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Abstract. This article considers the problems of maximum flow and minimum 

cost flow determining in fuzzy network. Parameters of fuzzy network are fuzzy 

arc capacities and transmission costs of one flow unit represented as fuzzy tri-

angular numbers. Conventional rules of operating with fuzzy triangular num-

bers lead to a strong “blurring” of their borders, resulting in loss of self-

descriptiveness of calculations with them. The following technique of addition 

and subtraction of fuzzy triangular numbers is proposed in the presented paper: 

the centers are added (subtracted) by the conventional methods, and the borders 

of the deviations are calculated using linear combinations of the borders of ad-

jacent values. The fact that the limits of uncertainty of fuzzy triangular numbers 

should increase with the increasing of central values is taken into account. To 

illustrate the proposed method numerical examples are presented. 

Keywords: Fuzzy arc capacity, linear combination of borders, fuzzy triangular 

number, fuzzy flow. 

1   Introduction 

This article deals with flow problems arising in networks. The network corresponds to 

a directed graph ),,( AXG   where X  – the set of nodes, A  – the set of arcs with 

distinguished initial (source) and final (sink) nodes. Each arc Axx ji ),(  has capaci-

ty determining the maximum number of flow units, which can pass along the arc. The 

relevance of the tasks of maximum and minimum cost flow determining lies in the 

fact that the researcher can effectively manage the traffic, taking into account the 

loaded parts of roads, redirect the traffic, and choose the cheapest route. Suppose a 

network, which arcs have capacities ).( ijq Formulation of the problem of maximum 

flow finding in the network is reduced to maximum flow determining that can be 

passed along arcs of the network in view of their capacities [1]:  
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In (1) ij  – the amount of flow, passing along the arc ),( ji xx ;   – the maximum 

flow value in the network; s  – initial node (source); t  – final node (sink); ijq  – arc 

capacity, )(
i

xГ  – the set of nodes, arcs from the node Xx
i
  go to, )(

1

i
xГ

  – the set of 

nodes, arcs to the node Xx
i
  go from. ij  represents, for example, the amount of 

cars, going from the node Xx
i
  to the node Xx

j
 . The first equation of (1) defines 

that we should maximize the total number of flow units emanating from the source 

( ), which is equal to the total number of flow units entering the sink ( ). The se-

cond equation of (1) is a flow conservation constraint, which means that the total 

number of flow units emanating from the source ( ) must be equal to the total num-

ber of flow units entering the sink ( ) and the total number of flow units emanating 

from any node tsxi ,  must be equal to the total number of flow units entering the 

node ., tsxi   The third inequality of (1) is a bound constraint, which indicates that 

the flow of value ij , passing along any arc ),( ji xx  must not exceed its arc capacity. 

The task of minimum cost flow determining in a network can be formulated as fol-

lows: suppose we have a network, which arcs have two associated numbers: the arc 

capacity )( ijq  and transmission cost )( ijc of one flow unit passing from the node 

Xx
i
  to the node Xx

j
 . The essence of this problem is to find a flow of the given 

value   from the source to the sink, which doesn’t exceed the maximum flow in the 

graph   and has minimal transmission cost. In mathematical terms the problem of 

minimum cost flow determining [2] in the network can be represented as follows:  
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In (2) ijc  – transmission cost of one flow unit along the arc ),,( ji xx   – given 

flow value, that doesn’t exceed the maximum flow   in the network.  

In practice, the arc capacities, transmission costs, the values of the flow entering 

the node and emanating from the node cannot be accurately measured according to 

their nature. Weather conditions, emergencies on the roads, traffic congestions, and 

repairs influence arc capacities. Variations in petrol prices, tolls can either influence 

transmission costs. Therefore, these parameters should be presented in a fuzzy form, 

such as fuzzy triangular numbers [3]. Thus, we obtain a problem statement of maxi-

mum and minimum cost flow problems in fuzzy conditions. 

2   Literature Review of the Maximum and Minimum Cost Flow 

Determining Tasks  

The problem of the maximum flow finding in a general form was formulated by T. 

Harris and F. Ross [4]. L. Ford and D. Fulkerson developed famous algorithm for 

solving this problem, called “augmented path” algorithm [5]. Maximum flow problem 

was considered in [1, 6]. 

