

adfa, p. 1, 2012.

© Springer-Verlag Berlin Heidelberg 2012

User Models Sharing and Reusability:

 A Component-based Approach

Eyal Dim and Tsvi Kuflik

The University of Haifa, Mount Carmel, Haifa 31905, Israel

dimeyal@bezeqint.net, tsvikak@is.haifa.ac.il

Abstract. The current state of affairs in user modeling is that user models are

developed ad-hoc, as part of a specific application. The proprietary user mod-

els are evidence of the lack of standard user-modeling processes and the

amount of unnecessary rework done. Nowadays, when people tend to share

information, open source is available, and Component-based software devel-

opment is a common practice, it is time to adopt it for user modeling as well.

The Component-based user-modeling approach suggests a practical alterna-

tive to the ad-hoc development of user models: user-modeling components

that can evolve and be developed collaboratively and incrementally by the us-

er modeling community, enabling reuse and flexibility, leading towards new

and advanced user models built from existing components.

Keywords: user modeling, component-based user-model, reusable user models,

ubiquitous user modeling.

1 Introduction

Current systems that provide personalized services to their users develop their own

proprietary User Models (UMs) in an ad-hoc manner. This is due to the following

main reasons: (i) System's developers focus on specific characteristics of their users in

order to deliver a specific service (e.g. a movie recommendation). (ii) The user mod-

eling community does not have commonly accepted standards for UMs and their

structure. (iii) Reusable user modeling components are not publicly available. Finally,

(iv) the amount of effort required to develop a standard UM that holds a comprehen-

sive set of attributes is too big to be carried out in a single application. Over the years,

the user modeling research moved from suggesting complete, monolithic solutions in

the form of user modeling servers [Kobsa, 2007] and user-modeling ontological rep-

resentations [Heckmann, 2005], to partial and dynamic solutions in the form of medi-

ation and other aspects of interoperability and interlinking, while exploiting infor-

mation that may be available in various online sources (like social networks)

[Carmagnola et al., 2011; Leonardi et al. 2010]. We propose a different approach that

may support collaboration in developing UMs. This goal may be achieved by dividing

the UM into small, standard and reusable multipurpose building blocks that may be

integrated into more abstract UMs as needed. The proposed approach, a Component-

based approach for user modeling, is based on the Component-based development

approach, where a component is "a reusable unit of deployment and composition"

[Crnkovic et al., 2002]. This is an incremental approach for building UMs by using

components that will follow a standard form and will be publicly available to UM

developers. This will encourage developers to adopt standard component definitions

and create and use inventories of components in the cloud, while improving the com-

ponents over time and enabling their sharing and reuse, as well as exchanging user

modeling data across applications. For example, a Component-based UM may use

vital signs evidence, handled by a heartbeat component and a blood pressure compo-

nent to infer the user's health-state for serving a medical application, while another

UM may use the same components to infer the user's excitement-level for a shopping

application (see fig. 1 and more detailed explanation below). In both cases, the infer-

ence would be based on the same vital signs data, if standardized and ready for reuse.

Furthermore, the excitement-level attribute (as well as the health-state attribute) may

become a component too, available for the development of UMs that need this com-

ponent to provide other services.

The proposed approach suggests that a user-modeling component, will represent a

single attribute. Such a component is small, bounded, and easier to design in com-

parison to the entire UM. Moreover, the component is standalone, and may reside

anywhere in the cloud. It may use any inference, data fusion, reasoning, or learning

method. A reusable component in this case may become a building block in any UM.

In the future, such components would be available and would evolve to become a

standard de facto. Dividing the UMs into simpler and smaller components may enable

the recruiting of multinational effort to map and generate these components. The

components, their dynamically expanding inventory and relevant methodologies

could become a user-modeling standard supporting component suppliers, UM design-

ers and service applications developers.

2 Background and Related Work

Component-based development is a software engineering methodology, which sup-

ports the development of rich software applications by dividing them into independent

components as suggested by McIlroy [1968]. A component, according to Estublier

and Favre [2002] is an abstract box that encapsulates its properties and processing.

The Component-based development approach focuses on sharing and reuse of com-

ponents that has a high potential for improving the efficiency of system design and

development [de Almeida et al., 2005]. Stojanovic et al. [2006] presented a generali-

zation of component design that may hold information, be sensitive to events and

context, and supply services, which are constrained by conditions. Estublier and Favre

[2002] and Szyperski [2002] discussed various Component-based development

frameworks that matured for commercial usage, such as: JavaBeans, COBRA,

CORBA, COM, DCOM, COM+, MTS, CCM, .NET, and more. As part of the con-

text-awareness research, Dey [2000] presented the concept of the widget. The widget

is a component responsible for acquiring a certain type of context information and

making it available to applications in a generic manner, regardless of how it is actual-

ly sensed. Baldauf et.al [2007], presented some other tools that enable distributed

parallel access to data while encapsulating low-level data. Hofer et al. [2002] present-

ed an object-oriented approach, where specific objects supply specific lower level

interpretation of sensor information such as location, time, and network to a context

server that supplies relevant information to applications.

