
Behind the Scene of Solvers Competitions:
the evaluation Experience

Olivier Roussel
Université Lille-Nord de France, Artois, F-62307 Lens

CRIL, F-62307 Lens
CNRS UMR 8188, F-62307 Lens

roussel@cril.univ-artois.fr

Abstract. In principle, running a competition of solvers is easy: one just
needs to collect solvers and benchmarks, run the experiments and publish
the results. In practice, there are a number of issues that must be dealt
with. This paper attempts to summarize the experience accumulated
during the organization of several competitions: pseudo-Boolean, SAT
and CSP/MaxCSP competitions.

1 Introduction

Many different kinds of solvers competitions are organized nowadays. The main
goal of these competitions is to evaluate solvers in the same experimental condi-
tions. Another goal is to help collecting publicly available benchmarks and also
help identifying new solvers on the market. In fact, the actual goal of a compe-
tition is to help the community identify good ideas implemented in the solvers
as well as strange results which may lead to new ideas.

The most visible result of a competition is a ranking of solvers, which is
certainly a good motivation to improve one’s solver. However, a ranking is nec-
essarily an over-simplified view of a competition. Indeed, there are several ways
to look at the solvers results, and determining which solver is the best one is
indeed a multi-objective optimization problem, with an additional complication
being that users do not agree on the importance of each criteria. Besides, there
are necessarily a number of biases which can influence the rankings such as the
selection of benchmarks and the experimental conditions (hardware characteris-
tics, time limits, ...). To sum up, it should not be forgotten that the results of a
competition are not an absolute truth, but are just a way to collect data about
solvers on a large scale and allow anyone to start his own analysis.

The author’s experience with organizing competitions started in 2005 with
the pseudo-Boolean (PB) track of the SAT 2005 competition [1], co-organized
with Vasco Manquinho. At that time, most of the infrastructure was borrowed
from the SAT environment previously developed by Laurent Simon and Daniel
Le Berre. The first innovation in this track was the introduction of the runsolver
tool [2] to improve the timing of solvers and to control more precisely the al-
located resources. In 2006, the pseudo-Boolean evaluation became independent,
and the competition framework was improved into a system called evaluation.



This system was used to organize a large number of competitions since then:
pseudo-Boolean competitions (PB05, PB06, PB07, PB09, PB10, PB11, PB12)
[1], SAT competitions (SAT07, SAT09, SAT11) and CSP/MaxCSP competitions
(CPAI06, CPAI08, CSC09) [3]. evaluation is also used by local users to perform
their own experiments and was extended to support QBF, Max-SAT, AIG, MUS
and WCSP solvers.

Each competition introduced a new challenge and the number of solver types
that evaluation supports today makes it a very versatile system. This paper
attempts to summarize the most important features of evaluation, in the hope
that this can benefit everyone.

2 System requirements

The first reason for developing evaluation was the organization of the pseudo-
Boolean competitions. Since the beginning, the pseudo-Boolean competition (PB
competition for short) had two tracks: one for the decision problem and another
one for the optimization problem. Therefore, beyond the requirements inher-
ent to any competition of a specific kind of solver, the evaluation framework was
immediately faced to a few more requirements to support different kinds of prob-
lems as well as different kinds of solvers. This section lists the main requirements
that evaluation must fulfill.

Support for partial answers: In the optimization track of the PB competition,
the ultimate goal is to find the optimal value of the objective function, and prove
that it is actually optimal (“OPT” answer) within the given time limit. However,
proving optimality is generally hard and the solver may reach the timeout before
it can claim that it has proved optimality. In order to be able to compare solvers
which have not been able to give the definitive answer “OPT” within the time
limit, it was necessary to be able to interrupt the solvers in a way that allowed
them to give the best (partial) answer they had found so far. The implemented
solution was to send a SIGTERM signal to the solver to warn it that the time
limit was reached, and give the solver a few more seconds to give the best answer
it had found that far (in this case, a “SAT” answer indicating that a solution
was found, but this solution is not necessarily optimal). Once the grace period
is expired, the solver is sent a SIGKILL signal to terminate it. This solution
assumes that the solver can intercept the SIGTERM signal, which is easy in
most languages. However, this interception is impossible in a few languages such
as Java. Fortunately, Java offers a hook to call a function before the termination
of the program. Otherwise, solvers must use the time limit parameter provided by
the competition environment and make sure that they will terminate gracefully
before this limit.