There are different versions of the Ford-Fulkerson’s algorithm. Among them there 

is the shortest path algorithm, proposed by J. Edmonds and R. Karp in 1972 [7], in 

which one can choose the shortest supplementary path from the source to the sink at 

each step in the residual network (assuming that each arc has unit length). The short-

est path is found according to the breadth-first search.  

Determining the maximum flow in the transportation network in terms of uncer-

tainty has been studied less. In [8] a solution taking into account the interval capaci-

ties of arcs was proposed. S. Chanas [9] proposed to solve this problem by using so-

called “fuzzy graphs”. There are contemporary articles which solve the problem by 

the simplex method of linear programming [10]. 

Many researchers have examined the task of minimum cost flow finding in crisp 

conditions in the literature. Methods of its solution can be divided into graph tech-

niques and the methods of linear programming. In particular, solutions by the graph 

methods are considered in [1, 6]. The advantages of this approach are great visualiza-

tion and less cumbersome. The minimum cost flow is proposed to find by Busacker-

Gowen and M. Klein’s algorithms in [2]. In [2, 6] a task of minimum flow determin-

ing is considered as a task of linear programming. This approach is cumbersome. 

The methods of minimum cost flow finding in networks in fuzzy conditions can be 

divided into two classes. The first class involves the use of conventional flow algo-

rithms for determining the minimum cost flow, which operate with fuzzy data instead 

of crisp values and require cumbersome routines with fuzzy numbers. The second 

class of problems implies the use of “fuzzy linear programming”, which was widely 

reported in the literature [11, 12]. 

Authors [13] consider the tasks of “fully fuzzy linear programming”. These tasks 

are cumbersome and can not lead to optimal solutions in the minimum cost flow de-

termination. The solution of fuzzy linear programming tasks by the comparison of 

fuzzy numbers based on ranking functions is examined in [14].  
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3   Presented Method of Operating with Fuzzy Triangular 

Numbers 

Researcher is faced with the problem of fuzziness in the network, when considering 

the problems of maximum and minimum cost flow finding. Arc capacities, flow val-

ues, passing along the arcs, transmission costs per unit of goods cannot be accurately 

measured, so we will represent these parameters as fuzzy triangular numbers. 

We will represent the triangular fuzzy numbers as follows: ),,,( a where a  – 

the center of the triangular number,   – deviation to the left of the center,   – devia-

tion to the right of center, as shown in Fig. 1. 

 

x

α

1

0 a

( )x

a  1( )a 
2 ( )a  a 

 

Fig. 1. Fuzzy triangular number. 

Conventional operations of addition and subtraction of fuzzy triangular numbers 

are as follows: let 1
~
A  and 2

~
A  be fuzzy triangular numbers, such as  1111 ,,

~
aA   

and  2222 ,,
~

aA  . Therefore, the sum of triangular numbers can be written as: 

 21212121 ,,
~~

  aaAA  and the difference represented as: 

 21212121 ,,
~

–
~

  aaAA  [3]. The disadvantage of the conventional meth-

ods of addition and subtraction of fuzzy triangular numbers is a strong “blurring” of 

the resulting number and, consequently, the loss of its self-descriptiveness. For exam-

ple, when adding the same triangular number with itself, the borders of its uncertainty 

increase: (2,1,1) + (2,1,1) = (4, 2, 2) and (2,1,1) + (2,1,1) + (2,1,1) = (6, 3, 3). Gener-

ally, it is not true, because the center of the triangular number should increase, while 

its borders must remain constant. The fact that the degree of borders “blurring” of 

fuzzy number depends on the size of its center is not usually considered, when speci-

fying the triangular fuzzy numbers. Therefore, the more the center, the more “blurred” 

the borders should be (while measuring 1 kg of material, we are talking “about 1 kg”, 

implying the number “from 900 to 1100 g”, but while measuring 1 t. of material, im-

ply that “about 1 t.” is the number “from 990 kg to 1110 kg”). 

Comparison of fuzzy triangular numbers according to various criteria is also very 

difficult and time-consuming. Consequently, following method is proposed to use 
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when operating with triangular fuzzy numbers. Suppose there are the values of arc 

capacities, flows or transmission costs in a form of fuzzy triangular numbers on the 

number axis. Then when adding (subtracting) the two original triangular fuzzy num-

bers their centers will be added (subtracted), and to calculate the deviations it is nec-

essary to define required value by adjacent values. Let the fuzzy arc capacity (flow or 

transmission cost) “near '~x ” is between two adjacent values “near 1
~x ” and “near 2

~x ”, 

)( 2
'

1 xxx   which membership functions )( 11
~ xx  and )( 22

~ xx  have a triangular 

form, as shown in Fig. 2.  

