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Abstract. During the last decade, SMT solvers have seen impressive
improvements in performance, features and popularity, and nowadays
they are routinely applied as reasoning engines in several domains. The
annual SMT solvers competition, SMT-COMP, has been one of the main
factors contributing to this success since its first edition in 2005. In order
to maintain its significance and positive impact, SMT-COMP needs to
evolve to capture the many different novel requirements which applica-
tions pose to SMT solvers, which often go beyond a single yes/no answer
to a satisfiability check. In this paper, we present a first step in this
direction: the “Application” track introduced in SMT-COMP 2011. We
present its design and implementation, report and discuss the results of
its first edition, and highlight its features and current limitations.

1 Introduction and Motivation

During the last decade, SMT solvers have seen impressive improvements in per-
formance, features and popularity, and nowadays they are routinely applied as
reasoning engines in several domains, from verification to planning and schedul-
ing. Part of this success is the result of a standardization process initiated by the
introduction of the SMT-LIB 1.2 standard [13] and continued with the currently
adopted SMT-LIB 2.0 standard [3].

Before SMT-LIB was introduced, every solver had his own proprietary input
language to specify satisfiability queries: the rich variety of SMT approaches
in the last decade resulted in the proliferation of different syntaxes, with the
effect of complicating experimental comparison between the solvers. It was not
uncommon for research groups to maintain, beyond the solver itself, a set of
tools for translating between the various languages.

The process of adopting the SMT-LIB standard, however, was not a com-
pletely automatic process. At the time of proposing SMT-LIB 1.2 some solvers
were already mature tools, usually specialized for a particular task and with
a substantial amount of benchmark database in their own language. Certainly
switching to a new language at that point was not much in the interest of SMT
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research groups: changing language implies writing a new parser, maybe new
data structures, translate all the benchmark suites, and perform extensive test-
ing. All this effort “without glory” was probably superior to that of maintaining
the proprietary language.

The SMT-COMP was a major driving force towards the adoption of the
SMT-LIB standard, as it gave the necessary motivation to standardize the input
languages. The effort of implementing the new solver infrastructure was justified
by the enthusiasm of participating to a friendly race and by the possibility of
acquiring visibility in the formal verification and automated deduction commu-
nities.

Another big contribution of the SMT-COMP is that of favoring the collection
of application-specific benchmarks. Several users of SMT usually submit their
benchmarks to the competition initiative as they know that the participating
solvers will try their best optimizations to solve them. As a result the submitted
benchmarks will be solved in less amount of time and therefore the original
application automatically receive a boost in performance.

The Application track. The Application track (as opposed to the traditional
Main track) was conceived to stimulate the development of incremental SMT
solvers: nowadays, SMT solvers are often tightly integrated with other higher-
level environments, such as, e.g., a model-checker, from which they receive many
successive satisfiability queries to be answered. Although these queries could be
solved by just restarting the search from scratch everytime, the solving process
is much more efficient if the SMT solver is instructed to cope with them incre-
mentally, by retaining some information from the result of the previous queries:
thus, the solver will perform only the new bit of search that is strictly necessary.

Expressing this behavior in a benchmark requires the specification of multiple
satisfiability queries, as well as the ability to set and restore backtrack-points in
the SMT solver: the SMT-LIB 2.0 standard allows to cope with this requirement
by means of the commands push and pop, which allow to dynamically control
the stack of assertions to be solved. As a side note, from the point of view of
the SMT-LIB 2.0 the Main track benchmarks can be seen as a restriction of the
Application track ones to contain only one query.

2 Design and Implementation

In designing the Application track of the competition, we had to face several
different requirements. The first, and perhaps most important, is that we wanted
to be able to mimic the interaction between an SMT solver and the higher level
application using it as faithfully as possible. In principle, we could have achieved
this by selecting some open-source “reference” application from some important
domains (e.g. model checking or program analysis), and requiring competitors in
the Application track to link their SMT solvers with the selected applications.