Support for incomplete solvers: The next challenge was to add support for in-
complete solvers (local search solvers) in the pseudo-Boolean competition. In
the SAT competition (and more generally for a decision problem), support for



incomplete solvers is straightforward because the solver stops as soon as it finds
a solution. Therefore, the only difference between a complete and incomplete
solvers appears on unsatisfiable instances, where incomplete solvers will reach
the time limit without providing an answer1.

The situation is more complicated in the PB competition (and more generally
for an optimization problem) because an incomplete solver will keep searching
for a better solution until it reaches the timeout. In order to be able to compare
incomplete and complete solvers, it is necessary to get the value of the best
solution they found and also, the time used to find this solution. Of course, the
competition cannot trust any timing given by the solver. The solution was to
require the solver to print a specific line each time it finds a better solution, and
let the competition environment timestamp each of these lines. The time required
to find the best solution found by the solver (without proving optimality) is
called T1 in the evaluation framework and allows to compare both complete and
incomplete solvers on a common basis.

This approach also allowed to obtain for free a plot of the value of the ob-
jective function of the solver current solution, as a function of time. Such a
graph gives precious information on the convergence of the solver toward the
best solution.

Support for different categories: Basically, a SAT solver is able to solve any kind
of CNF. Even if it is specialized for a category of instances such as random ones,
it is still able to read instances encoding concrete applications even if in practice,
it is unlikely to be able to solve it. In the PB and CSP world for example, the
situation is different. Not all PB solvers are able to deal with both decision
and optimization problems, with both coefficients which fit in a regular 32 bits
integer and coefficients that require arbitrary precision arithmetic, with both
linear and non-linear constraints. In the same spirit, CSP solvers are not all able
to deal with both extensional constraints, intentional constraints and any kind
of global constraint.

Therefore, the environment must support different categories of instances
defined upon the characteristics of their constraints. Solvers are registered by
their authors in one or more of these categories, which indicates that these solvers
are technically able to parse and solve these instances. In the PB competition,
there are currently up to 8 categories in each of the 2 tracks.

In the CSP world, dealing with global constraints is a challenge of its own.
There are several hundreds of global constraints defined, and many solvers imple-
ment only a few of them. It is almost impossible to define in advance categories
of instances based on the kind of global constraints they contain: this would
require enumerating all subsets of the global constraints appearing in the test
set, which would not make sense. The proposed solution here is to define a spe-
cial “UNSUPPORTED” answer that indicates that a solver has no support for
a kind of constraint present in an instance. This allows to identify cluster of

1 Some incomplete solvers may however answer UNSAT in some cases



solvers which are able to solve the same kinds of constraints and compare them
on a common basis.

Verification of answers: One of the most fundamental requirement of a com-
petition framework is to verify the answer given by a solver. Indeed, probably
one of the major contribution of a competition is to enhance the global quality
of solvers by eliminating incorrect solvers during the competition, which is a
strong incentive for writing correct solvers! This verification requires that the
solver generates a certificate that is checked by the competition framework.

Ideally, this certificate must be cheap to generate, and cheap to verify. This
is generally the case for positive answers of a decision problem. For instance,
in most cases, a SAT solver can easily print the model that satisfies the CNF.
In contrast, certificates for UNSAT answers are much harder to generate and
to check, and is the subject of a specific competition. The only check that is
performed for UNSAT answers is to verify that no other solver found a solution.
The situation is similar for OPT answers, and the only check performed is to
verify that no other solver found a better solution.

