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Abstract. In this paper we present a method for finding optimal pa-
rameters of graph Laplacian-based semantic segmentation. This method
is fully unsupervised and provides parameters individually for each im-
age. In the experiments on Graz dataset the accuracy of segmentation
obtained with the parameters provided by our method is very close to
the accuracy of segmentation obtained with the parameters chosen on
the test set.

1 Introduction

Methods based on graph Laplacian (L2-norm regularization) have shown state-
of-the-art results for interactive image segmentation [1] and image matting [2]. In
[1] Grady suggested explanation of using Laplacians for interactive segmentation
in terms of random walks. In [3] the use of graph Laplacian for interactive image
segmentation was explained in terms of transductive inference. The parameters
of graph Laplacian are usually chosen by validation on hold-out dataset. How-
ever, the optimal values of parameters can vary significantly from one image to
another, therefore choosing the parameters individually for each image is desir-
able.

In this paper we consider the task of finding optimal parameters of graph
Laplacian for semantic image segmentation. We propose a new method that
tunes the parameters individually for each test image without using any ground
truth segmentation. The idea of our method is based on the properties of graph
Laplacian to approximate the Laplace-Beltrami operator studied in [4]. Pro-
posed self-tuning method is computationally efficient and achieves performance
comparable to choosing the parameters on the test set.

The remainder of the paper if organized as follows. In section 2 we describe
the image segmentation framework used in this paper. In section 3 we present
our method for unsupervised learning of graph Laplacian parameters. In section
4 we present the experimental evaluation of the proposed method.

2 Semantic segmentation framework

Let us denote W : Wij = exp
(
−d (xi,xj))

2
)

- a weight matrix with Gaussian

kernel. Let gi =
∑
j wij stand for a sum of W along the i-th row. Let D be
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a diagonal matrix with values gi on diagonal. Graph Laplacian is defined as a
matrix L = W −D.

The methods for image segmentation and matting solve the following energy
function with respect to vector f = (f1, ..., fN ):

E(f) =
∑
i

ci (fi − yi)2 +
∑
i,j

wij (fi − fj)2 . (1)

In the matrix form (1) takes the following form:

E(f) = (f − y)
T
C (f − y) + fTLf , (2)

where C denotes a square diagonal matrix with ci on diagonal and y denotes
anN -dimensional vector of initial likelihood scores yi. This optimization problem
reduces to solving a sparse linear system:

(L+ C)f = Cy. (3)

The object/background segmentation algorithm then consists in: 1) com-
puting graph Laplacian matrix L; 2) solving the sparse linear system (3); 3)
thresholding the output. We assume that initial estimates yi and confidences ci
are provided by local models (e.g. appearance model of a specific category).

This framework can be extended to a multi-class segmentation. Let K denote
the number of labels corresponding to object categories. If we solve (3) for each

label l vs all other labels 1, · · · , l− 1, l+ 1, · · · ,K and obtain the values y
(l)
i for

all image pixels; at the end, an i-th image pixel is assigned to the label lmax,

where lmax = argmaxl=1,··· ,K y
(l)
i .

3 Self-tuning method

Suppose that the distance function d is represented as a weighted sum of metrics
di : R× R→ R+; i = 1, ...,K:

d(xi,xj)
2 =

1

ε

K∑
k=1

αkdk(xi,xj)
2 , (4)

with fixed α1 = 1. Therefore the parameters of graph Laplacian αi, i = 2, ..., l
are the weights of features xk, i = 2, ..., l and the kernel bandwidth ε. Below we
show that optimal value of ε is determined by the values of αi, i = 2, ..., l.

Choosing the kernel bandwidth ε with fixed α. We start by fixing the parameters
αi, i = 2, ..., l. As shown in [5], if we assume that L provides a good approxima-
tion of Laplace-Belrami operator then the following condition holds:
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log
∑
i,j

wij(ε) ≈ m/2 log(ε) + log

(
N2(2π)m/2

vol(M)

)
, (5)

where m is a dimensionality of corresponding manifold M and wij are the
elements of the weight matrix W .

Consider the logarithmic plot of log
∑
i,j wij with respect to log ε. Figure (3)

shows the plot of log
∑
ij wij with respect to log ε and logα for one image from

GrabCut dataset. According to (5) if the approximation is good then the slope
of this plot ε should be about the half dimensionality of corresponding manifold.

In the limit ε→∞, wij → 1, so
∑
ij wij → N2. On the other hand, as ε→ 0,

wij → δij , so
∑
ij wij → N . These two limiting values set two asymptotes of the

plot and assert that logarithmic plot cannot be linear for all values of ε.
Therefore in order to get better approximation of Laplace-Beltrami operator

with α1, ..., αK fixed we have to choose the value of ε from the linear region
of logarithmic plot. We use the point of maximum derivative as the point of
maximum linearity.

