
Evaluating the Usability of
Interactive Verification Systems

Bernhard Beckert1 and Sarah Grebing2

1 Karlsruhe Institute of Technology (KIT)
beckert@kit.edu

2 University of Koblenz-Landau
sarahgrebing@uni-koblenz.de

Abstract. Usability is an important criterion for measuring and com-
paring the quality of software systems. It is particularly important for
interactive verification systems, which heavily rely on user support to
find proofs and that require various complex user interactions.
In this paper, we present a questionnaire for evaluating interactive ver-
ification systems based on Green and Petre’s Cognitive Dimensions. In
a first case study, we have used this questionnaire to evaluate our own
tool, the KeY System. The lessons learned from this evaluation relate
(1) to the usability of the KeY System and interactive verification sys-
tems in general and also (2) gave us insights on how to perform usability
evaluations for interactive verification systems.

1 Introduction

Overview For the acceptance, success, and widespread use of software its us-
ability plays a central role. It is an important criterion for measuring and com-
paring the quality of software systems. And usability is particularly important
for interactive verification systems, which heavily rely on user support to find
proofs and that require various complex user interactions. However, measuring
usability has so far not been the focus of developers of verification systems –
instead the community generally concentrates on measuring performance of sys-
tems without evaluating to what degree usability effects a system’s efficiency.

In general, there are a variety of methods for integrating usability in the de-
velopment process. This includes analysis methods such as task and user analysis
at the planning stage, testing methods where users are monitored while using
a system (or a prototype), but also evaluation methods such as questionnaires
and interviews [1, 2].

In this paper, we discuss and present a questionnaire for evaluating interac-
tive verification systems based on Green and Petre’s Cognitive Dimensions [3].
In a first case study, we have used this questionnaire to evaluate our own tool,
the KeY System. The lessons learned from this evaluation relate (1) to the us-
ability of the KeY System and interactive verification systems in general and also
(2) to insights on how to perform usability evaluations for interactive verification
systems, where such an evaluation can form a basis for improving usability.



Though usability should be taken into account from the beginning of the
software life cycle, in this work we concentrate on evaluating the usability of an
already existing tool.

Related Work As said above, there is not a lot of work reported on evaluating
usability of verification systems or deduction systems in general. A noteworthy
exception is Kadoda et al.’s list of desirable features for educational theorem
provers [4], which resulted from an evaluation of proof systems based on a ques-
tionnaire using Green and Petre’s Cognitive Dimensions’ framework.

Griffioen and Huisman [5] present a comparison of PVS and Isabelle from
a user’s perspective. They propose to have something similar to consumer re-
ports for reasoning tools, which can help users choosing the right tool for their
application. In this work the two proof tools Isabelle and PVS are compared
with respect to their logic, specification language, proof commands, strategies,
and the availability of decision procedures, as well as system architecture, proof
manager, and user interface. In addition, the user manuals and support tool is
taken into account. At the end, the authors give a list of criteria on which the
tools have been tested. The lessons we have learned from our evaluation mainly
coincide with the aspects given by the authors.

Aitken and Melham analyze errors in interactive proof attempts [6]. They
propose the error taxonomy by Zapf et al. as a usability metric. For this the
authors have done two user studies with the interactive theorem provers Isabelle
and HOL. Experienced users of both systems had to solve a task and the user’s
interactions were recorded. User errors where then categorized into three types:
logical errors, interaction errors, and syntax errors. The authors draw conclusions
about the usability of interactive theorem provers. Based on their evaluation, the
authors provide some practical advice for the design of proof environments and
the user interface of interactive theorem provers.

There are also attempts to improve the user interface of theorem provers,
which plays a central role for usability – besides other factors such as the system’s
response to the user, the design of program logics and specification languages,
system documentation etc. For example, Bertot and Théry [7] propose ways
to build a user-friendly interface for theorem provers, which include concepts
such as “proof-by-pointing”, “script management” and “textual explanation of
proofs”. The user interfaces of particular deduction systems have been evaluated
in a number of papers, for example, that of Isabelle [8], that of PVS [9], and
that of KIV [10].