As for user modeling, the proposed Component-based UM approach requires both

the selection of those characteristics and features that can be downsized or attached to

a single-attribute component and the utilities that handle the inventory of user model-

ing standalone components. Nowadays, UMs are still developed ad-hoc, as part of a

specific application, requiring mediation in order to allow reuse [Berkovsky et al.,

2008]. As for a UM breakdown, the General User Model Ontology (GUMO) and

UbisWorld ontology [Heckmann, 2005] presented the UM as hierarchy and break-

down of concepts and attributes, implemented by using the User Modeling Language

(UserML). The contribution of GUMO and UbisWorld was in the methodological

representation of detailed user-modeling ontology, including concepts and their hier-

archies. However, while GUMO and UbisWorld were important attempts towards

standardization and coverage of all aspects of ubiquitous user modeling, this was their

pitfall. It is difficult to use them due to their comprehensive nature on one hand, and

the concepts they do not include on the other hand. Grapple and GUMF [Leonardi et

al., 2010] are based on the concepts suggested by GUMO for attribute definition,

metadata, having the benefit of rule-based reasoning, as well as web content retrieval

and knowledge buildup. While they suggest both an attribute definition and a UM

framework, the attributes are kept within the system, and are not standalone, and the

reasoning process is limited to rule-based reasoning.

3 Suggested UM Structure

A reusable UM component should be small enough while containing meaningful in-

formation useful for a variety of UMs. The inventory of such components in the cloud

should be rich enough to represent the concepts within a UM ontology. Each compo-

nent should be able to gather data, use an inference process to generate new infor-

mation, store it, and be able to provide the information to services or other compo-

nents. Since we are interested in a standalone single-attribute component, its structure

needs to be standardized, and support utilities such as explanation and privacy. Such

components may collect evidence from sensors (the same way widgets are doing it),

furthermore, they may store new information inferred from the evidence and provide

it to services as needed. Their output may serve as input to new components, generat-

Fig. 1. Multiple UMs sharing the same component in different compositions

- UM

Col-

- Component - Sensor

Collec-

Service Application

Legend:

ing new concepts through composition of standalone components. For example (see

Figure 1), a sportswear salesperson, trying to fit a product to a customer based on the

user's fitness, may activate a UM service that returns the fitness level based on the

user's average heartbeat and pulse. Another UM may serve a physician by assessing

the patient's health based on the comparison of the patient's current pulse and heart-

beat with their averages supplied by reuse of these components. A third UM may

reuse the current pulse and heartbeat to assess the current user's excitement level. All

three UM's in this example share the same sensor data and reuse some components,

but differ in the component compositions and the higher-level inference: the compo-

nents "health", "excitement" and "fitness".

3.1 The UM Basic component

Each basic component handles a single UM attribute. It has six parts (see Figure 2):

input port/s, output port/s, attribute generator, attribute repository, attribute access,

and meta-data & tools.

Fig. 2. The Basic Component

 The attribute generator reads the input data from the input port/s and manipulates

it. It may simply save the data in the attribute repository, or use more complex pro-

cessing of the input data, such as: data fusion, inference, and automatic learning. If

there is no data input, the attribute generator may use default data to initiate the at-

tribute value. Once the data manipulation is complete, the attribute data is ready to be

time tagged, and stored in the attribute repository with value-related characteristics

such as accuracy, confidence level and expiration date [Heckmann, 2005]. The data

may be a single value, a vector of temporal accumulation of values, or any other data

structure, as long as it represents a single attribute. When a service application or

another component needs the attribute's data, it may access the basic component

through the output port/s that return the required value in a predefined format. The

output ports are connected to the attribute access that verifies whether the service (or

another component) is authorized to access the data, based on considerations such as

privacy. Finally, there is the meta-data & tools part. It adds information that relates to

the component itself but not to the value currently stored within the component, such

as: UM instance identifier (e.g., the actual user or group identifier) [Heckmann,

2005]; or a definition of the attribute (help function), and explanations/scrutability

[Hechmann, 2005; Kay and Kummerfeld, 2006].

 Input Port/s Output Port /s

Meta-data & tools

Attribute

Generator

Attribute

Repository

Attribute

Access

3.2 The broader view

Once developed, components may be used by a UM designer as needed for any spe-

cific UM. Over time, a large inventory of components may be developed and ideally

stored in the cloud. In most cases, only a subset of that inventory may be required for

modeling a specific domain. Each such subset may be an independent UM assembled

from basic components, available as part of the entire inventory. The component's

metadata will enable the UM designer to find and select the required components

(using keywords or component description), and to understand the component's be-

havior. Figure 3(a) illustrates UM components stored in the cloud, while Figure 3(b)

shows how UMs are built by selecting individual components from for specific appli-

cations during design. The components are reusable, therefore a component may be

used by more than one UM (see the intersection of UM1 and UM2). Finally, figure

3(c) presents the instantiation of one of the models (UM1) for three specific users

(John, Marry and Jane) at run-time.

