
Loosely-Coupled and Event-Messaged
Interactions with Reaction RuleML 1.0

in Rule Responder

Zhili Zhao1, Kia Teymourian1, Adrian Paschke1, Harold Boley2, Tara Athan3

1 Freie Universität Berlin, Germany
{paschke, zhili, teymourian} AT inf.fu-berlin.de

2 Information and Communications Technologies, National Research Council Canada
Fredericton, NB, Canada

harold.boley AT nrc.gc.ca
3 Athan Services, W Lafayette, IN, USA

taraathan AT gmail.com

Abstract. Reaction RuleML is one of the two major subfamilies of
RuleML and acts as an interchange format for reactive rules and rule-
based event-processing languages. Exemplified with a recent instantia-
tion of Rule Responder, a rule-based inference agent middleware, we
demonstrate the event messaging features of Reaction RuleML, which
supports loosely-coupled interface-based interaction using rule signatures
and decoupled communication via event messages.

1 Introduction

As one of the two major subfamilies of RuleML1, Reaction RuleML2 presents
a general compact rule interchange format for reaction rules, which are used
to declaratively specify the reactive and behavioral logic of distributed systems
and dynamic (Web-based) environments [17]. RuleML has broad coverage and
is designed as an interchange language for the major kinds of (Web) rules. The
RuleML family’s top-level distinction is Deliberation rules vs. Reaction rules [3].
Deliberation rules permit knowledge derivation and subsume further languages
such as Hornlog (hence Datalog), which (syntactically) specialize to condition-
less Fact and conclusion-less Query languages (the latter subsuming Integrity
Constraint (IC) languages). On the other hand, Reaction rules focus on event-
driven (re)actions in distributed and dynamic environments.

Reaction RuleML is intended as a common standard for representing reactive
rules and rule-based complex event processing (CEP) in a platform independent
XML markup language. It provides several layers of expressiveness for adequately
representing reactive logic and for interchanging events (queries, actions, event
data) and rules. As a whole, Reaction RuleML is characterized by the following
features:

1 http://ruleml.org/
2 http://reaction.ruleml.org/



2 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

1. Reaction RuleML Metamodel, Semantic Types and Data Queries. Reaction
RuleML is based on a metamodel and ’pluggable’ ontologies and defines
general concepts such as space, time, event, action situation, process, and
agent in a modularized ontological top-level structure, with a left to right
vertical order in the top-level ontologies. Therefore, it is possible for Reaction
RuleML to support distributed and modularized knowledge bases through
direct coupling via key references within a KB, iri pointers, and support
for query languages.

2. Rule Interface Descriptions with Semantic Profiles and Signatures. Reaction
RuleML separates the interface of a rule from its implementation. The in-
terface describes the functional and non-functional (semantic) properties of
a rule. The implementation, on the other hand, requires more flexibility and
can be modified without any change of its interface.

3. Reaction RuleML Messaging. The interface description language of Reaction
RuleML allows for loosely-coupled interaction with distributed inference ser-
vices and agent KBs. Based on event messaging, Reaction RuleML also sup-
ports decoupled communication via event messages that are produced and
published as Reaction RuleML serializations, e.g. on event streams or event
clouds.

In this paper, exemplified with a recent instantiation of Rule Responder3 [16,
15, 2], we demonstrate the distributed event-messaging interactions of Reaction
RuleML 1.0 in loosely-coupled and de-coupled distributed rule-based agents.
Reaction RuleML acts as a standardized interface description language and in-
terchange format between these semantic agents which run their own platform
specific rule engines and rule-based knowledge base (KB) at their core. The rest
of the paper is organized as follows: Section 2 introduces Reaction RuleML and
its reference application Rule Responder. In Section 3 we present the seman-
tic interpretation and translation between Reaction RuleML as a standardized
rule interchange language and several platform specific rule languages as well
as the platform independent controlled English ACE. Section 4 presents how
distributed event messaging supports loosely-coupled interaction with inference
services/agents. Section 5 deals with decoupled communication via event mes-
sages. Finally, we conclude the paper with a summary in Section 6.