Although this solution was initially considered, it was however quickly dropped,
for the following reasons. First, this solution puts a lot of burden on the shoul-



(declare-fun c0 () Int)
(declare-fun E0 () Bool)
(declare-fun f0 () Bool)
(declare-fun f1 () Bool)
(push 1) ;; push one checkpoint
(assert (and (or (<= c0 (- 3)) (not f1)) (or (not (= c0 0)) (not f0))))
(check-sat)
(pop 1) ;; discard all the formulas asserted after the most recent checkpoint
(declare-fun f2 () Bool)
(declare-fun f3 () Bool)
(declare-fun f4 () Bool)
(declare-fun c1 () Int)
(declare-fun E1 () Bool)
(assert (and (or (>= (+ c1 (* 3 c0)) 0) (not f4)) (or E0 (= c0 c1) (not f2))))
(push 1)
(check-sat)
(assert (and f1 (not f2)))
(check-sat)
(pop 1)
(exit)

Fig. 1. Example of a simple trace for the Application track.

ders of potential competitors, thus contributing to the general perception that
the barrier for participating in the SMT competition is too high. Second, it
makes the competition heavily depend on some specific (versions of) applica-
tions, which could result in unwanted bias and/or difficulty in reproducing the
results. Finally, this solution is in strong contrast with one of the main goals
that SMT-COMP has pursued since its first edition in 2005, which is the pro-
motion of the SMT-LIB standard input format and library of benchmarks for
SMT solvers.

A solution that addresses the above points is to generate a trace of the
interaction between an application and its back-end SMT solver, by exploiting
the capabilities of the new SMT-LIB 2.0 language [3] of expressing incremental
problems and complex interactions with the SMT solver. This decouples the
competition from the applications that provide the benchmarks, it eases the
task of reproducing the results, and it allows for collecting, storing and managing
benchmarks using the same formats, tools and infrastructure as the main SMT-
COMP track. Moreover, it helps in promoting the adoption of the features of the
SMT-LIB 2.0 language for specifying incremental SMT problems. In particular,
the Application track makes use of the features of the SMT-LIB 2.0 language
that allow for specifying a dynamic stack of formulas (by using the push, pop

and assert commands) and performing multiple satisfiability checks (via the
check-sat command) on it. A simple example trace is shown in Figure 1.

A drawback of the latter solution, however, is that solvers can see the whole
sequence of queries that occur in the trace before actually solving them. This is
in contrast with the “real world” scenario in which applications query the solvers
in an interactive, “online” manner, and do not generate the next query until the
solver has produced an answer for the current one. In principle, knowing all
the queries in advance might allow some solvers to apply some techniques that
would not be available in an online setting. To prevent this possibility, we have
developed a trace executor, a tool which is designed to mimic the interaction



between an application and an SMT solver used as a back-end reasoning engine.
More specifically, the trace executor serves the following purposes: (i) it simulates
the online interaction by sending single queries to the SMT solver (through
their standard input); (ii) it prevents “look-ahead” behaviors of SMT solvers;
(iii) it records time and answers for each call, possibly aborting the execution
in case of a wrong answer; (iv) it guarantees a fair execution for all solvers by
abstracting from any possible crash, misbehavior, etc. that may happen on the
application side. The trace executor tool is open source, and it is available from
[14]. Its concept and functionalities are similar to those used for the evaluation
of different BDD packages for model checking described in [17].

Scoring mechanism. For the first edition of the Application track, the follow-
ing scoring procedure was implemented. The score for each benchmark is a pair
〈n,m〉, with n ∈ [0, N ] an integral number of points scored for the benchmark,
where N is the number of satisfiability queries in the benchmark. m ∈ [0, T ] is
the (real-valued) time in seconds, where T is the timeout. The score of a solver is
obtained by summing component-wise the scores for the individual benchmarks.
Scores of solvers are compared lexicographically: a solver with a higher n-value
wins, with the cumulative time only used to break ties.