The MUS (Minimally Unsatisfiable Subset) competition is a specific case.
Certificates are easily generated (they are merely a list of clauses that form a
MUS) but harder to verify since it must be checked that the MUS is unsatisfi-
able and that each proper subset is satisfiable. The evaluation framework was
extended in 2011 to verify these certificates in a post-processing step.

Data recording: A job is a run of a given solver on one instance. During a
competition, it is not uncommon that some jobs do not run correctly, either
because of problems with the solver or because of problems in the environment
(lack of space on /tmp, interactions with processes left running on the host, ...).
It is highly desirable to collect a maximum of information on the jobs in order
to be able to analyze what actually happened once a problem is detected. In a
sense, we need a kind of flight recorder for solvers.

The evaluation system stores a lot of information on the job: the host con-
figuration, the solvers parameters, the instance characteristics and the output
of the solver. Besides, runsolver regularly saves information on the processes
started by the solver. In most cases, this is sufficient to identify problems, in
which case jobs just have to be run again. Sometimes, some solvers generate
tens of gigabytes of output. To protect itself, the environment must limit the
size of the solver output. This is done by runsolver which preserves the start and
the end of the output. The size limit must be chosen with care because some
certificates are huge (e.g. > 16 GB).

Some verifications can be done by the competition organizers, but the ulti-
mate verification can only be done by the solver authors, who are the only ones
to know exactly how their solver should behave. This is the reason why all the
collected data are made available to the authors before the results of the com-
petition are published, so that they can detect problems that would otherwise
remain undetected.



Miscellaneous requirements: A first requirement is that the competition frame-
work should have as little interaction as possible with the solver and especially
ensure that nothing slows down the solver. Unfortunately, the only way to ensure
this would be to run the solver on a non preemptive operating system, which is
incompatible with the normal use of a cluster.

In practice, the solver is run on a traditional Unix system, under the moni-
toring of runsolver. This monitoring process necessarily interferes with the solver
(access to main memory and to the processor cache, small consumption of CPU
time) but the interference is limited [2] and the benefits of runsolver exceed its
drawbacks.

Another point is that solvers running on different hosts should not interfere,
which may happen when instances are read on a network file system. For this
reason, the evaluation framework first copies both instances and the solver bi-
naries from the network to a local disk (/tmp) and then starts the solver with
every generated data stored on the local disk.

To be sure that the instance is correctly copied to the local disk, and that the
correct version of the solver is used, a checksum of each copied file is generated
and checked against the fingerprint stored in the database.

At last, the environment allows the solver to report additional information
(such as the number of nodes, the number of checks,...) which are recorded by
the system.

Parallel solver support: More and more solvers are now designed to use the
multicores processors which are available on each machine since several years.
The environment must obviously record the wall clock time (WC time) and the
CPU time of the solver (see section 4.3) but it must also be able to allocate a
subset of the cores to the solver (see section 4.1). When a solver is not allocated
the complete set of cores available on a host, the system must ensure that only
instances of the same solver will run on that host, in order to at least avoid
interferences between two solvers designed by different authors.

3 General architecture

In order to ensure privilege separation, the evaluation system is implemented as
a client/server system. The server manages the dialog with the database and the
log file. It is also in charge of granting a job to each client as well as receiving the
job results, checking that the solver answer is consistent with the other answers
on the same instance, and recording the results in the database.

The client is in charge of receiving a job from the server, copying the solver
and the instance to the local disk (/tmp), construct the solver command line and
call runsolver to monitor the solver execution. runsolver stores its data in files
on the local disk. At the end of the solver execution, the client runs a verifier
program to check the certificate given by the solver. At last, the client copies
the files generated by runsolver on the local disk to a central directory shared
on the network, and reports the results to the server.



The client is also in charge of allocating the cores to the solver, and ensuring
that only instances of the same solver are run in parallel on a node.

