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Abstract. In this research, we explore the opportunity for a commu-
nity of e-learners to network together in a Web 3.0 environment in order
to improve the educational experience of each student. In particular, we
outline a procedure for each student to be able to propose the creation
of subdivisions of existing learning objects (text, video, etc.) of a prede-
fined corpus, in order to adjust the set of learning objects from which
subsequent students will learn. We provide an algorithm that specifies
the recommended content sequencing of the newly-created corpus for
each new student, using a probabilistic approach based on measures of
similarity with previous students and on the success of previous learning.
We demonstrate the value of this approach through simulations of stu-
dent learning experiences. In short, we provide a peer-driven personalized
learning experience for each student.

Keywords: Personalization and recommendations, Community model-
ing

1 Introduction

The paradigm of Social Semantic Web, Web 3.0, explores the big data chal-
lenges of dependencies between data and the application that created it and
the challenge of filtering massive amounts of content to find relevant, personal-
ized information for a particular user within a community of fellow users. This
work details novel technologies and methodologies for creating and managing
e-learning systems that address the questions of “how adaptation and personal-
ization methodologies can improve Web 3.0 environments” and “what models,
techniques, tools are the most adequate to support Web 3.0 users”.

In our research, we are exploring how the previous learning experiences of
other students with an online repository of learning objects (texts, videos, arti-
cles, etc.) can be used to leverage the learning of current students in an intelligent
tutoring environment. Inspired by the collaborative filtering approach of recom-
mender systems[1], we aim to first of all identify like-minded students as the basis
of the social network that is assisting the student. With this pool of students,
we then aim to recommend to students the objects that have offered the most
significant benefit to those previous peers. In contrast with other researchers,
we are interested in considering previous learning experiences that may have
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already ended, not restricting ourselves to the networking of students who are
currently engaged in learning, for our peer-based approach.

Our work takes as a starting point McCalla’s proposed ecological approach [2]
for the design of peer-based intelligent tutoring systems and first of all introduces
an algorithm for selecting appropriate content (learning objects) to present to a
student, based on previous learning experiences of peers. From here, our primary
focus is on the process of enabling peers to augment the corpus of learning
objects, proposing subdivisions of existing objects as valuable for guiding the
learning of subsequent students.

1.1 Our Approach

Our proposed Collaborative Learning Algorithm (CLA) for determining which
learning objects to present to students is presented in Algorithm 1. The an-
ticipated benefit of a specific learning object [, for the active user, a, under
consideration would be (Adapted from [1]):

pla,l] = nZw(a,j)vU, 0) (1)

where vfj,] is determined by assessing the student before and after the inter-
action, and the difference in knowledge is the benefit, w(a,j) reflects the similarity
€ (0,1], based on a comparison of assessments of each student’s knowledge (with
peer experiences reflected in the object’s history), between each user j and the
active user, a, and k is a normalizing factor.

Algorithm 1 CLA Algorithm 2 Expanding Corpus

Input: Repository of LO, set of students
for each time unit of instruction do
for each student (S) do
if student is available then
if not 5's first LO assignment then
do post-test assessment of 3
attach interaction with S to LO
update student similarities

Input current-student-assessment (CSA)
for each learning object (LO): do
Initialize currentBenefit to zero
Initialize sumOfBenefits to zero
Input interactions for students and LO
for all prior interactions on LO: do
{interactionInitialAssessment ITA }

similarity = caleSim(CSA, 1IA) {based on new assessment}
{interaction-final-assessment IFA} {allow S to divide the LO}
benefit = calcBen(IIA,IFA) if 8 creates & new LO then

{sumOfBenefits SOB}

te LO
SOB = SOB + sim * ben generate

{based on S and original LO}

end for i
dd new LO t sit
currBen = SOB / numOfPrevinter entl (ifm“ 0 Tepository
if bestObject.ben < currentBen then iRl
bestObject = currentObject aemican 546 A L0 Lk CTA}

end if L it? g

?nd 1-'01‘ i - end for

if bestObject.ben < 0 then s

bestObject = randomObject

end if Return: Repository of LOs

{includes old repository plus new objects}
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2 Corpus Algorithm

