary strength provided by the
mean-shift segmentation. The second term corresponds to a fraction of neigh-
bouring superpixels of the classes ci and cj among all neighbouring superpixels
in the images seen so far. There are efficient algorithms for minimization of the
energy (1), so inference can be performed every time when the user moves a
slider to change the trade-off between false positives and false negative rates.

3 Online Random Forest

Our variant of online random forest1 builds a set of Hoeffding trees [11]. This
method is proven to produce the trees asymptotically arbitrarily close to the ones
produced by a batch learner. Therefore the incremental nature of our version of
Online Random Forest algorithm does not significantly affect the quality of the
model it produces.

In Breiman’s Random Forest [12] the training set of each tree is obtained by
random resampling. This means that the probability that each of N instances is
sampled exactly K times for each tree is binomially distributed:

p(K = k) =

(
N

k

)(
1

N

)k (
1− 1

N

)N−k

. (2)

As N goes to infinity, the distribution of K converges to the Poisson distribution

with the parameter equal to 1: K ∼ exp(−1)
k! . Therefore online bootstrapping can

be performed as follows: for each base model, choose each example K ∼ Pois(1)
times and update the base model accordingly. To diversify the trees in our variant
of online random forest each tree operates with a random subset of features.

1 http://graphics.cs.msu.ru/en/science/research/machinelearning/bolt
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Online Random Forest
Input: Example (x, y)
For each base model hm = h1,. . . ,hM

Set k = Poisson(1)
Do k times

hm = Update tree (x, y)
Return updated {h1, . . . ,hM}

As long as Hoeffding trees can handle multiclass classification, our Online
Random Forest naturally performs multiclass classification without any change
in the algorithm.

Handling imbalanced classes. It was proven [13] that error balancing can be
achieved by resampling the training set. As the expectation of Poisson random

variable p(K = k) = λk

k! exp(−λ) equals to the parameter λ of Poisson distri-
bution, we can balance the errors by introducing various parameters of Poisson
distribution for different classes. In this work we use the balanced version of
the Online Random Forest and allow the user to control false positive and false
negative rates with the same sliders that were discussed in section .

4 Experiments

Image datasets. In the first experiment we used Sowerby dataset that contains
100 images of urban scenes. The goal in this experiment was to perform accurate
multi-zone segmentation into 7 object categories provided in the ground truth
annotation of this dataset.

In the second experiment we used a subset of the MSRC dataset2 composed of
60 images of cows and sheep. In this experiment we considered a 3-zone segmen-
tation problem where the goal was to segment cows and sheep from background.

In the third experiment we used a subset of 17-flower dataset3. We considered
6 different flowers (daffodil, tigerlily, daisy, fritillary, pansy, sunflower), and 80
images of each flower. The goal in this experiment was to segment each flower
from the background.

Measuring usability of the system. The typical sequence of user actions to
segment an image in our system is the following. The user starts with tuning the
sliders to adjust the false positive vs. false negative rates, and then corrects the
segmentation errors using brush tool. In most cases the optimal strategy for error
correction is to start with fixing the errors in the coarsest scale of superpixels
and then proceed to more detailed scales.

To quantify the user input we have implemented a robot-user that emulates
the actions of a human user working with the system. Given the initial image

2 http://research.microsoft.com/en-us/projects/ObjectClassRecognition/
3 http://www.robots.ox.ac.uk/~vgg/data/flowers/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example segmentations created using our framework: (a) daffodil, (b) tigerlily,
(c) daisy, (d) fritillary, (e) pansy, (f) sunflower; (g),(h) images from our sheep and cows
dataset. Object is shown with blending, the boundary of an object is marked with
white

segmentation, the robot first finds the optimal values of η(ci) for all object
classes (i.e. optimal position of the sliders). For that we minimize the total
area of misclassified superpixels using Nelder–Mead algorithm. Then we count
the number superpixels that need to change labels in order to obtain correct
segmentation result. We start by correcting the errors at the coarsest scale and
proceed to more detailed scales of superpixels. The resulting metric characterizes
overall amount of user input required to obtain correct result using our system,
and we refer to it as usability metric.

To measure the gain provided by learning the appearance models of object
categories, we compared two values of usability metric. First we computed the
usability metric for the case of fully manual image segmentation using our brush
tool, i.e assuming that all superpixels are initially labelled as background. Sec-
ond, we computed the usability metric for our semantic segmentation framework.

The results of this experiment for Sowerby and sheep & cows datasets are
shown in Figure 3 (a, b). The green lines show the results in fully manual case,
and the blue lines show the results for our framework. The use of automatic seg-
mentation helps to significantly reduce required amount of user input compared
to performing fully manual segmentation.

To measure the gain of online learning we looked at the behaviour of the plots
of usability metric with respect to the the total number of images processed.
As the values of usability metric vary significantly for each particular image,
we computed the average over 9 subsequent images to estimate the long-term
trends of usability metric. The effect of online learning is most clearly visible for
the flowers image datasets (Figure 3 (c)), where the total number of superpixels
that require relabelling tends to decrease over time. For Sowerby and sheep &
cows image datasets this metric decreases also decreases, but more slowly.
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(a) (b) (c)

Fig. 3. The number of superpixels that have to change their label subject to the number
of images processed: (a) Sowerby dataset, (b) sheep & cows dataset. Performance of
our system is shown in blue, total number of clicks required to label an image from
scratch is shown in green. Thin lines represent automatically calculated number of
superpixels that need to change their labels as described in text, thick lines show the
average value over 9 subsequent images. (c) averaged values of usability metric for the
6-flowers datasets: blue — daffodil, green — fritillary, red — pansy, cyan — sunflower,
magenta — tigerlily, black — daisy

Measuring the time. We compared the time required from a human user
to obtain high-quality image segmentation with our system and with GrowCut
interactive segmentation tool [4] on the 6-flowers image datasets. The user had
practical experience with both systems. The time required for producing high-
quality image segmentation for a set of 80 images of the same flower varied
from 14 min to 46 min. GrowCut took about twice more time to produce the
segmentation of similar quality.

5 Conclusions

We have presented a framework for interactive semantic image segmentation
that is based on online learning. The experiments show that online learning of
object appearance models helps to significantly reduce user input required to
obtain accurate image segmentation.
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