There are various competitions (such as CASC, SMT-COMP and SAT),
where the performance of automated deduction systems is compared. In re-
cent years, attempts to compare interactive verification systems have changed
from comparing just the effectiveness (counting the number of problems that
can be solved in arbitrary time) to the comparison of effectiveness and efficiency



(counting how many problems can be solved in limited time). Competitions of
that form where held at VSTTE 20103 [11], VSTTE 20124, and FoVeOOS 20115.

Structure of this Paper This paper is structured as follows: Section 2 gives
an overview of usability and its evaluation in general. Section 3 briefly describes
the KeY System, which we used for our evaluation case study. In Section 4,
we present our questionnaire and its design; and in Section 5 we discuss the
recruitment of participants for the evaluation. Section 6 contains the results of
the evaluation and the lessons learned on the usability of KeY, the usability of
verification systems in general, and on the design of the questionnaire. Finally,
in Section 7 we draw conclusions and discuss future work.

2 Usability of Software

Software usability is mostly investigated as part of research in the area of human-
computer interaction. However, besides a well-designed user interface, other as-
pects of a system – e.g., good documentation – play an important role for us-
ability.

According to ISO 9241 Part 11 [12], usability is defined as the “extent to
which a product can be used by specified users to achieve specified goals with
(i) effectiveness, (ii) efficiency, and (iii) satisfaction in a specified context of
use.” The standard also defines the three terms effectiveness, efficiency, and
satisfaction:

Effectiveness: Accuracy and completeness with which users achieve specified
goals.

Efficiency: Resources expended in relation to the accuracy and completeness
with which users achieve goals

Satisfaction: Freedom from discomfort and positive attitudes towards the use of
the product.

Usability is also often defined via five attributes (1) learnability, (2) efficiency,
(3) user retention over time, (4) error rate, and (5) satisfaction. Depending on
the system, these attributes differ in relevance and may also directly affect each
other. For example, high efficiency often leads to reduced learnability (as, for
example, key shortcuts need to be learned) [2].

There are standardized questionnaires and evaluation methods for usability
that have been widely accepted. One such method is the Software Usability Mea-
surement Inventory (SUMI)6. The SUMI questions are statements with which an
interviewed user can “agree” or “disagree” (there is also an “undecided” option).

3 http://www.macs.hw.ac.uk/vstte10/Competition.html
4 https://sites.google.com/site/vstte2012/compet
5 http://foveoos2011.cost-ic0701.org/verification-competition
6 http://sumi.ucc.ie



Besides an introductory text about how to answer the statements, the SUMI
questionnaire consists of a main part of 50 statements, which have the three pos-
sible answers already mentioned, and a smaller part addressing the interviewee’s
experience level and the importance of the software.

As SUMI is an established method, with a concise questionnaire, it is a low-
effort method both for the evaluator and the interviewee. However, there is also a
major disadvantage, which is that the feedback consists only of numbers. There-
fore no information on how to improve usability in a particular area is gained.
The result of evaluating a system with the SUMI method is a “score” reflect-
ing how well the system performed in each of five dimensions (corresponding to
the five attributes mentioned above), and in what dimension the system needs
improvement.

Another important method in the area of software usability are the cognitive
dimensions of notations, first described by Green and Petre [3] and modified
into the Cognitive Dimensions framework proposed by Green and Blackwell. It
provides a “practical usability tool for everyday analysts and designers” [13].
Rather than being an analytic method, the cognitive dimensions provide a vo-
cabulary to discuss aspects that are cognitively relevant. The concept should
of cognitive dimensions allows designers to evaluate their system, to a certain
extent, by themselves, without the help of experts [13, 14].

Table 1 (taken from Green’s tutorial on cognitive dimensions [13] with modifi-
cations from [3]) briefly summarizes the 14 Cognitive Dimensions of Information
Artefacts.

3 Evaluation Target: The KeY System

The target for our usability-evaluation case study is the KeY Program Verifica-
tion System [15, 16] (co-developed by the authors’ research group at the Karl-
sruhe Institute of Technology, Germany and groups at TU Darmstadt, Germany
and at Chalmers University, Gothenburg, Sweden).

The target language for verification in the KeY system is Java Card 2.2.1.
Java 1.4 programs that respect the limitations of Java Card (no floats, no con-
currency, no dynamic class loading) can be verified as well. Specifications are
written using the Java Modeling Language (JML).