The last part of the evaluation system deals with the visualization of the
results by the users. This part is currently implemented in PHP. Unfortunately,
online generation of pages from the databases is too inefficient (the database is
several tens of GB large because it contains the results of many competitions).
Therefore, HTML pages are generated in advance and stored in a cache. The
drawback of this system is that it limits the number of pages that can be gen-
erated, because each of them must be stored on the web server (in compressed
form). A new system is planned where the generation of web pages would be
done by the browser, which would allow more interaction with the user.

4 Resources Allocation and Limits Enforcement

In this section, we detail the problem of allocating resources to both sequential
and parallel solvers in a way that is both efficient and as fair as possible.

4.1 Allocation of Cores

The problem of allocating cores to solvers appears when a cluster of nodes with
multicores processors is used, which is always the case with recent hardware. The
nodes in the cluster used by evaluation have two quad-core processors and 32
GB RAM. Obviously, it is highly desirable to optimize the use of the cluster and
run concurrently as many solvers as possible on one host. On the other hand, it
is also highly desirable to obtain results that are both reproducible and do not
depend on external factors such as the other processes running on the system.
Besides, if several solvers are run in parallel, we want to measure times that
are almost equivalent to the ones of a solver running alone on the same host.
Unfortunately, these objectives are contradictory. As soon as several programs
are running in parallel (including the runsolver process monitoring the solver),
they necessarily compete for access to main memory and more importantly to
the various cache levels of the processor.

Some experimentation performed on Minisat, indicated that running 8 se-
quential solvers in parallel (one core allocated to each solver) induced a 35 %
time penalty in average, running 4 sequential solvers concurrently on a node (2
cores allocated per solver) implied a 16% penalty in average and at last running
2 sequential solvers concurrently on a node (4 cores allocated per solver) implied
almost no penalty (0.4 %) in comparison of running one single sequential solver
per node.

In the SAT 2011 competition, it was decided to run 4 sequential solvers in
parallel (2 cores per solver) during phase 1 which is used to select the solvers
which can enter the second phase. In phase 2 which is the one actually used
for ranking solvers, only 2 sequential solvers were run in parallel on a node
(4 cores per solver). Parallel solvers where allocated 4 cores in phase 1 (two
solver running in parallel on a node) and 8 cores in phase 2 (only one solver per



node). As explained previously, evaluation ensured that only instances of the
same solver were run in parallel on a given host.

Clearly, a balance must be found between the precision of the time measure-
ments and the number of solvers run in parallel on the cluster. Given the time
constraints and the number of solvers submitted to a competition such as the
SAT competition, there is little hope to have enough computing resources to
afford running one single solver per node in any case.

4.2 Allocation of Memory

Once the policy for allocating cores to solvers is decided, one must decide of the
policy for allocating memory to solvers. The basic policy is to reserve a fraction of
RAM to the system and to share equally the rest of memory between the solvers
running in parallel. Solvers are not allowed to swap on disk, because this kills
the hardware and most importantly gives times which are only representative of
the hard disk performances. As an example, solvers in the SAT 2011 competition
were allowed to use 31GB divided by the number of concurrent solvers. In phase
1, this amounts to 7.7 GB for sequential solvers and 15.5 GB for parallel solvers.
In phase 2, this amounts to 15.5 GB for sequential solvers and 31 GB for parallel
solvers. Given policy on core allocation, parallel solvers were allocated twice the
memory of a sequential solver!

This looks clearly unfair at first, and actually it is, but on the other hand,
parallel solvers necessarily need more memory than sequential solvers. Hence,
enforcing the same limit would not be fair either! Clearly, we believe that there
is no way to be absolutely fair regarding memory allocation for sequential and
parallel solvers. The policy chosen in that competition is not perfect, but can be
seen as an indirect way to encourage the development of parallel solvers.

4.3 Allocation of Time

In computer science, there are mainly two distinct notions of time: wall clock
time and CPU time. The wall clock time (WC time for short) is the real time
that elapses between the start and the end of a computing task. The CPU time is
the time during which instructions of the program are executed by a processing
unit. On a host with a single processing unit, CPU time and wall clock time are
equal as long as the system does not interrupt the program. As soon as a time-
sharing system is used on a single processing unit, wall clock time will usually
be greater than CPU time, because during some time slices the processor will be
allocated to another program. On a host with n processing units, if the program
is able to use efficiently each of these units and is not interrupted by the system,
the CPU time will be equal to n times the wall clock time. Generally speaking,
the CPU time is a good measure of the computing effort, while wall clock time
corresponds to the user’s perception of the program efficiency.