2 Reaction RuleML 1.0

Reaction rules are concerned with the invocation of actions in response to events
and actionable situations [14]. They state the conditions under which actions
must be taken and describe the effects of action executions. In the last decades
various reaction rule languages and rule-based event processing approaches have
been developed, which for the most part have been advanced separately. The
Reaction RuleML standard4 addresses four major reaction rule types: Produc-

3 http://responder.ruleml.org
4 http://reaction.ruleml.org/



Interactions with Reaction RuleML 1.0 in Rule Responder 3

tion Rules (Condition-Action rules), Event-Condition-Action (ECA) rules, Rule-
based Complex Event Processing (CEP) (CEP reaction rules, (distributed) event
messaging reaction rules, query reaction rules etc.), Knowledge Representation
(KR) Event/Action/Situation Transition/Process Logics and Calculi

Reaction rules are defined by a general Rule element which can be specialized
in the different Reaction RuleML branches to the four major types of reaction
rules (and variants of these types). The following example shows the most gen-
eral rule syntax of RuleML with of focus on Reaction RuleML. We use 1- or
2-letter indicators for syntax from Deliberation (D), Reaction (R), or Delibera-
tion+Reaction (DR) RuleML.

<Rule @key @keyref @style>

<!-- rule info and life cycle management, modularization -->

<meta> <!-- DR: (semantic) metadata of the rule --> </meta>
<scope> <!-- R: scope of the rule e.g. a rule module --> </scope>

<!-- rule interface description -->

<evaluation> <!-- R: intended semantic profiles --> </evaluation>
<signature> <!-- R: rule interface signature and modes --> </signature>

<!-- rule implementation -->

<qualification> <!-- R: e.g. qualifying rule declarations, e.g.
priorities, validity, strategy --> </qualification>

<quantification> <!-- DR: quantifying rule declarations,
e.g. variable bindings --> </quantification>

<on> <!-- R: event part --> </on>
<if> <!-- DR: condition part --> </if>
<then> <!-- D: (logical) conclusion part --> </then>
<do> <!-- R: action part --> </do>
<after> <!-- R: postcondition part after action,

e.g. to check effects of execution --> </after>
<else> <!-- DR: (logical) else conclusion --> </else>
<elsedo> <!-- R: alternative/else action,

e.g. for default, exception handling --> </elsedo>
</Rule>

Rule Responder5 [16, 15, 2] is a reference application of Reaction RuleML. It
is supporting distributed semantic multi-agent systems and rule-based inference
services that run rule engines at their core and communicate using (Reaction)
RuleML as a standardized rule interchange format. The Rule Responder Tech-
nical Group of RuleML is focused on implementing use cases that require the
interchange of rule sets and support querying the distributed rule inference ser-
vices. To implement different distributed system/agent topologies and semiotic
structures with their negotiation/coordination mechanisms, Rule Responder in-
stantiations employ three core classes of agents - Organizational Agents (OA),
Personal Agents (PAs), and External Agents (EAs). An OA represents goals
and strategies shared by its virtual organization (of agents) as a whole, using a
rule base that describes its policies, regulations, opportunities, etc. OAs hence
might act as centralized nodes in star-like distributed coordination networks.

5 http://ruleml.org/RuleResponder/



4 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

They often follow an orchestration style execution logic where the OA is a cen-
tralized authority which orchestrates the other PAs. A PA assists a group or
person/agent of the organization, semi-autonomously acting on their behalf by
using a local knowledge base of rules defined by the entity. In decentralized dis-
tributed networks the PAs itself might communicate with each other following
e.g. a choreography style coordination, e.g. for distributed problem solving. EAs
can communicate with the virtual organization by sending messages to the pub-
lic interfaces of the OA. EAs can be human users using, e.g., Web forms or can
be automated services/tools sending messages via the multitude of transport
protocols of the underlying enterprise service bus (ESB) middleware of Rule Re-
sponder. The agents employ ontologies in their rule-based knowledge bases to
represent semantic domain vocabularies, normative pragmatics and pragmatic
context of conversations and actions, as well as the organizational semiotics.