The program logic of KeY, called Java Card DL, is axiomatised in a se-
quent calculus. Those calculus rules that axiomatise program formulas define a
symbolic execution engine for Java Card and so directly reflect the operational
semantics. The calculus is written in a small domain-specific language called the
taclet language [15] that was designed for concise description of rules. Taclets
specify not merely the logical content of a rule, but also the context and prag-
matics of its application. They can be efficiently compiled not only into the rule
engine, but also into the automation heuristics and into the GUI. Depending
on the configuration, the axiomatisation of Java Card in the KeY prover uses
1000–1300 taclets.



Table 1. Definition of the cognitive dimensions by Green and Petre [13, 3]

Cognitive
Dimension

Description

Visibility and
Juxtaposability

Visibility: ability to view components easily, respectively is
every part of the code simultaneously visible (assuming a large
enough display)
Juxtaposability: ability to place/view any two components
side by side

Error-proneness Does the design of the notation induce ‘careless mistakes’?

Abstraction An abstraction is a class of entities or a grouping of elements
to be treated as one entity, either to lower the viscosity or to
make the notation more like the user’s conceptual structure

Hidden
dependencies

A hidden dependency is a relationship between two compo-
nents such that one of them is dependent on the other, but
that the dependency is not fully visible. In particular, the one-
way pointer where A points to B but B does not contain a
back-pointer to A

Premature
commitment

Constraints on the order of doing things force the user to make
a decision before the proper information is available

Secondary
notation

Extra information carried by other means than the official
syntax

Viscosity Resistance to change; the cost of making small changes

Closeness of
mapping

Closeness of representation to domain

Consistency Similar semantics are expressed in similar syntactic forms, re-
spectively when some of the language has been learnt, how
much of the rest can be inferred?

Diffuseness Verbosity of language, respectively how many symbols or
graphic entities are required to express a meaning?

Hard mental
operations

High demand on cognitive resources

Progressive
evaluation

Work-to-date can be checked at any time

Provisionality Degree of commitment to actions or marks

Role
expressiveness

The purpose of a component (or an action or a symbol) is
readily inferred

The KeY system is not merely a verification condition generator (VCG),
but a theorem prover for program logic that combines a variety of automated
reasoning techniques with interactive theorem proving. It employs a free-variable
sequent calculus for first-order dynamic logic for Java.

While striving for a high degree of automation, the KeY prover features a
user interface for presentation of proof states and rule application, aiming at a
seamless integration of automated and interactive proving.



The KeY System’s user interface consists of a window divided into two parts.
On the left side of the window the proof tree is displayed showing the applied
rules and case distinctions.

On the right side of the window shows the sequent currently in focus. KeY
supports navigation of the proof tree and the application of rules through clicking
on (sub-)formulas, and it offers comfortable interaction mechanisms such as drag-
and-drop for quantifier instantiations. More on the user interface of the KeY
System can be found in [17].

4 Constructing the Questionnaire

Concept of the Questionnaire The main idea behind the design of our ques-
tionnaire is to cover the cognitive dimensions [18, 19]. Our idea was to investigate
– in general – whether these dimensions can serve as a method for evaluating
interactive verification systems and – specifically – in which way the KeY System
should be changed to improve its usability.

Table 1 shows the cognitive dimensions [13], and Table 2 shows examples
of the corresponding questions from our questionnaire. As the table shows, our
questions cover almost all cognitive dimensions except the dimension of hidden
dependencies.

Note that some dimensions are covered by more than one question. These
questions often differ in how specific they are for our chosen target. For exam-
ple, a question for the dimension of visibility and juxtaposability that applies in
general to interactive theorem provers is:

How clear is the arrangement of the formulas in the open goal? Is it
possible to determine where a formula results from?.

A question that also relates to visibility and juxtaposability but is more specific
to the KeY System is:

To handle formulas to be proven, the KeY System transforms it with
normal form rules (e.g., arithmetic rules). Which normal form rules (the
ones KeY applies during the automatic verification process) are most
annoying or confusing when the automatic process stops and you have
to continue interactively?