Our proposed approach [3] to maintaining a corpus of learning objects is to
provide students with tools to (optionally) divide non-atomic lessons, turning a
single learning object into multiple learning objects. For example, if a student
were assigned a book as a learning object, after reviewing it she might feel that
only 3 chapters were worthwhile for what she was trying to learn. Extracting
these from the book as a whole allows subsequent students to benefit from the
original student’s experience and quickly targets the part of the original learning
object that was most worthwhile.

Since as each student experiences a learning object new objects may be cre-
ated, these need to become new learning objects in the repository. The initial
interaction history for each new learning object is assigned the interaction of
the original learning object. The motivation for doing this is to enable the new
learning object to be as likely as the parent to be recommended to new students;
this serves to prime the new learning object for its place in the repository!. The
newly created learning objects are then available to be assigned to students using
the ITS.

The algorithm that creates a new learning object, based on student selection
of the most worthwhile parts, operates as follows. Once the student has selected
a portion, a new learning object is created using only those parts. As mentioned,
all data about previous interactions between students and the parent learning
object are copied to the newly created learning object. Once new learning objects
are introduced, the corpus grows to include divided objects as possible candi-
dates for the bestObject selected for a student as in the CLA. The procedure to
assign a learning object to a student is outlined in Algorithm 2. Over time, each
student will either be currently interacting with a learning object or available to
experience a new learning object. This is reflected in the pseudo-code description
of Algorithm 2.

Note that we choose to allow repeated viewing of learning objects by students.
This is consistent with the theories of psychologists such as Pimsleur [4] and is
reinforced by the “Blue’s Clues” case of school children viewing repeated lessons
mentioned in [5]. Extensions to this work could certainly be made contrasting
this approach to allowing each learning object to only be experienced once by a
particular student. This would result in more complex reasoning about showing
divided learning objects and their parents.

3 Experimental Method

In order to simulate the learning achieved by students, the following overall
approach was used. Let LOK/l,k] represent some learning object I’s target in-

! The introduction of a new learning object part way through the course of instruction
creates a cold start problem. Inheriting the interaction history is, necessarily, an
imperfect approach, as the entire point of creating a new learning object is for it to
be different from the original in some way. However, the perspective was taken that
this inherited history would be better than no history.
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struction level of knowledge k, such that LOK[Lk] € [0,1]. Here 1 represents
the highest levels of knowledge a student can have, and 0 represents the lowest.
For example, the target instruction level might be 0.68 for a 90 minute lab on
recursion, since students have completed previous learning but are still gaining
an understanding of nuances. Each object is assumed to be comprise of a small
fixed set of different knowledge K (where k € K).

Learning objects also have an impact, which can be positive or negative?.
Let Ifl,k] € R, represent the impact of learning from learning object { on the
knowledge k, that is, in the optimal case how much the learning object can
adjust a student’s knowledge k. The impact can be thought of as, for a student
at the target level, what is the expected learning benefit of the object. This is
information used by our approach to simulate the learning that is occurring.

Let UK]j,k/ represent user j’s knowledge of k € K, such that UK[j,k] € [0,1].
An example from computer science would be a knowledge of recursion recorded
to be at 0.33. This would be interpreted as the student has an understanding of
33% of the course content dealing with recursion.

After an interaction with an object I, a user j’s knowledge of k is changed
by:

I, k) 5
1+ (UK[j,k] — LOK]l, k])? (2)
This has the implication that the impact of a lesson is at a maximum when
the student’s knowledge level matches the target level of the learning object. As
the two values differ, the impact of the lesson exponentially decreases.
Based on this change, the user’s knowledge in that area is updated as:

AUK[j k] =

UK'[j, k] = UK[j, k] + AUK|j, k] 3)
The user’s average knowledge can then be calculated as:
[ 1 .
UK[J]ZQZUK[JJC] (4)

keK

In order to plot learning curves, the average knowledge (€ [0,1]) of all stu-
dents is plotted against their progress in the course of study. Algorithms perform
well when the average knowledge attained by students is high.