The score for a single benchmark is initialized with 〈0, 0〉, and then computed
as follows. (i) A correctly-reported sat or unsat answer after s seconds (count-
ing from the previous answer) contributes 〈1, s〉 to the score. (ii) An answer of
unknown, an unexpected answer, a crash, or a memory-out during execution of
the query, or a benchmark timeout, aborts the execution of the benchmark and
assigns the current value of the score to the benchmark.3 (iii) The first incor-
rect answer has the effect of terminating the trace executor, and the returned
score for the overall benchmark is 〈0, 0〉, effectively canceling the score for the
current benchmark. As queries are only presented in order, this scoring system
may mean that relatively “easier” queries are hidden behind more difficult ones
located at the middle of the query sequence.

Example 1. For example, suppose that there are 3 solvers, S1, S2 and S3,
competing on 2 benchmark traces, T1 and T2, containing respectively 5 and
3 queries, with a timeout of 100 seconds. Suppose that the solvers behave as
follows:

– S1 solves each of the first four queries of T1 in 10 seconds each and the fifth
in another 40 seconds. Then, it solves the first 2 queries of T2 in 2 seconds
each, timing out on the third;

– S2 solves the first four queries of T1 in 10 seconds each, timing out on the
fifth, and then all the 3 queries of T2 in 5 seconds each;

– S3 solves the first four queries of T1 in 2 seconds each, but it incorrectly
answers the fifth. It then solves all the 3 queries of T2 in 1 second each.

3 The timeout is set globally for the entire benchmark; there are no individual timeouts
for queries.



Then, the scores for the solvers are as follows:

– S1 obtains a score of 〈5, 80〉 on T1, and a score of 〈2, 4〉 on T2. Its total score
is therefore 〈7, 82〉;

– S2 obtains a score of 〈4, 40〉 on T1, and a score of 〈3, 15〉 on T2, resulting in
a total of 〈7, 55〉;

– S3 obtains a score of 〈0, 0〉 on T1, due to the wrong answer on the last query,
and a score of 〈3, 3〉 on T2. Its total score is therefore 〈3, 3〉.

The final ranking of the solvers is therefore S2, S1, S3. �

During the discussions following the end of the competition and the preparation
for the next edition, some issues were raised concerning the potential bias of
the above scoring mechanism towards certain kinds of benchmarks/applications.
Benchmarks collected from different applications vary a lot in the number and
the difficulty of their individual satisfiability queries. For instance, benchmarks
from hardware bounded model checking typically consist of relatively few (in
the order of hundreds) incremental SMT calls of increasing size, in which each
query might be exponentially more difficult to solve than its predecessor in the
sequence. In contrast, benchmarks taken e.g. from software verification based
on predicate abstraction consist of hundreds of thousands of satisfiability checks
of much more uniform size and complexity. These differences are not properly
reflected in the above score, in which each correct answer adds one point to
the result, independently of the context/benchmark in which it occurs, and the
main ranking criterion is the total number of correct answers, with the execution
time used only for breaking ties. As a consequence, solvers that are optimized
for benchmarks with many easy queries have a potential advantage over those
designed for bounded model checking.

Different solutions for fixing the above problem are currently being evaluated
for the 2012 edition of the Application track. In particular, the current candidate
proposal is that of giving different weights to queries depending on the bench-
mark in which they occur. This could be achieved for instance by incrementing
the score of 1/Ni points for each solved query, where Ni is the total number of
queries of the current trace. In this way, solving one more problem in a BMC
trace of bound 100 would count much more than solving one more query in a
predicate abstraction trace with 100000 trivial satisfiability checks.

3 Benchmarks

The availability of good quality benchmarks is a crucial factor for the success
of solver competitions, and the Application track is no exception. In order to
ensure the widest possible range of sources and application domains, a public
call for benchmarks was issued several months before the competition dates.
No restrictions were put on the nature of the benchmarks or the used theories,
as long as they conformed to the SMT-LIB 2.0 specification [3] and they rep-
resented realistic sequences of incremental calls to an SMT solver issued by a



higher level application. For the first edition of the Application track, more than
6400 benchmarks were submitted, for a total of more than 4800000 satisfiability
queries. The following gives brief descriptions of the benchmarks.