Since the Rule Responder framework has been conceived [16], many instan-
tiations have been developed such as the Health Care and Life Sciences eScience
infrastructure [11], Rule-based IT Service Level Management and the Rule Based
Service Level Agreement (RBSLA) language [13], Semantic Business Process
Management (BPM) [18, 12], WellnessRules(2) [1], PatientSupporter, and Sym-
posiumPlanner systems6.

In this paper, we will employ the SymposiumPlanner 2011 to demonstrate the
distributed event-messaging interactions in Rule Responder. SymposiumPlanner
is a series of Rule Responder instantiations for the Questions&Answers (Q&A)
sections of the websites of the RuleML Symposia since 2007.

3 Translator Service Framework

The design of Rule Responder follows the spirit of the OMG’s Model Driven
Architecture (MDA) approach [11, 15]:

1. On the computational independent level rules are engineered in a Rule Man-
ager user interface in a natural controlled English language using blueprint
templates and user-defined vocabularies and domain-specific translation rules.

2. The rules are mapped and serialized in Reaction RuleML which is used as
platform independent rule interchange format to interchange rules between
Rule Responder inference services (agents) and arbitrary other rule execution
environments.

3. The Reaction RuleML rules are translated into the platform specific rule
language for execution.

Rule Responder provides a translator service framework with Web form inter-
faces accepting controlled natural language inputs or predefined selection-based
rule templates for the communication with external (human) agents on the com-
putational independent level, as well as HTTP Rest and Web service interfaces,

6 http://ruleml.org/SymposiumPlanner/



Interactions with Reaction RuleML 1.0 in Rule Responder 5

which can be used for translation into and from Reaction RuleML. In Rule Re-
sponder SymposiumPlanner 20117, we also implemented a user client supporting
queries in Attempto Controlled English (ACE) [5], which is a rich subset of con-
trolled English designed to serve as a knowledge representation language. The
demonstration of the SymposiumPlanner 2011 user client can be found at8. Be-
fore sending them to Rule Responder, the queries are translated into a discourse
representation structure (DRS) by the Attempto Parsing Engine (APE)9. It is
then fed into an XML parser which translates it into Reaction RuleML by an
ACE2RML translator, which makes use of domain specific semantic vocabularies
and domain rules [21].

On the platform-independent and platform specific level, Reaction RuleML
can be translated or mapped into several domain specific reaction rule languages,
which are run by platform specific rule engines, such as: Prova10, OO jDREW11,
Emerald12, Euler, etc. The translator services are using different translation tech-
nologies such as XSLT stylesheet, JAXB, etc. to translate from and to Reaction
RuleML and are configured in the transport channels of the inbound and out-
bound links of the deployed rule engines on the ESB. That is, incoming Reaction
RuleML messages (receive) are translated into platform-specific rule bases which
can be executed by different platform specific rule engines, e.g. Prova, and out-
going rule bases (send) are translated into Reaction RuleML in the outbound
channels before they are transferred via a selected transport protocol such as
HTTP or JMS, etc.

For example, a user query in ACE format: ”Which papers are full and ac-
cepted?”, which is used to get all full papers accepted by RuleML2011@IJCAI13

is firstly translated into Reaction RuleML:

<?xml version="1.0" encoding="GBK"?>
<RuleML xmlns="http://www.ruleml.org/1.0/xsd"

xsi:schemaLocation="http://www.ruleml.org/reaction/1.0/xsd
http://ibis.in.tum.de/research/ReactionRuleML/1.0/rr.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<oid>

<Ind>Generated message from ACE text "Which papers are full and accepted?".</Ind>
</oid>
<Message directive="query-sync">