 

1



x

1
~x '~x


2

~x

1x 'x 2x
Ll1

Rl1

Ll Rl Rl2

Ll2  

Fig. 2. Given values of arc capacities (flows or transmission costs). 

Thus, one can set the borders of membership function of fuzzy arc capacity (flow 

or transmission cost) “near '~x ” by the linear combination of the left and right borders 

of adjacent values:  
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In (3) Ll  is the left deviation border of required fuzzy number, Rl  is the right de-

viation border. In the case when the central value of triangular number resulting by 

adding (subtracting) repeats the already marked value on the number axis, its devia-

tion borders coincide with the deviation borders of the number marked on the number 

axis. If required central value is not between two numbers, but precedes the first 

marked value on the number axis, its deviation borders coincide with those of the first 

marked on the axis. The same applies to the case when the required central value 

follows the last marked value on the axis. 
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4   Solving the Task of Maximum Flow Finding in Fuzzy Network 

The task of maximum flow finding in fuzzy network can be formulated as follows: 
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In (4) ~  is required maximum fuzzy flow value in the network; ij
~

 – fuzzy 

amount of flow, passing along the arc );,( ji xx  ijq~  – fuzzy capacity of the arc 

);,( ji xx 0
~

is fuzzy number of the form (0, 0, 0), as it reflects the absence of the flow. 

Let’s consider an example, illustrating the solution of this problem, represented in 

Fig. 3. Let network, representing the part of the railway map, is given in a form of 

fuzzy directed graph, obtained from GIS “Object Land” [15, 16]. Let the node 1x is a 

source, node 12x  is a sink. The values of arc capacities in the form of fuzzy triangular 

numbers are defined above the arcs. It is necessary to calculate the maximum flow 

value between stations “Kemerovo” )( 1x  and “Novosibirsk-Gl.” )( 12x  according to 

Edmonds-Karp’s algorithm [7] and the method, described for operations with fuzzy 

triangular numbers. Determining of maximum flow is based on sending flows along 

the arcs of the network until one cannot send any additional unit of flow from the 

source to the sink. Edmonds-Karp’s algorithm represents the choice of the shortest 

supplementary path from the source to the sink at each step in the residual network 

(assuming that each arc has unit length). Fuzzy residual network contains the arcs of 

the form ),( ji xx with the fuzzy residual arc capacity ijijq 
~~  , if the arcs ),( ji xx  

have the flow value ijij q~
~

  in the initial network; and the arcs of the form ),( ij xx  

with the residual arc capacity ij
~

, if the arcs ),( ji xx  have the flow value 0
~~

ij . 

The arc ),( ji xx  is called “saturated” when the flow, passing along it, equals to arc 

capacity ijq~ . Other words, residual arc capacity defines how many flow units can be 

sent along the arc ),( ji xx  to reach arc capacity. Residual arc capacity of arc saturat-

ed arc ),( ji xx  is zero. 
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Fig. 3. Initial network. 

Therefore, the algorithm proceeds as follows: the first iteration of the algorithm 

performs an augmenting chain 12119831 xxxxxx . Push the flow, equals to (28, 5, 5) 

units along it. The arc  119 , xx  becomes saturated, consequently, fuzzy residual ca-

pacity of the arc  119 , xx  equals to (0, 0, 0). Let’s define the fuzzy residual capacities 

of the remaining arcs of augmenting chain. The arc  31, xx  has fuzzy residual capaci-

ty equals to (45, 8, 8) – (28, 5, 5). Thus, the central value of the resulting number is 

17. It is located between adjacent arc capacities: (16, 2, 2) and (20, 2, 3) of the origi-

nal graph as shown in Fig. 4.  

 

16 2014 18 23

( )x

x

1

0 17
 

Fig. 4. Fuzzy triangular number with a center equals to 17 and its adjacent numbers. 

Compute the left and the right deviation borders of the fuzzy triangular number 

with a center of 17 according to (3). Thus, we obtain a fuzzy triangular number of the 

form (17, 2, 2.25) units. 
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Fuzzy residual capacity of the arc ),( 83 xx  is (30, 5, 6) – (28, 5, 5). Consequently, 

we obtain a fuzzy triangular number with a center of 2, located to the left of fuzzy 

triangular number of the form (16, 2, 2). Deviation borders of the required number 

coincide with deviation borders of the number (16, 2, 2). Thus, we obtain a fuzzy 

triangular number of a type (2, 2, 2) units.  