Specific questions may lead to more specific answers, which may be more useful
for improving the system. Some questions we asked even mention suspected
problems with usability and ask for a confirmation. On the other hand, such
specific questions are often leading and presuppose certain answers. They also
make it harder to compare different systems w.r.t. their usability. For that reason
our questionnaire includes both general and specific questions. Some questions
are half-way between general and specific, such as

Your automatic proof stops with 1000 closed and 1 open goal. What are
the first steps you do?



Table 2. Example questions from the questionnaire (the full version can be found at
http://userpages.uni-koblenz.de/~sarahgrebing/questionnaireForm.pdf).

Cognitive
Dimension

Questions

Visibility and
Juxtaposability

How clear is the arrangement of the formulas in the open goal?
Is it possible to determine where a formula results from?

Error-proneness Do some kind of mistakes during the interactive verification
process seem particularly common or easy to make?

Abstraction Would you like to have user-defined abstract datatypes?

Premature
commitment

Your automatic proof stops with 1000 closed and 1 open goal.
What are the first steps you do?

Secondary
notation

In JML it is possible to use comments for notes or explanations
of the annotation. Would it be useful to have such a feature
for proof nodes/subsequents/proof branches in KeY?

Viscosity If you need to make a change to the previous work (proof,
program, or annotation), how easy is it to make the change?
Why?

Closeness of
mapping

Does the JML notation or the dynamic logic notation allow
you to express your intuition why a program is correct with
respect to its annotation? Are there cases where the notation
is not sufficient?

Consistency Where there are different parts of the proof/open goal that
have a similar meaning, is the similarity clear from the way
they appear? Please give examples.

Diffuseness Does the JML notation or dynamic logic notation (a) let you
say what you want reasonably briefly, or is it (b) long-winded?
Why?

Hard mental
operations

Verifying programs using KeY, what proportion of the time
(approximately) are you spending on: quantifier instantiation,
finding the right invariant, . . .

Progressive
evaluation

How easy is it to stop in the middle of creating a proof and
check your work so far? Can you find out how much progress
you have made?

Provisionality Other proof systems allow to sketch the proof at a more ab-
stract/higher level (like Isabelle/HOL’s tactics). Do you think
it could be useful in KeY to sketch proofs if you have an idea
how the proof might look like, without giving detailed inter-
active guidance? If yes, do you have an idea what such a func-
tionality might look like?

Role
expressiveness

Would you like to have labels at formulas that indicate the
application of which rule the formula resulted from?

Besides instantiating the cognitive dimensions framework, we also included
some questions taken from or inspired by the SUMI questionnaire. In addition,
there are some questions aimed at gaining information about the interviewees,
e.g., their experience level.



The structure of the questionnaire and examples for the questions are de-
scribed in more detail in the following subsections.

Structure of the Questionnaire Our questionnaire7 contains 48 questions
in total, of which 44 are open questions. It has the following overall structure:
after an introductory text describing the evaluation and its goals, we start with
some general questions about the interviewee’s experience with the KeY System.
Next, we ask questions about performing proof tasks and then questions about
the proof presentation. The next parts of the questionnaire cover the notation, in
our case the JML notation, and the error messages provided by the system. In the
last part of the questionnaire, we ask questions about usability in general, about
experiences with other proof systems, and about some auxiliary information such
as a contact address.

Questions Covering the Cognitive Dimensions Our questions related to
cognitive dimensions are mostly instances of the questions in the “cognitive
dimensions questionnaire optimized for users” [18, 19]. For example

When looking at an open goal, is it easy to tell what each sub-sequent is
for in the overall scheme? Why?

is an instance of

When reading the notation, is it easy to tell what each part is for in the
overall scheme? Why?

where we have instantiated the “notation” with the “open goal” and “part of
notation” with “sub-sequent”. Note, that such instantiations cannot be done
uniformly for all questions. For example, the term “notation” may have to be
instantiated with “open goal”, “JML notation” or “proof presentation” in dif-
ferent contexts.

According to Kadoda’s checklist [4], there are additional dimensions for veri-
fication systems, such as assistance (proof plan, next step) and meaningful error
messages, which we covered as well. The dimension “assistance” we covered with
the question “When the automatic proof process stops, is there enough informa-
tion given on the screen to continue interactively or do you have to search (e.g.,
scroll on the screen or click onto the proof tree / search in the proof tree) for
the appropriate information?”.