(a) (b)

Fig. 1. (a) - Top: segmentation errors for the ”fullmoon” image from GrabCut database
with respect to log ε (α is fixed). Bottom: Dashed line - logarithmic plot for the ”full-
moon” image with respect to log ε (α is fixed). The optimal value of ε is chosen in
the point of maximum derivative of the logarithmic plot; Solid line - sigmoid fit of the
logarithmic plot. (b) - The plot of log

∑
ij wij with respect to log ε and logα. Th plot

shown in shown in (3, bottom) corresponds to the 2-d slice of this 3-d plot for fixed α.
Note that the slope of linear region are not constant for all values of α. We seek for α
such that the slope in the linear region equals 0.5.

Unsupervised learning of α1, ..., αK and ε. As follows from (5) the slope of the
logarithmic curve near optimal value of ε has to be close to m/2, where m is
the dimensionality of manifold M . In our case m = 1, therefore the slope of the
logarithmic plot has to be 0.5. If the plot has different slope in the linear region,
this indicates that the second term in (5) is large.
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In order to find optimal values of α2, ..., αK we solve the following optimiza-
tion problem:

(α
(opt)
2 , ..., α

(opt)
K ) = arg min

α2,...,αK

‖S (α2, ..., αK)− 0.5‖ , (6)

where S (α2, ..., αK) is the slope of the logarithmic plot in the point of max-
imum derivative.

S (α2, ..., αK) can be estimated numerically. We can compute log
∑
ij wij

for different values of ε and estimate the slope of this function in the point of
maximum derivative. Therefore the optimization problem (6) can be solved using
standard optimization methods, e.g. Nelder-Mead simplex method.

The unsupervised learning method for graph Laplacian therefore has two
steps:

– Find α2, ..., αK by solving optimization problem (6)
– Find ε with α2, ..., αK as the point of maximum derivative of the logarithmic

plot.

Implementation details For the experiments in this work we use the distance
function from [3]:

d̃2(xi,xj) =
‖ri − rj‖2

σ2
r

+
‖xi − xj‖2

σ2
g

, (7)

where r encodes mean RGB color in the superpixel, x encodes coordinates of
the center of the superpixel, σr > 0 and σg > 0 are the parameters of the method.
The meaning σr > 0 and σg > 0 is the scale of chromatic neighbourhoods and
the scale of geometric neighbourhoods respectively.

This distance function (7) can be rewritten in the form of (4) as follows:

d̃2(xi,xj) =
1

ε

(
‖ri − rj‖2 + α ‖xi − xj‖2

)
, (8)

where ε = 0.5σ2
r and α = σ2

r/σ
2
g . Therefore, the distance function has two

parameters ε and α.
In the second step of the learning method (3) we use the sigmoid fit of the

logarithmic plot. The shape of logarithmic plot can be approximated with a
sigmoid function:T (x) = A

B+exp(Cx+D) +E. Since the asymptotes of the sigmoid

are set by (5) and the slope in the linear region of the sigmoid should be 0.5
the sigmoid has only one free parameter that controls the shift of the sigmoid
along horizontal axis. Figure (3) illustrates the choice of ε according to sigmoid
approximation.

In most cases the slope of the logarithmic plot S(α) is monotonic function of
α. Monotonicity of S(α) allows using simple bin-search for optimization problem
(6).
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(a) input image (b) local model (c) thresholded (b) (d) Laplacian (e) thresholded (d)

Fig. 2. Results of SVM and graph Laplacian method for images from Graz dataset.
(a) - input images of ”bike”, ”person” and ”cars” classes; (b) - real-valued output from
local SVM model, color ranges from blue to red and encodes the real-valued output; (c)
- results of thresholding the SVM outputs; (d) - real-valued output of graph Laplacian
using SVM as a local model with the parameters learnt by our method, color ranges
from blue to red and encodes the real-valued output; (e) - thresholded output of our
method. Note how graph Laplacian refines the output from SVM. It doesn’t oversmooth
the result and preserves fine details like the wheel of the bike and the small figure of
the person.

4 Experiments

In all experiments graph Laplacian operated with superpixels produced by image
over-segmentation methods. Each superpixel was linked with a fixed number of
it’s nearest neighbours, and the distances to other superpixels were assumed
infinite. For all experiments we used confidences that are a linear function of the
outputs of local appearance models ci = 0.5(1− |pi − 0.5|).

Graz dataset 1 contains 1096 images of three classes: ”person”, ”bike” and
”car”. In our experiments we solved a separate binary segmentation problem
for each category. To measure the quality of segmentation we used a standard
metric - percent of incorrectly classified pixels in the image.