3.1 Experimental Design Decisions

In our results, the x-axis represents the units of time that have passed so far for
the instruction and the y-axis is the mean knowledge of the class as a whole,
ranging from 0 (complete ignorance) to 1 (complete mastery), where an individ-
ual student’s knowledge is calculated as the average over all k € K.3

2 The negative impact was introduced to simulate the possibility of misinformation
from a poor quality learning object or a learning object that does a good job teaching
one concept, while undermining the understanding of another concept.

3 In this simulation we used 6 k values.
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We incorporate reasoning about the length of time it takes to complete an
interaction with a learning object. Clearly, in real learning situations, learning
events can take variable amounts of time. Watching a recording of a lecture
might take 76 minutes, while attending a day long seminar might take 8 hours.
Rather than making the simplifying assumption that each interaction with a
learning object will take an equivalent length of time, we can incorporate this
concept into our reasoning.

Calculate Benefit (calcBen) of Algorithm 1 then needs to incorporate time.
Rather than consider the absolute benefit of the learning object, we can think
of the proportionate benefit, that is, how much benefit it provides per minute
of instruction (assuming a repository where each learning object’s average time
to completion is recorded). This can be calculated by dividing the benefit of the
learning object by the new length of time it takes to complete the interaction
for the average student.

For example, if one learning object, LO37, took 100 minutes to raise a student
from a B to a B+ and another learning object on the same subject, LO,2, took
20 minutes to raise a student from a B to a B+, we could say that LOys provides
5 times the benefit of LO37 (even though, in an absolute sense, they raised the
student’s grade the same amount).

Note that when a peer-generated division creates a new learning object, the
divided object begins with an interaction history inherited from its (longer)
parent; the predicted benefit of the parent object is thus also carried over (and
there is no adjustment in the calculation due to the divided object’s shorter
length). Once new students begin to interact with the divided object, the benefit
calculation then does include division by the length of object.

Algorithm 3 Function divide learning object simulation

1: Input: Learning object lo, student s
p g obJ
{After student s completes interaction with learning object lo}

2: if lo.generation < 3 then {Allow a max of 3 divisions}
3 if Random.prob(divide-value) < 0.20 then {20% chance a new division is proposed}
4 newLO = lo
5: newLO.generation = lo.generation + 1
6: newLO.length = lo.length / 2 {division always halves an object}
7 for each lo.impact do
8 newLO.impact[i] = lo.impact[i] / 2 {inherits half the impact of the parent}
9: if Random.prob(author-value) < s.authorship then
%(1): newLO.impact[i] = newLO.impact[i] * 1.1 {this models improved impact}
: else
12: newLO.impact[i] = newLO.impact[i] / 1.1 {this models decreased impact}
13: end if
14: end for
15: {achieve personalization}
16: for each lo.targetLevel do
17: diff = (s.knowledgeLevel[i] - lo.targetLevel[i]
18: newLO.targetLevel[i] = lo.targetLevel[i] + 0.1 x diff
19: end for
20: for each lo.interaction do
21: newLO.interaction[i] = lo.interaction][i]
22: end for
23: end if
24: end if

25: Return: newly created learning object, newLO
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In our simulation (detailed in Algorithm 3) a new lesson is created 20% of
the time when a student interacts with a learning object, representing a group of
students who are highly motivated to contribute to the system. After division,
the length of the newly created learning object is set to half of the original
learning object . The impact of the newly created learning object was set to
be proportionate to the new length, halved in this case®. This impact was then
adjusted to be slightly higher or lower, depending on the skill of the student who
proposed the division. The impact for each knowledge dimension, k, is increased
or decreased by 10%. The likelihood of an increase (rather than a decrease) was
set to be the authorship rating of the student who made the division. Student
authorship ratings were randomly generated in the range [0,1] and can be thought
of as the student’s ability to discern higher and lower quality parts of learning
objects.