SUMI Questions As already recorded, we included a few questions inspired by
SUMI besides questions covering the cognitive dimensions. In particular, some
of the more general questions resulted from turning the SUMI question into an
open question. For example, the SUMI question (question number 2)

7 There is an online and an offline version of the questionnaire. The offline ver-
sion can be downloaded at http://userpages.uni-koblenz.de/~sarahgrebing/

questionnaireForm.pdf.



I would recommend this software to my colleagues.

was turned into the open question

I would recommend the KeY System to people who . . .

SUMI also has a few open questions such as “What do you think is the best aspect
of this software, and why?” or “What do you think needs most improvement,
and why?”. The first question we divided into two questions: “List the three
most positive or most helpful aspects of the KeY System for the interactive
verification process” and “List the three most negative or annoying aspects of
KeY concerning the interactive verification process”.

Questions Regarding the Interviewee’s Experience Level Different user
groups with different experience levels have different needs w.r.t. a system’s
usability. It is therefore important to get information on the interviewee’s expe-
rience level and how it relates to their answers.

The questions concerning the interviewee’s experience with the KeY System
included different ratings of the experience level. The interviewees had to choose
one of the experience levels (a) little experience, (b) average, (c) above average,
and (d) expert (these levels are defined in the questionnaire in more detail).
They had to name the largest and most complex project they had verified using
the KeY System. They also had to state since when they have been using the
KeY System.

5 Recruiting the Participants

To recruit the participants, we asked 25 KeY users either personally or in person-
alised emails to participate in our evaluation. We got responses from 17 partici-
pants. Their experience levels were almost evenly distributed between “average”,
“above average” and “expert”. We had one participant with “little experience”.
Many (but not all) participants had some relationship with the KeY project.
The time they had been using KeY ranged from the early beginnings of the KeY
System’s development (around 1999) to a few months during a university course.

For a usability evaluation, this is a small sample of interviewees. But this
sample gave us some interesting and useful insights both into the usability of
KeY and the design of usability questionnaires (as explained in the following
sections), and we feel that this is a sufficient sample size for a first evaluation.

For many interactive verification systems, which are developed in academia,
recruiting a larger number of participants is difficult. Even more so, if one wants
to recruit participants that know different systems and are able to compare
them, or if one wants to only recruit participants that have no relation to the
institution were the system is being developed (e.g., are enrolled as students)
and are thus more likely to give unbiased responses.

For Kadoda’s paper [20] about the differences between designers and users
of theorem proving assistants, a questionnaire was sent to 27 interviewees, i.e., a



sample size similar to ours. The case study identified the gap between different
system views of the designers on the one hand and the users on the other hand.
It also highlighted that the cognitive dimensions have an effect on these differ-
ences. However, due to the small sample size, Kadoda found it hard to identify
particular areas where system designers have to take special care in order to
build a usable system.

6 Lessons Learned

6.1 Lessons Learned About Features that are Important for
Usability

Many questions we asked in the questionnaire are posed in a way specific to the
KeY System. Nevertheless, many of the answers we got and the lessons learned
from the survey apply just as well to interactive verification systems in general.
In the following these lessons are discussed in more detail.

Proof Presentation: A Major Point for Improvement Almost all participants
agreed that the presentation of (partial) proofs – and the formulas and sequences
of which proofs consist – is central to the usability of KeY. It is a time-consuming
task to inspect the sequences and to reconstruct the structure of the proof by
tracing the origin of each subsequence and formula. Thus, a (further) improve-
ment of KeY in this area, which relates to the cognitive dimension of visibility
and juxtaposability, should take high priority when usability is to be increased.

Documentation: Not Even the Specialists Know Everything Another important
area where the usability of KeY could be improved is documentation. About
50% of the participants mentioned a lack of documentation in at least one of
their answers. However, it is not one particular part or feature of the system that
seems to be in particular need of better documentation, but different participants
with different experience voice a wish for different areas where the documenta-
tion should be improved: the proof-search strategy settings, the proof rules, the
annotation language, and various other system features.