In our experiments we used an open-source VlBlocks toolbox 2, which imple-
ments the method described in [6]. We chose it for comparison for the following
reasons. First, it allows using different local appearance models. The method has
a parameter N meaning number of neighbouring superpixels which features are
used for classification of each particular superpixel. So we report performance
metrics for different values of N to illustrate the performance of proposed graph
Laplacian framework applied to different local models. Second, the toolbox in-

1 available at http://www.emt.tugraz.at
2 code available at http://vlblocks.org/index.html
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(a) input image (b) N=0 (c) N=1 (d) N=2 (e) N=3 (f) N=4

Fig. 3. Results of using different local models. The first row shows real-valued output
of local appearance models. The color ranges from blue to red and encodes the real-
valued output from the segmentation framework. The second row shows results of our
method. Parameter N sets the size of superpixel neighborhood in the local model. The
effect of using graph Laplacian is better visible for smaller N .

(a) ”bike” class (b) ”person” class (c) ”car” class

Fig. 4. Precision-recall curves for ”bike”, ”person” and ”car” classes of Graz dataset.
Blue curves - local appearance model (N=0); Green curves - graph Laplacian with
learnt parameters.

cludes implementation of discrete CRF with graph-cut inference, which we use
for comparison. Note, this CRF model uses similar types of features (color and
spatial coordinates of superpixels) to those used in our graph Laplacian.

In our experiments on GrabCut dataset we used the same over-segmentation
and the same local appearance model based on SVM as [6]. To obtain initial
estimates yi for graph Laplacian framework we scaled SVM outputs to [0, 1]
interval for each image.

In the first experiment the parameters ε and α were validated on the GrabCut
dataset. In the second experiment we validated the parameters on the test set.
In the third experiment we used our unsupervised learning method for choosing
the parameters individually for each image. We also compared with Vlblocks
implementation of CRF with graph-cut inference. The strategy for choosing
internal parameters of CRF was the same as in [6].

Table 1 contains results of the comparison. Our unsupervised learning gives
results comparable to upper bound on performance of graph Laplacian with
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N=0 N=1 N=2 N=3 N=4
cars bike pers cars bike pers cars bike pers cars bike pers cars bike pers

SVM 41.9 56.5 49.4 59.6 66.9 63.6 68.0 69.2 66.6 69.4 70.7 65.2 66.5 71.9 63.6
GraphCut 43.0 57.7 49.3 60.2 67.1 63.9 70.1 70.2 66.9 70.7 71.0 65.4 68.8 72.2 64.2
Ours
(valid.GrabCut)

50.0 60.1 56.0 65.5 68.7 68.5 71.6 70.8 70.8 72.2 72.0 69.5 70.0 73.2 67.3

Ours (valid.testset) 56.6 63.3 59.1 66.3 68.4 68.8 71.9 70.4 70.4 72.6 71.2 69.4 70.8 72.2 68.0
Ours (learnt) 54.2 60.9 58.5 65.1 66.8 69.4 72.0 69.5 71.3 73.3 70.3 70.2 71.4 71.5 68.9

Table 1. Performance on Graz dataset at equal precision and recall rates for ”cars”,
”bike” and ”person” classes. First row: local appearance model (from VlBlocks tool-
box). Second row: result of applying discrete CRF with graph cut inference (from
VlBlocks toolbox). Third row: graph Laplacian with parameters validated on GrabCut
dataset. Fourth row: graph Laplacian with parameters validated on the test set. Fifth
row: graph Laplacian with parameters learnt individually for each image. For each ap-
pearance model used in our experiments (we varied the number of neighboring regions
as in [6]) the best result is shown in bold font. Underlined are the best overall results.

fixed parameters from the second experiment. The value of performance gain
compared to local appearance model differs for different values of parameter N .
The smaller N is the smaller neighborhood is considered by low-level model, and
the more significant is the gain in performance attained by both CRF and graph
Laplacian.

The gain in performance of graph Laplacian is almost uniformly higher than
the performance gain obtained by discrete CRF. Figure 2 shows results pro-
vided by local appearance model (SVM) and corresponding results of using
graph Laplacian with learnt parameters. Figure 3 shows how the results vary
for different local models.

The running time is the following: learning phase takes about 0.2 seconds on
average, solving of linear system 3 takes about 0.02 seconds on average.

5 Conclusion

We presented a method for tuning internal parameters of graph Laplacian in a
fully unsupervised manner individually for each test image. Proposed method
has a low computational cost and shows better performance compared to dis-
crete CRF with graph-cut inference. In the future work we plan to use more
complex distance functions and investigate the case then distance function has
more parameters.
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