The target level of instruction for each dimension of the learning object’s
knowledge was moved 10% closer to the current knowledge of the student mak-
ing the division. We refer to this as personalizing the newly created learning
object towards its author. This represents the idea that a student who is not as
advanced as the target level of instruction of the learning object will tend to se-
lect the simpler ideas presented, while a student who is more advanced than the
target level of instruction of the learning object will tend to select the advanced
concepts.

For each experiment, identical learning objects and students were used for
the various approaches. After the simulation, each student and learning object
was reverted to its original state for the next run. This allows us to remove the
variability from randomly differing groups of students and libraries of learning
objects when comparing the effects of the various conditions. The interaction his-
tory of the original, undivided learning object was copied to the newly created
learning object. After the division, each is tracked and considered independently.
Ultimately, this algorithm recommends which learning object, including newly
created learning objects, should be assigned to a particular student at a partic-
ular point in her course of study using Algorithm 2.

For the experiments 20 students interacted with 100 learning objects over 20
iterations and the averaged results are presented®. Students were simulated as
having certain levels of knowledge as a result of their post-test assessments. To be
realistic, we modelled some possible error with the assessment. This was achieved
by considering a Gaussian distribution with a mean of 0 and a standard deviation
of 0.1, yielding a number that would adjust the student’s assessment value to
be either somewhat higher or lower. Variable time length learning objects were
used. A total time of instruction of 20,000 time units was used and each learning
object ranged from 30 time units to 480 time units. The impact of each learning

4 This simplification, that division is always halved, may be relaxed in future work
and extensions made for arbitrary division of objects.

5 This was done in order to model the fact that only part of the entire possible benefit
from the learning object was experienced.

5 This was done to reduce random noise in the results.
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object ranged from -0.05:0.05 for a 30 time unit lesson, scaled proportionately
by length of lesson” through to an impact of -0.8:0.8 for a 480 time unit lesson.

In order to plot learning curves, the average knowledge (€ [0,1]) of all stu-
dents is plotted against their progress in the course of study. Algorithms perform
well when the average knowledge attained by students is high. A set of algorithms
to select learning objects for students were run, to demonstrate the value of the
proposed approach. Random Association associates each student with a ran-
domly assigned learning object; Greedy God chooses the best possible interac-
tion for each student for each trial®. These two curves are the benchmarks (low
performance and “the ideal”). Three variations of Algorithm 1 were then run to
set the LO in focus for the student. Raw Ecological has each student matched
with the learning object best predicted to benefit her knowledge; Pilot Group
has a subset of the students (10%) assigned, as a pilot group, systematically to
learning objects - these interactions are used to reason about the best sequence
for the remaining 90% of the students; Simulated Annealing provides a good
approximation of the global maxima for a large search space. During the first
1/2 of the trials there is an inverse chance, based on the progress of the trails,
that each student would be randomly associated with a lesson; otherwise, the
ecological approach was applied. This approach provides a nice balance between
exploration and exploitation.

4 Simulations

4.1 Divisions of Learning Objects

For this experiment we contrasted (i) divided learning objects, assigned to stu-
dents using Algorithm 2 with each of the ecological, pilot or simulated annealing
approaches with (ii) assigning the newly created learning object randomly or (iii)
using the greedy god approach. In this experiment, students are able to propose
divisions of learning objects and the repository of learning objects is extended
to include divided learning objects as well as the original ones. As mentioned
above, learning objects are divided 20% of the time when a student interacts
with them, and at most a learning object can have three generations (that is,
only itself and its children can be divided, its grandchildren can not). These
results are displayed in Figure 1 (a).

Personalization and authorship were used for this simulation to provide a
richer modeling of students and learning objects in the simulation. In other
words, the impact of the learning object is increased when the division is per-
formed by a student who is well skilled in authorship, leading to an increased
chance that the divided learning object would be shown to a new student if

" For example, a 90 time unit lesson would have impact ranging from -0:15:0:15, three
times a 30 time unit lesson.