KeY is a rather long-running project and various documentation exists, in-
cluding a book [15]. This may be the reason why only very few participants
asked for documentation in general or for a manual to be written. But the an-
swers show that good documentation is essential. Even highly experienced users
and members of the development team asked for certain aspects of the documen-
tation to be improved, which shows that even specialists cannot be expected to
know everything about a tool without referring to documentation.

Proof and Change Management: For a Better Overview of What to Prove A
good proof and change management contributes to usability as well. This relates
to the cognitive dimensions of viscosity and hidden dependencies. We asked the
question of how easy it is to make a change to previous work (proof, program,
or annotation). In the KeY System, changing the program to be verified or its



annotation is a simple task. However, if the proofs contain interactive steps,
it is time consuming work to redo the proofs which are affected by changes.
There is some functionality in KeY for replaying proofs automatically [21, 22],
but responses to our questionnaire show that users would like to have more
support in this area.

Additional Annotation Mechanisms: A Possibly Helpful Mechanism for Inexpe-
rienced Users In the questionnaire we asked about a possible extension of KeY
that allows to the addition of comments to nodes in proof trees:

In JML it is possible to use comments for notes or explanations of
the annotation. Would it be useful to have such a feature for proof
nodes/subsequents/proof branches in KeY?

This relates to secondary notation in the cognitive dimensions. The range of an-
swers to this question shows that users have mixed feelings. The positive answers
emphasised that such a feature may be particularly helpful for inexperienced
users. Some participants also suggested that proof annotations may be added
automatically by the system. That, however, would go beyond the dimension of
secondary notation and also relate to better visibility.

6.2 Lessons Learned About How Users Define Usability of
Interactive Verification Systems

We asked the participants what usability of an interactive verification system
means for them. The answers we got were manifold, but they mostly supported
our assumption that the cognitive dimensions framework is a good model and
provides the right concepts for evaluating usability of interactive verification
systems.

Areas that were mentioned frequently as being of particular importance for
usability are related to proof presentation and the cognitive dimension of visibil-
ity and juxtaposability. Some typical answers are: “understandable/easy to read
presentation of (partial) proofs/open goal, if the verification has to be continued
interactively” and “easy location of proof branches”.

Another important area is proof guidance as the following answers suggest:
“good feedback and guidance when proof attempt fails” and “suggestions on
how to proceed”.

Documentation of the tool and its rules as well as easy tool usage (with less
theoretical background) have been mentioned as features that contribute to the
usability for interactive verification systems. The dimension of viscosity was also
mentioned (e.g., “proof management, what remains to do”).

Finally, there were answers relating to the performance of the system and to
the user interface in general (e.g., “easy to use interface” and “interaction via
mouse and keyboard”).

All in all, the answers covered our expectations for features that contribute
to the cognitive dimensions and, thus the usability of interactive verification
systems:



– proof presentation,

– documentation,

– change management,

– proof guidance,

– feedback mechanism,

– quality of the user interface,

– good performance of the automatic proof search.

6.3 Lessons Learned About How to Evaluate Usability of
Interactive Verification Systems

Lessons on How to Pose Questions

Open vs. Closed Questions One important lesson we have learned is that it is not
a good idea to have too many open questions as they take more time to answer.
The response rate goes down with too many open questions and the answers
tend to get shorter and less useful. Also, answers to open questions are harder
to evaluate. One should therefore carefully balance open and closed questions
and use closed questions where possible.

Clarity of Questions is Important The cognitive dimensions as vocabulary for
the usability of a system are a good starting point. But – not surprisingly – one
has to carefully think about how to instantiate the concepts. For example, the
question

Where there are different parts of the proof/open goal that have a similar
meaning, is the similarity clear from the way they appear? Please give
examples.

is an instance of a question from the cognitive dimensions questionnaire. But
with this question we gained almost no information because participants did not
know how to interpret “similar meaning”. The problem seems to be that in the
world of formal methods, “meaning” is identified with “semantics”. And to a
formal-methods person, it is clear that similar semantics may or may not be
indicated by appearance (syntax). On the other hand, “meaning” in the above
question could also be interpreted as “purpose”. So participants got confused.