Fuzzy residual capacity of the arc ),( 98 xx equals to (17, 2, 2.25) units, similarly 

with the arc  31, xx .  

Finally, fuzzy residual capacity of the arc  1211, xx  is equal to (32, 6, 7) – (28, 5, 

5), i.e. we obtain fuzzy number (4, 2, 2) units and fuzzy residual capacity of the arc 

 1112, xx equals to (28, 5, 5) units. Fuzzy residual capacities of the arcs 

),(),,(),,(),,(),,( 1112911893813 xxxxxxxxxx  are (28, 5, 5) units. 

The second iteration of the algorithm gives the augmenting chain 

121065421 xxxxxxx . Push the flow equals to (20, 2, 3) units along it. The arc  21, xx  

becomes saturated, consequently, fuzzy residual capacity of the arc  21, xx  equals to 

(0, 0, 0).  Fuzzy residual capacity of the arc  42 , xx  is (40, 7, 7) – (20, 2, 3), i.e. we 

obtain a fuzzy triangular number (20, 2, 3) units. Fuzzy residual capacity of the arc 

 54 , xx  is the difference between the numbers (25, 5, 4) and (20, 2, 3). Thus, we get 

a number with a center of 5, located to the left of the number (16, 2, 2), i.e. (5, 2, 2) 

units. Fuzzy residual capacity of the arc  65 , xx  is equal to (22, 4, 4) – (20, 2, 3), i.e., 

(2, 2, 2) units. Fuzzy residual capacity of the arc  106 , xx  is equal to (32, 6, 7) – (20, 

2, 3), i.e. (12, 2, 2) units. Fuzzy residual capacity of the arc  1210 , xx  is (45, 8, 8) – 

(20, 2, 3), i.e., (25, 5, 4) units. Fuzzy residual capacities of the arcs 

),(),,(),,(),,(),,(),,( 121061056452412 xxxxxxxxxxxx are (20, 2, 3) units. 

The third iteration of the algorithm performs the augmenting chain 

121065431 xxxxxxx . Push the flow equals to (2, 2, 2) units along. The arc  65 , xx  

becomes saturated. Let’s define fuzzy residual capacities of the remaining arcs of the 

augmenting chain. Fuzzy residual capacity of the arc  31, xx  is (17, 2, 2.25) – (2, 2, 

2), i.e. (15, 2, 2) units. Fuzzy residual capacity of the arc  13, xx  is (30, 5, 6) units. 

Fuzzy residual capacity of the arc  43, xx  is equal to (28, 5, 5) – (2, 2, 2). We get the 

number with a center of 26, located between adjacent values (25, 5, 4) and (28, 5, 5). 

Compute the left and the right deviation borders of the fuzzy triangular number 

with a center of 26 according to (3). Thus, we obtain a fuzzy triangular number of the 

form (26, 5, 4.33) units.  

Fuzzy residual capacity of the arc  54 , xx  is equal to (5, 2, 2) – (2, 2, 2), i.e. (3, 2, 

2) units. Fuzzy residual capacity of the arc  106 , xx  is equal to (12, 2, 2) – (2, 2, 2), 

i.e. (10, 2, 2) units. Fuzzy residual capacity of the arc  1210 , xx  is equal to (25, 5, 4) – 

(2, 2, 2), i.e. we obtain a fuzzy number with a center of 23, located between adjacent 

values (22, 4, 4) and (25, 5, 4), therefore, the left deviation border of the number with 

a center of 23 equals to 4.33, the right deviation border is 4. We obtain fizzy triangu-
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lar number (23, 4.33, 4) units. Fuzzy residual capacities of the arcs 

),(),,(),,(),,( 12106105645 xxxxxxxx are (22, 4, 4) units. 

After execution of three iterations of the algorithm it is impossible to pass any sin-

gle additional flow unit. The total flow is (28, 5, 5) + (20, 2, 3) + (2, 2, 2) units. 

Therefore, we obtain a fuzzy triangular number with a center of 50, located to the 

right of the number (45, 8, 8) with the borders, repeated deviations of the number 45: 

(50, 8, 8) units. 