<oid>
<Ind>RuleML-2011-IJCAI</Ind>

</oid>
<protocol>

<Ind>esb</Ind>
</protocol>
<sender>

<Ind>User</Ind>
</sender>
<receiver>

7 http://ruleml.org/SymposiumPlanner/documentation.html
8 http://de.dbpedia.org/redirects/ruleml/ACE2ReactionRuleML/index.jsp
9 http://attempto.ifi.uzh.ch/site/

10 http://www.prova.ws/
11 http://www.jdrew.org/oojdrew/
12 http://lpis.csd.auth.gr/systems/emerald/
13 http://www.defeasible.org/ruleml2011/



6 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

<Ind>RuleML-2011-IJCAI</Ind>
</receiver>
<content>

<Atom>
<Rel>getPapers</Rel>
<Ind>full</Ind>
<Ind>accepted</Ind>
<Var>B</Var>

</Atom>
</content>

</Message>
</RuleML>

This example above also indicates the general message syntax of a Reaction
Message [17]. In Reaction RuleML 1.0, each event message (the Message ele-
ment) consists of a conversation identifier (the oid element), a pragmatic context
description (the directive attribute), a transport protocol (the protocol el-
ement), such as HTTP, JMS, SOAP, etc., a sender (the sender element)/receiver
(the receiver element) agent of the message and a message payload (the content
element). When a message is sent from an External Agent, Rule Responder picks
up the message, translates into a domain specific rule language and then sends
it to a target agent. For example, the message of Reaction RuleML mentioned
above is translated into a Prova message via XSLT sheet in SymposiumPlanner
2011, shown as follows:

[httpEndpoint:3,esb,httpEndpoint,query,[getPapers,full,accepted,<2901>]].

Each Prova message describes the messages which are received and sent by
Prova agents and consists of constants, variables, or lists. For more information,
see the Prova 3.0 Users Guide14. After the above Prova message is processed
in the Prova rule engine, the resulting answer will be translated to Reaction
RuleML before sending it to other agents.

Rule Responder’s translation framework also supports the elementary trans-
lation between Drools15 and Reaction RuleML. Drools is a business rule man-
agement system (BRMS) with a forward chaining production rule engine [20].
The production rule pattern of ”when-then” in Drools can be represented by
the pattern of ”if-do” in Reaction RuleML, as shown in Figure 1. For more
implementation details of the translation see [6].

4 Loosely-Coupled Interaction

Reaction RuleML allows distributed event messaging interactions in loosely-
coupled and decoupled distributed rule-based systems such as Web inference
services and semantic agents. In this Section we will demonstrate how event
messaging interaction plays an important role in Rule Responder.

The loosely-coupled interaction leads to a resilient relationship between dis-
tributed agents with some kind of exchange relationship. Each agent makes its

14 http://www.prova.ws/index.html?page=documentation.php
15 http://www.jboss.org/drools



Interactions with Reaction RuleML 1.0 in Rule Responder 7

Fig. 1. The Mappings between Drools and Reaction RuleML

requirements explicit and makes use of the public interface definitions of other
agents for communicating with them, i.e., an agent publishes an interface defi-
nition (containing the public rule signatures), which can be accessed in one or
many concrete ways by other agents - typically by a query to the agent using
one of its public rule interface signatures. Instead of queries and answers, also
an interchange of complete rules and rule bases as mobile rule code to an agent
is possible. Their loosely-coupled dependency and their intended interpretation
and execution semantics is specified by the interface and brings flexibility that
a change in the underlying rule implementation does not necessarily require a
change in the rule signature, except if the rule signature itself changes. More-
over, while the interfaces might be published publicly and can be queried by
requesting agents, the concrete implementation of the rule base might be hid-
den and privately encapsulated in the knowledge base of the agent. Figure 2
demonstrates the loosely-coupled interaction in Rule Responder.