Another example for a question that was often misunderstood is

If the performance of the automatic proof process would be improved,
would that lead to a better productivity? Or wouldn’t it help, because
most time is spent elsewhere during the proof process?

More than half of the users interpreted the “performance” as referring to ef-
fectiveness, i.e., which problems can be solved at all, and not as referring to
efficiency (computation time), which was our intended meaning.



Rating Participants’ Experience Level To interpret participant’s answers,
it is very important to know if there are different classes of users and to what
class a participant belongs. A typical example for such classes are users with
different experience levels.

We asked the participants to (subjectively) rate their own experience level
and we asked for objective measures, namely the size of the biggest project they
did with KeY and for how long they have been using KeY.

It turns out that users are not good at judging their experience level. Some
who had just used the system in a lab course for two months rated their level to
be “average”, while some who had been working frequently with the system for
years rated themselves as “average” as well. Thus, asking for a self-rating only
makes sense if the various levels are well-defined (such as “you are an experienced
user if . . . ”).

Improving Usability vs. Measuring Usability One major drawback of the
cognitive dimensions is the fact that there is no measure or score for usabil-
ity with which one can compare different systems. On the other hand, a SUMI
evaluation provides a score but does not provide detailed feedback on how to
improve usability. So, in follow-up evaluations, we plan to use a better combi-
nation of both kinds of questions to get both a score and some feedback on how
to improve the system.

Designing Questionnaires for Evaluating Other Systems? It is rather difficult
to design a questionnaire that can be used to evaluate arbitrary verification
systems. In particular, questions that relate to the cognitive dimensions depend
on the system and on the information the systems designers want to gain.

The authors of the “cognitive dimensions questionnaire for users” [18] pro-
pose to let interviewees instantiate each question for themselves and let them
choose the issues to which they would like to draw attention. This strategy can
work, but it requires motivated interviewees that are willing to think hard about
what their answers are.

7 Conclusions and Future Work

Our evaluation provided some important insights and lessons both on the us-
ability of the KeY System and interactive verification systems in general and on
how to perform usability evaluations for interactive verification systems. Cog-
nitive dimensions have turned out to be a useful basis. And our questionnaire
worked very well in giving us the results and feedback we planned for this first
evaluation of the KeY System’s usability.

As a result, some new features are now being implemented in KeY to im-
prove its usability, in particular a better traceability of formulas and sequents in
(partial) proofs. We also investigate how to change the automatic application of
simplification rules to improve KeY w.r.t. the cognitive dimensions of diffuseness
and hard mental operations.



Based on our experience, we will improve our questionnaire such that par-
ticipants can rate the system w.r.t. different dimensions and, thus, provide a
measure of usability. In particular, we plan to use that questionnaire on a larger
and uniform group of participants, namely students who have used KeY in a lab
course.

Acknowledgements

We would like to thank all participants of this evaluation for spending their time
to answer the questionnaire. Their help towards improving the usability of the
KeY System is greatly appreciated.

References

1. Ferré, X., Juzgado, N.J., Windl, H., Constantine, L.L.: Usability basics for software
developers. IEEE Software 18(1) (2001) 22–29

2. Heinsen, S., ed.: Usability praktisch umsetzen: Handbuch für Software, Web, Mo-
bile Devices und andere interaktive Produkte. Hanser, München (2003)

3. Green, T.R., Petre, M.: Usability analysis of visual programming environments: A
‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 7
(1996) 131–174

4. Kadoda, G., Stone, R., Diaper, D.: Desirable features of educational theorem
provers: A Cognitive Dimensions viewpoint. In: Proceedings of the 11th Annual
Workshop of the Psychology of Programming Interest Group. (1996)

5. Griffioen, W.O.D., Huisman, M.: A comparison of PVS and Isabelle/HOL. In
Grundy, J., Newey, M.C., eds.: Theorem Proving in Higher Order Logics, 11th In-
ternational Conference, TPHOLs’98, Canberra, Australia, September 27 - October
1, 1998, Proceedings. LNCS 1479, Springer (1998) 123–142

6. Aitken, J.S., Melham, T.F.: An analysis of errors in interactive proof attempts.
Interacting with Computers 12(6) (2000) 565–586