Thus, the maximum flow value between the stations “Kemerovo” and “Novosi-

birsk-Gl.” is (50, 8, 8) units. Let us carry out an interpretation of the results: the max-

imum flow between the given stations can not be less than 42 and more than 58 units, 

with the highest degree of confidence it will be equal to 50 units. But with changes in 

the environment, repairs on the roads, traffic congestions the flow is guaranteed to lie 

in the range from 42 to 58 units. Fuzzy optimal flow distribution along the arcs and 

labels of the nodes is shown in Fig. 5. Saturated arcs are bold. 
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Fig. 5. Network with maximum flow of (50, 8, 8) units. 

5   Solving the Task of Minimum Cost Flow Determining in Fuzzy 

Network 

Consider the problem of minimum cost flow finding in a network according to fuzzy 

values of arc capacities, flows and transmission costs of one flow unit.  
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In (5) ijc~  – fuzzy transmission cost of one flow unit along the arc ),,( ji xx  ~  – 

given fuzzy flow value, that doesn’t exceed the maximum flow ~  in the network. 

Let us turn to the graph, shown in Fig. 3. Fuzzy values of transmission costs in ad-

dition to fuzzy arc capacities are given in this task: 
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It is necessary to find a flow value ~  of (45, 8, 8) units from the source to the sink, 

which has a minimal cost. Consider the Busacker-Gowen’s [2] algorithm, taking into 

account the fuzzy capacities and costs to solve this problem: 

Step 1. Assign all arc flows and the flow rate equal to zero. 

Step 2. Determine the modified arc costs 
*~
ijс  that depend on the value of the al-

ready found flow as follows: 
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Step 3. Find the shortest chain (in our case – the chain of minimal cost) [2] from 

the source to the sink taking into account arc costs 
*~
ijс , found in the step 1. Push the 

flow along this chain until it ceases to be the shortest. Receive the new flow value by 

adding the new flow value, passing along the considered chain, to the previous one. If 

the new flow value equals to ~ , then the end. Otherwise, go to the step 2. 

Solve this problem, taking into account fuzzy arc capacities costs. 

Step 1. Assign all .0
~

ij  

Step 2. Determine .~~*
ijij cc   

Step 3. Find the shortest path by the Ford’s algorithm [1]: 12119831 xxxxxx  of the 

total cost of (75, 8, 8) standard units. Push the flow, equals to (28, 5, 5) units along 

this chain. 
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Step 2. Define the new modified fuzzy arc costs: 

).8,7,25(–~);8,7,25(~);5,5,19(–~;~);7,6,21(–~

);7,6,21(~);1,1,4(–~);1,1,4(~);2,1,6(–~);2,1,6(~

*****

*****

1112121191111989
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xxxxxxxxxx

xxxxxxxxxx
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Step 3. Find the shortest path using the obtained modified costs: 

1 3 4 5 6 10 12x x x x x x x  of the total cost of (86, 8, 8) standard units. Push the flow, equals 

to (17, 2, 2.25) units along this chain. As a result, we obtain the total flow equals to 

(45, 8, 8) units, having a total transmission cost along the network, equals to (28, 5, 5) 

× ((75, 8, 8) + (86, 8, 8)) = (3562, 8, 8) standard units. There are fuzzy flow values 

ij
~

 under the arcs and fuzzy transmission costs ijc~ of optimal fuzzy flow values ij
~

 

above the arcs of the graph, saturated arcs are bold as shown in Fig. 6. 
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Fig. 6. Network with the flow of (45, 8, 8) units and transmission costs of each arc of the total 

cost (3562, 8, 8) standard units. 

6   Conclusion 

This paper examines the problems of maximum and minimum cost flow determining 

in networks in terms of uncertainty, in particular, the arc capacities, as well as the 

transmission costs of one flow unit are represented as fuzzy triangular numbers. The 

technique of addition and subtraction of triangular numbers is considered. Presented 

technique suggests calculating the deviation borders of fuzzy triangular numbers 

based on the linear combinations of the deviation borders of the adjacent values. The 

fact that the limits of uncertainty of fuzzy triangular numbers should increase with the 

increasing of central values is taken into account. Advantage of the proposed method 

lies in the fact that operations with fuzzy triangular numbers don’t lead to a strong 
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“blurring” of their deviation borders, it makes calculations with such numbers more 

effective. 
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