For sequential solvers, there’s a clear agreement that CPU time is the right
measure of efficiency since it allows to mostly abstract from the perturbation



caused by the computing environment. For parallel solvers, two different points
of view exist.

The first point of view is to consider that only the wall clock time matters,
which amounts to considering that CPU resources come for free. This might
make sense on a desktop computer where the different cores are idle most of
the time. However, this leads to approaches which perform redundant computa-
tions, such as some portfolio approaches, and clearly waste computing resources.
Besides, the assumption that cores come for free does not make sense in larger
environments such as clusters or clouds. Each core must be used efficiently.

The second point of view also consider wall clock time but actually puts the
emphasis on CPU time. The motivation is that we expect the parallel solver to
distribute the computations equally on the different cores and avoid any redun-
dant computation. Therefore, the CPU time used by a parallel solver should not
be significantly greater than the CPU time of a sequential solver and the wall
clock time of the parallel solver should tend toward the CPU time of the sequen-
tial solver divided by the number of cores. Of course, it is well known that this
perfect result cannot be obtained because a parallel solver faces problems that
the sequential solver doesn’t: synchronization problems, contention on memory
access,...

In 2009, there has been strong discussions between the organizers of the SAT
competition about which point of view should be taken by the competition. In the
end, it was decided to put the emphasis on CPU time in order to encourage the
community to use efficiently the available cores and also to be able to compare
sequential and parallel solvers on a common basis. This lead to enforcing the
same CPU limits for both sequential and parallel solvers. In the end, this was
unsatisfactory because it showed only one side of the comparison and completely
hid the wall clock time information.

In 2011, it was decided to be more neutral and in fact adopt both point
of views. Therefore, two different rankings were set up: a CPU ranking and a
WC ranking. The WC ranking is based on wall clock time and was expected to
promote solvers which use all available resources to give an answer as quickly as
possible. In this ranking, timeout is imposed on the wall clock time. The CPU
ranking is based on CPU time and was expected to promote solvers which use
resources as efficiently as possible. In this ranking, timeout is imposed on CPU
time.

Besides, it was decided to organize only one track mixing both sequential
and parallel solvers. Indeed, there’s no actual reason to differentiate sequential
or parallel solvers. The only thing that matters is their performances, either in
CPU time or in WC time. It was expected that parallel solvers would perform
better in the WC ranking while sequential solvers would perform better in the
CPU ranking. Mixing the two kinds of solvers in a same ranking, either CPU or
WC based, allows a mostly fair comparison. If a parallel solver does not perform
better than a sequential solver in the WC ranking, there is no point in using it.
Conversely, if a sequential solver does not perform better than a parallel solver
in the CPU ranking, there is no point in using it.



For a chosen timeout To and a number n of available cores, the idea was to
have a CPU ranking with a limit on CPU time set to To and a WC ranking
with a limit on WC time set to To. Obviously, it was essential to run one single
experiment to get both information. Therefore, sequential solvers were run with
a CPU limit of To and parallel solvers were run with a CPU limit of n.To. Since
the operating system may suspend the solver execution for some time, we have
to select a WC limit which is slightly greater than To, otherwise it might be
impossible to reach the CPU limit in some cases. Generally speaking, the CPU
limit is considered more reliable than the WC limit because it presumably does
not depend on the other processes running on the system. A post-processing of
the results enforces the same CPU or WC limit to generate the CPU and WC
rankings respectively.