7. Bertot, Y., Théry, L.: A generic approach to building user interfaces for theorem
provers. Journal of Symbolic Computation 25(2) (1998) 161–194

8. Gast, H.: Engineering the prover interface. In: Proceedings of the User Interfaces
for Theorem Provers Workshop (UITP 2010). (2010)

9. Owre, S.: A brief overview of the PVS user interface. In: 8th International
Workshop User Interfaces for Theorem Provers (UITP’08), Montreal, Canada (Au-
gust 2008) Available at http://www.ags.uni-sb.de/~omega/workshops/UITP08/

UITP08-proceedings.pdf.
10. Haneberg, D., Bäumler, S., Balser, M., Grandy, H., Ortmeier, F., Reif, W., Schell-

horn, G., Schmitt, J., Stenzel, K.: The user interface of the KIV verification system:
A system description. In: Proceedings of the User Interfaces for Theorem Provers
Workshop (UITP 2005). (2005)

11. Klebanov, V., Müller, P., Shankar, N., Leavens, G.T., Wüstholz, V., Alkassar, E.,
Arthan, R., Bronish, D., Chapman, R., Cohen, E., Hillebrand, M.A., Jacobs, B.,
Leino, K.R.M., Monahan, R., Piessens, F., Polikarpova, N., Ridge, T., Smans, J.,
Tobies, S., Tuerk, T., Ulbrich, M., Weiß, B.: The 1st verified software competition:
Experience report. In Butler, M., Schulte, W., eds.: FM 2011: Formal Methods -
17th International Symposium on Formal Methods, Limerick, Ireland, June 20-24,
2011. Proceedings. LNCSS 6664, Springer (2011) 154–168



12. ISO: ISO 9241-11:1998 Ergonomic requirements for office work with visual display
terminals (VDTs) – Part 11: Guidance on usability. (1998)

13. Green, T.R., Blackwell, A.: Cognitive dimensions of information artefacts: A tuto-
rial. Technical report, BCS HCI Conference (1998) Available at http://www.cl.

cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf.
14. Blackwell, A., Green, T.R.: Notational systems – the cognitive dimensions of

notations framework. In Carroll, J.M., ed.: HCI Models, Theories, and Frameworks:
Toward a Multidisciplinary Science. Interactive Technologies. Morgan Kaufmann,
San Francisco, CA, USA (2003) 103–134

15. Beckert, B., Hähnle, R., Schmitt, P.H., eds.: Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS 4334. Springer-Verlag (2007)

16. Ahrendt, W., Beckert, B., Hähnle, R., Rümmer, P., Schmitt, P.H.: Verifying object-
oriented programs with KeY: A tutorial. In de Boer, F., Bonsangue, M., Graf, S.,
de Roever, W., eds.: Revised Lectures, 5th International Symposium on Formal
Methods for Components and Objects (FMCO 2006), Amsterdam, The Nether-
lands. LNCS 4709, Springer (2007)

17. Giese, M.: Taclets and the KeY prover. In Aspinall, D., Lüth, C., eds.: Proceed-
ings, User Interfaces for Theorem Provers Workshop, UITP 2003. Volume 103-C
of Electronic Notes in Theoretical Computer Science., Elsevier (2004) 67–79

18. Blackwell, A.F., Green, T.R.: A cognitive dimensions questionnaire optimized
for users. In: Proceedings of the Twelfth Annual Meeting of the Psychology of
Programming Interest Group (PPIG-12). Volume 1-2. (2000) 137–153

19. Blackwell, A., Green, T.R.: A cognitive dimensions questionnaire. Version 5.1.1.
At http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.

pdf (February 2007)
20. Kadoda, G.: A Cognitive Dimensions view of the differences between designers and

users of theorem proving assistants. In: Proceedings of the 12th Annual Workshop
on Psychology of Programming (PPIG 12). (2000) Available at http://ppig.org/
papers/12th-kadoda.pdf.

21. Beckert, B., Klebanov, V.: Proof reuse for deductive program verification. In
Cuellar, J., Liu, Z., eds.: Proceedings, Software Engineering and Formal Methods
(SEFM), Beijing, China, IEEE Press (2004)

22. Klebanov, V.: Proof reuse. In [15] (2007)