BMC and k-Induction queries from the NuSMV Model Checker [7]. These are
verification problems on Linear Hybrid Automata and Lustre designs, using
linear rational (QF LRA) and integer (QF LIA) arithmetic.

BMC and k-Induction queries from the Kratos Software Model Checker [8].
These are verification problems on SystemC designs. Each benchmark comes
in two versions: the first using linear rational arithmetic (QF LRA), and the
second using bit-vector arithmetic (QF BV).

Predicate abstraction queries from the Blast Software Model Checker [4]. The
benchmarks have been generated by logging the calls to the Simplify theorem
prover made by Blast for computing predicate abstractions of some Windows
device driver C programs. They use the combined theory of linear integer arith-
metic and uninterpreted functions (QF UFLIA).

k-Induction queries from the Kind Model Checker [11]. These benchmarks are
invariant verification problems on Lustre programs, using the combined theory
of linear integer arithmetic and uninterpreted functions (QF UFLIA).

Access control policy benchmarks from the ASASP project [1]. ASASP imple-
ments a symbolic reachability procedure for the analysis of administrative access
control policies. The benchmarks use quantifiers, arrays, uninterpreted functions
and linear integer arithmetic (AUFLIA).

Selection of Competition Benchmarks. In the main track of SMT-COMP,
the subset of the SMT-LIB benchmarks to be used in the competition are se-
lected with an algorithm that ensures a good balance of difficulties, status (sat
vs unsat) and origin of the instances [2]. For the first edition of the Application
track, however, in most of the divisions there was no need to perform a selec-
tion of benchmarks, given that the number of instances available was sufficiently
small that all of them could be included in the competition. The only excep-
tions were the QF UFLIA and the AUFLIA divisions, in which the number of
benchmarks was too high for including all of them in the competition. In these
two cases, we simply picked a subset of the instances with the largest number
of incremental queries. As the Application track matures, and more incremental
benchmarks become available, we expect to design more sophisticated selection
criteria, inspired by those used in the main track.

4 Results

The first edition of the Application track was held during SMT-COMP 2011, as
part of the CAV conference. The track was run on the SMT-Exec service [15],
using the same infrastructure as the main SMT-COMP.



Participating solvers. Five different solvers took part to the first edition of
the Application track. The following gives brief descriptions of the participants.

Boolector 1.4.1 (with SMT-LIB 2.0 parser) [5]. The original Boolector 1.4.1
was developed by Armin Biere and Robert Brummaryer at the Johannes Ke-
pler University of Linz. Boolector is one of the most efficient SMT solvers for
bit-vectors (QF BV) and arrays (QF AUFBV). The participating version was
connected with a generic parser for SMT-LIB 2.0 [16], and submitted by the
competition organizers as a solver of interest for the SMT community. Boolec-
tor competed in the QF BV division.

MathSAT 5 [9]. MathSAT5 is developed by Alberto Griggio, Bas Schaafsma,
Alessandro Cimatti and Roberto Sebastiani of Fondazione Bruno Kessler and
University of Trento. It is the latest incarnation of a series of solvers with the
same name (but independent implementations) that have been developed in
Trento as research platforms for SMT since 2002. MathSAT5 competed in the
QF BV, QF UFLIA, QF LIA and QF LRA divisions.

OpenSMT [6]. OpenSMT is an open-source SMT solver developed by Roberto
Bruttomesso, Ondrej Sery, Natasha Sharygina and Aliaksei Tsitovich of Univer-
sità della Svizzera Italiana, Lugano, with the objective of being an open plat-
form for research, development and detailed documentation on modern SMT
techniques. OpenSMT competed in the QF LRA division.

SMTInterpol [10] 2.0pre. SMTInterpol is a solver developed by Jürgen Christ
and Jochen Hoenicke of University of Freiburg, with particular focus on proof
generation and interpolation. SMTInterpol competed in the QF UFLIA, QF LRA
and QF LIA divisions.

Z3 3.0 [12]. Z3 3.0 is the latest version of a very popular and efficient SMT solver
developed by Leonardo de Moura, Nikolaj Bjørner and Cristoph Wintersteiger
at Microsoft Research. Z3 competed in all divisions.