Choosing the right WC limit for the ranking is actually extremely difficult.
On the one hand, it is clear for sequential solvers that the WC limit should be
slightly larger than To, let’s say To + ε. The value of ε can be chosen relatively
large because it is only used to compensate delays that are not caused by the
solver. On the other hand, for parallel solvers, it makes more sense to set the
WC limit to be equal to To. Otherwise, a solver that uses all n cores will hit
the CPU limit set to n.To after a WC time only slightly greater than To, but a
solver that leaves some core idle may never hit the CPU limit and only hit the
WC limit To + ε. If ε is large, this would imply that inefficient parallel solvers
would be granted more WC clock time than efficient parallel solvers. Here, the
choice of ε compensate delays that are caused in part by the solver itself and
therefore should tend to 0.

As an example, in the second phase of the 2011 competition, the experiments
were performed with a WC limit set to 5100 s for all solvers. Sequential solvers
were allowed to use 5000 s CPU time and parallel solvers on 8 cores had a limit
set to 40,000 s CPU time. Results were post-processed to enforce a CPU and
WC limit of 5000 s for the CPU ranking and a CPU limit of 40,000 s and a WC
limit of 5000 s for the WC ranking.

4.4 Enforcing limits

Once resources are allocated to the solvers, limits on these resources must be
enforced. This task is not as obvious as it seems. One important problem is
that the most straightforward command for measuring the time of a program
(the time(1) command) frequently fails for solvers running multiple processes,
which occurs as soon as a shell script is used to start the solver. Indeed, this
command uses times(2) to display the time statistics of the solver. However,
this system call only returns the “resources used by those of its children that
have terminated and have been waited for”. This implies that if, for some reason,
the parent process doesn’t call wait(2), the resources used by the child will be
ignored. This also means that these commands cannot enforce reliable limits for
multi-process solvers because the resources used by the child are only reported
when it terminates.



runsolver was designed to avoid this trap, as well as some others, and im-
plements several other requirements presented at the beginning of this article.
A detailed description of runsolver is out of the scope of this paper, but can be
found in [2]. We only present here its main characteristics.

runsolver is a Linux specific program and is freely available under the Gnu
Public License from http://www.cril.univ-artois.fr/~roussel/runsolver.
Basically, runsolver can be seen as the integration of ulimit(1), time(1) and ps(1)
with several improvements. It is called with the command line of the solver to
run, and parameters specifying the various limits. Once runsolver has launched
the solver, it periodically monitors the time and memory consumption of the
solver processes by fetching the relevant information from the /proc filesystem
and summing the resource usages2. Sanity checks are performed to identify cases
where a parent did not wait for its child. As soon as the solver reaches a resource
limit, it is gracefully stopped. Process or thread creation or deletion by the solver
are also monitored. Periodically, the list of processes run by the solver is saved
in a log file in order to allow a post-mortem analysis of what happened.

Each line printed by the solver can be timestamped to identify how much
CPU and wall clock time elapsed since the start of the solver. This is a very
convenient feature that allows to learn for example how long the solver took
to parse the instance or to learn at what time the solver improved its current
solution (for optimization problems).

At last, runsolver is able to allocate to a solver a given subset of the host
cores (with sched setaffinity(2)) and is able to deal with solvers that generate a
huge amount of output (sometimes several tens of GB) by storing only the start
and the end of its output.

Since runsolver was designed to avoid requiring any root privilege, it runs
as a regular program and slightly compete with the solver for CPU usage and
memory access. However, the resources used by runsolver are very limited and
the perturbation is negligible (see [2]).

5 Rankings

The most visible aspect of a competition is to produce a ranking of solvers, but
it should be emphasized that such a ranking can only represent one point of
view.

Indeed, there are many different ways to look at solvers, and different users
generally have different points of views on the comparison of solvers. One point
of view is to consider that the solver able to answer on the greatest number
of instances is the best one. This is the point of view adopted in several com-
petitions. It has the advantage to be simple and effective, but of course it is
somewhat over-simplified. One may also want to consider the number of solved
instances in each family, and prefer solvers which have either a balanced number
of solved instances in each family, or inversely prefer solvers which solve the most

2 Memory of threads of a same process is not added, since they share the same address
space.

http://www.cril.univ-artois.fr/~roussel/runsolver


instances in the family of interest to the user. Some users consider the integration
of the solver into a wider system and prefer a fast solver to a solver answering
more often but which is slower in average. They may also prefer solvers using in
average less memory than competitors with similar results.