8 This is achieved by giving the algorithm full access to the fine-grained knowledge
levels of the students and learning object, testing what the outcome would be for
every possible interaction, then choosing the best interaction for each student for
each trial.
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the authorship levels of the dividing student were higher; in addition, the target
level of the learning objects is brought closer to that of the dividing student to
increase the chances of showing this object to like-minded students.

Results: These results put the efficacy of reasoning about divided learning
objects in context between the baselines of the random (lower end) and greedy
god (ideal case) approaches. The steep curve of the greedy god condition is due
to the large number of learning objects, 500, and the newly created learning
objects, all of which this approach can immediately capitalize on.

We see that with the divided learning objects, the strengths of the various
approaches still hold. The simulated annealing under-performs initially, but de-
livers the best result by the end of the experiment and the pilot does best early
on, at the cost of a poor experience for the pilot group who prime the system for
their classmates. These results suggest that it is not harmful to allow peer-based
authoring, even in situations with highly variable authorship quality.

4.2 Differentiation of Original and New Learning Objects

In previous work [6] our simulations considered a fixed library of learning ob-
jects, all of which are present at the beginning. Divided learning objects, there-
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fore, presented a new challenges as they introduce new learning objects part way
through the simulated students’ course of study. This is an example of the cold-
start problem: how to recommend a new item with no interaction history. In this
work, we took the perspective that inheriting the history of interactions from
the parent learning objects was the best approach to “prime” the newly created
learning object. As the parent and child each has further interactions with stu-
dents, they can be differentiated between and (potentially) each recommended
to populations of student who would benefit from these interactions.

One challenge is that after creation and the attachment of these interactions,
the parent and child learning objects will have identical interaction histories, and
therefore will have equal predicted benefit for any particular student. Which to
recommend in the case of this tie is then the question that presents itself. For this
experiment, we contrasted yielding to the parent learning object versus yielding
to the child learning object (which we refer to as Reverse). These results are
displayed in Figure 1 (b).

Results: The similar results from giving priority to the original learning
object or the newly created learning object suggests that either approach allows
for the divided learning object to be differentiated from the original, and that a
systemic bias towards one or the other isn’t a large concern.

How the algorithm breaks ties and differentiates between the original and
newly created learning objects does not seem to compromise the performance
of our algorithm. This confirms that we are effectively learning which objects to
present to students in order to achieve the best benefit, regardless of the initial
assignments of objects to students.

4.3 Short Attention Span Students

We incorporated the idea of students with different learning styles by modeling
students with short attention spans. We scaled the impact of learning objects for
these students by increasing the shortest third (30 to 180 time units) of lessons
by 25%, and decreasing the impact of the longest third (330 to 480 time units)
of lessons by 25%. This was contrasted, for the raw ecological, ecological with
pilot and simulated annealing curriculum sequencing approaches, with a group of
students who were identical except for not having short attention spans (which
we refer to as SAS). These results are shown in Figure 1 (c).

Results: The results for each of the various curriculum sequencing ap-
proaches show that our approach handles student populations with different
learning needs (in this case length of lesson), making recommendations such
that appropriate learning objects are shown. With the raw ecological approach,
the short attention span group underperformed slightly, while in the ecologi-
cal with pilot approach it outperforms and in the simulated annealing they are
evenly matched.

The Pilot group out-performance can be explained by the more extensive
interaction history provided by the pilot group. This makes it easier for the
system to identify the superior performance from shorter lessons, and therefore
preferentially recommend these from the start. The raw ecological and simulated
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Fig. 2: Varying Authorship Ability in Students

annealing must gather data before there is sufficient history to systematically
assign shorter learning objects to students.

It is important to point out that our approach was not tailored to students
benefiting from or being penalized for varying lesson lengths. This was incor-
porated into the simulation of the interactions between students and learning
objects, but our approach reasoned about interactions using only the pre- and
post-assessments of each interaction. Using this data it was able to tailor the
curriculum to the special needs of this group.