Results. A summary of the results of the 2011 Application track competition is
shown in Figure 2. For each division, the table reports the participating solvers,
their score expressed as a ratio between the number of solved queries and the
total queries (and computed with the procedure described in §2), and the total
execution time (not considering the timeouts). No results are reported for the
AUFLIA division, since only one solver supporting it (Z3) was submitted.

Discussion. In order to assess the usefulness and significance of the Applica-
tion track, it is interesting to compare its results with those of the main track
of SMT-COMP 2011. Figure 3 summarizes the results of the main track for the
solvers participating also in the Application track.4 For each solver, besides the

4 For Boolector, the version used in the main track is newer than those of the
Application track.



QF BV

Solver Score Time

MathSAT5 1883/2277 14854

Z3 1413/2277 18836

Boolector (+SMT-LIB 2.0) 863/2277 16989

QF UFLIA

Solver Score Time

Z3 1238660/1249524 10015

MathSAT5 1237186/1249524 50464

SMTInterpol 1235238/1249524 25440

QF LRA

Solver Score Time

MathSAT5 795/1060 3596
Z3 656/1060 10073

SMTInterpol 465/1060 10333

OpenSMT 375/1060 6950

QF LIA

Solver Score Time

MathSAT5 12608/13941 40065

Z3 12262/13941 62512
SMTInterpol 9108/13941 66763

Fig. 2. Results of the Application track at SMT-COMP 2011.

score and total execution time, also their absolute ranking in the main track
is reported.5 By comparing the two groups of tables we can see that there are
significant differences between the main and the Application tracks in all the
divisions. In no single division the rankings are the same across the two tracks,
and in three cases out of four the winners are different. There are many pos-
sible explanations for such differences, including differences in the nature and
the domains of the benchmarks and in the features of the solvers that are put
under stress by the two tracks (for example, some solvers apply aggressive and
very effective preprocessing techniques, which might not be compatible with in-
cremental problems). Moreover, some divisions in the Application track contain
only benchmarks coming from a single source, which might increase the chances
of bias towards a particular solver; this was difficult to avoid for the first edition,
and it will become less and less evident as the library of incremental benchmarks
increases in size. Nevertheless, the fact that there are such visible differences,
on benchmarks coming from applications in important domains, is already a
sufficient reason to justify the interest in the Application track.

5 Conclusions

In this report we have discussed the motivations, design, implementation and re-
sults of the Application track of the SMT-COMP 2011. Our hope is that this new
track will contribute in advancing the state-of-the-art of the SMT solvers with
respect to their incremental behavior. Such infrastructure is, in fact, very impor-
tant in recent applications where a tight communication of similar satisfiability
queries is demanded. The benchmarks and our implementation of the track were
specifically designed to reflect as much as possible this kind of communication.

The results of the first edition of the Application track compared with those
of the Main track, shows that the handling incrementality requires different

5 This is the ranking considering also the other competitors of the main track that did
not participate in the Application track, and which are therefore not shown here.



QF BV

Solver Ranking Score Time

Z3 1st 188/210 7634

Boolector (v1.5.33) 3rd 183/210 5049

MathSAT5 4th 180/210 6214

QF UFLIA

Solver Ranking Score Time

Z3 1st 207/207 205

SMTInterpol 2nd 207/207 2265

MathSAT5 3rd 206/207 2859

QF LRA

Solver Ranking Score Time

Z3 1st 195/207 6088
MathSAT5 2nd 193/207 8963

OpenSMT 4th 178/207 18436

SMTInterpol 5th 169/207 16975

QF LIA

Solver Ranking Score Time

Z3 1st 203/210 5276

MathSAT5 2nd 190/210 2608
SMTInterpol 3rd 116/210 2917

Fig. 3. Summary of results of the main track of SMT-COMP 2011 for the competitors
of the Application track.

optimizations from those used in single-query benchmarks. This motivates us to
collect more incremental benchmarks and to increase the visibility of Application
track for its extremely practical orientation.
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