Fig. 3. Components, components inventory and UMs

4 Conclusions and Future Work

This paper presents a concept and a vision of a Component-based UM approach. Sin-

gle attribute standalone components and their compositions may enable building ab-

stract UMs. Each UM will be composed of the components that fit its purpose. Ac-

ceptance of this concept can enable components variability, reusability and flexibility.

Multiple vendors and freeware producers may compete over the future market of UM

components. Standards would evolve for specific components. Aggregation of com-

ponents or component-compositions would enable simple as well as complex ser-

vices. Experts would supply components in their field of expertise. New methods and

tools would enable components management, publication, and accessibility.

There are challenges that future research should address, such as: demonstration of

how the proposed approach can support the current user modeling methods (such as

feature-based filtering and collaborative filtering); standardization of the component

UM1

UM1 of

John

UM1 of

Marry

UM1 of

Jane

UM1

UM2
UM3

Legend:

Component

 onent

Components

 Inventory
UM

 UM

 Instantiation

(b – UM application design)

(c – Run-time) (a – Components inventory)

structure; maintainability; managing consistency; UM mediation through detection

and sharing of standard components across UMs; reliability and validation of compo-

nents; managing components' errors and fault tolerance; components plug-and-play

techniques; and considerations for scalability, efficiency and performance.

The component-based user modeling approach may set the necessary conditions

for sharing and reusability of UM structures as well as UM content. The dynamically

expanding inventory of components and supporting methodologies may become UM

standards de-facto. This process may encourage multinational collaboration serving

the benefit of users worldwide.

References

1. Baldauf, M., Dustdar, S. and Rosenberg, F.: A survey on Context-aware System. In: Int. J.

Ad Hoc and Ubiquitous Computing, Vol. 2, No. 4, pp.263–277, (2007).

2. Berkovsky, S., Kuflik, T., Ricci, F.: Mediation of User Models for Enhanced Personaliza-

tion in Recommender Systems. In: User Model, User-Adapt. Interact. 18(3), pp 245–286,

(2008).

3. Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. In: User Model

User-Adap Inter 21:285–331, (2011).

4. Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z.: Basic Concepts in CBSE. In:

Crnkovic, I. and Larsson, M. (edts.): Building Reliable Component-based Software Sys-

tems, (2002).

5. De Almeida, E.S., Alvaro, A., Lucredio, D., Garcia, V.C.; , de Lemos Meira, S.R. : A

survey on software reuse processes. In: IRI -2005 IEEE International Conference on In-

formation Reuse and Integration, pp 66-71, (2005).

6. Dey, A. K., Abowd G. D. Towards a better understanding of context and context-

awareness. In: CHI’2000 Workshop on the What, Who, Where, When, and How of Con-

text-Awareness, (2000).

7. Estublier, J., and Favre, J. M.: In: Crnkovic, I., and Larsson, M.: Building Reliable Com-

ponent-based Software Systems, Artech House, Inc., pp. 57-86, (2002).

8. Heckmann, D.: Ubiquitous User Modeling. Akademische Verlagsgesellschaft Aka GmBH,

Berlin, (2005).

9. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G.and Altmann, J.: Context-

awareness on Mobile Devices – the Hydrogen Approach. In: Proceedings of the 36th An-

nual Hawaii International Conference on System Sciences, (HICSS’03), IEEE, pp.292–

302, (2002).

10. Kay J. and Kummerfeld B.: Scrutability, User Control and Privacy for Distributed Person-

alization. In: Proceedings of the CHI2006 Workshop on Privacy-Enhanced Personaliza-

tion, pp 21-22, (2006).

11. Kobsa, A.: Generic User Modeling Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W.

(eds.): The Adaptive Web: Methods and Strategies of Web Personalization, Lecture Notes

in Computer Science, LNCS 4321, Springer-Verlag, Berlin eidelberg New York, pp 135-

154 (2007)

12. Lnardi E., Abel F., HeckmannD., Herder E., Hidders J., Houben G. J.: A Flexible Rule-

Based Method for Interlinking, Integrating, and Enriching User Data. In: Proc. ICWE

2010,(2010).

13. McIlroy, M.D.: Software Engineering: Report on a conference sponsored by the NATO

Science Committee. In: NATO Software Engineering Conference, NATO Scientific Af-

fairs Division pp. 138-155 (1968)

14. Stojanovic, Z., Dahanayake, A., Sol, H.: An Approach to Component-based and Service-

oriented System Architecture design. In: De Cezare, S., Lycett, M., Macredie, D. R.

(edts.): Development of Component-based Information Systems, M. E. Sharp, Inc., pp 23-

48, (2006).

15. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. 2nd ed. Ad-

dison-Wesley Professional, Boston, (2002).