4.4 Varying Authorship Ability in Students

We contrasted different populations of quality of student authoring by allow-
ing the student authorship characteristic to be all good (impact will always be
raised), all bad (impact will always be lowered) and ok, i.e. evenly distributed
between both (50% chance of being raised and 50% chance of being lowered).
These results are shown in Figure 2.

Results: These 3 results show that, for each of the curriculum sequencing
approaches, our technique was able to make useful recommendations to students.
The similar results in the raw ecological and the ecological with pilot for both
the good and the ok authorship demonstrates the techniques are very good at
finding worthwhile authorship (an even divide of good and bad authoring is
comparable to all-good authoring). The minimal under-performance of the all-
bad authoring results provides support for the perspective that even in the case
of very low authorship quality, a reasonable curriculum (based primarily on the
original learning objects) will be delivered.

5 Discussion

McCalla’s [2] work advocates the leveraging past interactions with students in
order to determine how best to interact with a particular student in a person-
alized manner. We go beyond this proposal, however, to allow for growth of
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the initial repository. This is important due to pervasive challenges in assem-
bling appropriate tutorial content, as discussed by researchers, such as [7, 8]. We
therefore contrast with other researchers in peer-based intelligent tutoring (e.g.
[9-11]) in allowing peers to (cautiously) play an additional role in the tutoring:
that of content authors. As a novel direction, we are careful to avoid presenting
peer-based objects which may possibly harm a student’s learning (distinct from
other peer-based tutoring researchers).

Other intelligent tutoring systems researchers have explored the value of sim-
ulating students. Van Lehn et al. ([12]) also specifically track and formally rep-
resent, for each student, their knowledge before learning, the behaviour during
the learning, the instruction and the student’s knowledge after learning. In con-
trast, we are interested in tracking behaviour with respect to learning objects,
and focus on modeling the student’s knowledge before and after interactions
with those learning objects. They measured the accuracy of production rules,
in terms of successfully matching a step in solving the problem, compared to
number of training problems or frequency of learning opportunities. We follow
a similar approach in the evaluation of our work, where we use the resulting
learning curves [13] to contrast educational environments.

Judy Kay’s work on Lifelong Learning Modeling [14] considers how to ap-
proach building a lifelong user model to support universal, personalized lifelong
learning. Kay advocates giving learners control of their model (what goes in,
what comes out and the ability to examine the model itself). She discusses
stereotypes (e.g. [15]) and communities as methods of reasoning about learners.
Learner modeling will certainly be an ongoing part of our work, and stereotypes
and communities might be a sophisticated way to create simulated students who
approach an intelligent tutoring system in different ways.

6 Conclusion

In this paper, we have presented a framework for peer-based intelligent tutoring
that not only leverages the past experiences of peers using a repository of learn-
ing objects but that also allows peers to propose divisions of existing objects in
order to introduce new objects into the corpus. Our algorithms for determining
which learning objects to present to each student are personalized, drawing on
the benefits enjoyed by like-minded students in the past. Our primary focus with
this research has been to investigate the appropriate support for divided learning
objects and for peer-based direction of the process of division. Through simula-
tions of the learning achieved by simulated students, we are able to verify that
the average knowledge levels achieved by students in the learning environment
described above are on a par with those where no divisions are allowed. More-
over, even in cases where the peers may be poorly skilled in proposing effective
divisions of objects, our framework ultimately presents to students objects that
deliver appropriate value.

The personalization offered by our particular approach is further reinforced
by simulations of populations of students who are more attuned to learning
objects of shorter duration (and who therefore thrive best when continuously
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presented with shorter, divided objects). We further illustrate how our approach
results in different objects for different students, with examples that map out how
inappropriate objects are stigmatized for these particular students and how two
students with certain distinguishing characteristics end up experiencing different
objects from the repository. In all, we offer a promising direction for Web 3.0:
allowing users to propose streamlined viewing of web objects with an algorithm
that effectively suggests which content should then be shown to peers.
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