Alternatively, one may wish to give an advantage to solvers which use new
techniques that are the only ones able to solve some instances. Indeed, the purse
scoring [4] integrates this point of view. For each instance, a purse of points is
divided between the solvers that gave an answer. When only a few solvers are
able to solve an instance, they gain more points. This system has interesting
properties, but also some drawbacks (the score of a solver depends on the other
solvers for example). Several other scoring methods have been proposed [5,6],
each with their own pros and cons.

Several other aspects could or should be taken into account in the rankings.
The robustness of a solver, that is, its ability to solve an instance which is close
to an instance that it already solves (for example instances obtained by shuffling
constraints and variables) is a desirable feature. Determinism, that is, the ability
to give the same answer in approximately the same time when the solver is run on
the same instance several times, is a feature which is important for the adoption
of solvers in industrial applications.

Clearly, there are many criteria to compare solvers and expecting to integrate
all these criteria into one single ranking is just an utopia. Therefore, one must
accept that a competition ranking is just a way to attract contestants, but that
it cannot summarize all the details of the picture taken by the competition.

As a last illustration of this point, let us consider the situation of sequential
and parallel solvers. It is clear that sequential solvers must be compared on CPU
time. Regarding parallel solvers, WC time is clearly an important parameter.
Some users consider that the cores present on their computer come for free and
disregard CPU time. In our opinion, this is a mistake. CPU time is a resource of
its own, which becomes obvious when the solver is integrated into a larger system.
The solution adopted in the SAT 2011 competition is to compare solvers on the
two criteria: CPU and WC time, without separating sequential and parallel
solvers. This generates a CPU ranking and a WC ranking in which each solver
appears. The rationale is that, a parallel solver is of no interest if it does not
outperform a sequential solver in WC time, and conversely a sequential solver is
of no interest if it does not outperform a parallel solver in CPU time. In practice,
it has been actually observed that sequential solvers outperformed some parallel
solvers in the WC ranking and that parallel solvers outperformed some sequential
solvers in the CPU ranking.

6 Conclusion

This paper presented the principles that governed several competitions (PB,
SAT, CSP, MUS,...). It can be seen that several issues must be solved during
a competition. Several points are open to discussion. Nevertheless, in the end,
organizers must choose their own policy. It should be remembered that a com-



petition does not generate an absolute truth: it merely generates a lot of data
that can be analyzed in different ways by the community and that contribute to
the improvement of solvers, which is the sole actual goal of a competition.

References

1. Manquinho, V., Roussel, O.: The First Evaluation of Pseudo-Boolean Solvers
(PB’05). Journal on Satisfiability, Boolean Modeling and Computation 2 (2006)
103–143

2. Roussel, O.: Controlling a Solver Execution: the runsolver Tool. Journal on Satis-
fiability, Boolean Modeling and Computation(JSAT) 7 (nov 2011) 139–144

3. Lecoutre, C., Roussel, O., Van Dongen, M.: Promoting robust black-box solvers
through competitions. Constraints 15(3) (jul 2010) 317–326

4. Van Gelder, A., Le Berre, D., Biere, A., Kullmann, O., Simon, L.: Purse-based
scoring for comparison of exponential-time programs. Poster (2005)

5. Nikolic, M.: Statistical methodology for comparison of sat solvers. In Strichman,
O., Szeider, S., eds.: SAT. Volume 6175 of Lecture Notes in Computer Science.,
Springer (2010) 209–222

6. Van Gelder, A.: Careful ranking of multiple solvers with timeouts and ties. In: Proc.
SAT (LNCS 6695), Springer (2011) 317–328


	Behind the Scene of Solvers Competitions: the evaluation Experience