Fig. 2. Loosely-Coupled Communication via Messages to Agent Interface

Reaction RuleML 1.0 employs the Reaction RuleML Interface Description
Language (RuleML IDL) [16] for describing functional and non-functional prop-



8 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

erties of a rule inference service and its rule-based KB. The functional descrip-
tion among others contains the signatures of public rule functions together with
their term modes (input, output or arbitrary terms) and type declarations. For
example, the signature of the aforementioned query of ”getPapers” of Sympo-
siumPlanner 2011 can be described as follows:

<signature>
<Atom>

<Rel>getPapers</Rel>
<Var type="java://java.lang.String" mode="+"/>
<Var type="java://java.lang.String" mode="+"/>
<Var type="java://java.lang.String" mode="-"/>

</Atom>
</signature>

Reaction RuleML distinguishes between the interface of a rule base or rule
and its implementation. The signatures are defined in the interface either directly
together with the implementation in one <Rule> or for better modularization
and information hiding separated from the implementation of the rule on the
level of a RuleML rule base <Rulebase> and asserted rule module <Assert>.
The following example illustrates the use of such signature declarations in the
interface descriptions of rules and distinguishes the interface from the implemen-
tation referring from the interface to the implementation via an XML key-keyref
connection.

<-- rule interface with two alternative interpretation semantics and a signature.
The interface references the implementation identified by the corresponding key -->

<Rule keyref="r1">
<evaluation index="1">

<!-- WFS semantic profile define in the metamodel -->
<Profile type="ruleml:Well-Founded-Semantics" direction="backward"/>

</evaluation>
<evaluation index="2">
<!-- alternative ASS semantic profile define in the metamodel -->
<Profile type="ruleml:Answer-Set-Semantics" direction="backward"/>

</evaluation>
<!-- the signature defines the queryable head of the backward-reasoning rule -->
<signature>

<Atom><Rel>getPapers</Rel><Var mode="+"/><Var mode="+"/><Var mode="-"/></Atom>
</signature>

</Rule>

<!-- implementation of rule 1 which is interpreted either by WFS or by ASS semantics
and onyl allows queries according to it’s signature definition. -->

<Rule key="r1" style="reasoning">
<if>... </if>
<then>

<Atom><Rel>getPapers</Rel><Var>Type</Var><Var>Status</Var><Var>Papers</Var></Atom>
</then>

</Rule>

The signatures can be also defined or just referred to via key-keyref in the
<signature> of a <Rulebase>.

This enables a loosely-coupled interaction with the inference service / agent,
where queries can be posed against the public interface signature and inter-
preted with the intended semantics evaluation. Therefore, the interface also
defines the applicable evaluation semantics, which in the example uses prede-
fined semantic Profiles from the RuleML metamodel. This is in particular



Interactions with Reaction RuleML 1.0 in Rule Responder 9

useful for mobile code, i.e. rule bases which are uploaded to an inference service,
since the underlying rule engine needs to support the intended semantics. It is
also useful for verification and validation [8, 10, 7, 4], explanations, and proofs of
answers to queries which are dependent on the applied semantics.

During the communication, Rule Responder represents the interactions be-
tween distributed agents via constructs for asynchronously sending and receiv-
ing event messages. Therefore it uses Reaction RuleML’s support for messaging
in the CEP Reaction RuleML branch. For sending and receiving (event) mes-
sages, Reaction RuleML 1.0 supports serial messaging CEP reaction rules that
<Receive> and <Send> events in arbitrary combinations. A serial (messaging)
reaction rule starts with a receiving event (<on>) followed by any combination
of conditions (<if>), events (<Receive>), and actions (<Send>) in the body of
the rule for expressing complex event processing logic. This flexibility with sup-
port for modularization and aspect-oriented weaving of reactive rule code is in
particular useful in distributed systems where event processing agents commu-
nicate and form a distributed event processing network, as e.g. in the following
example:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>
<if> prove some conditions, e.g. make decisions on the received data </if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>

These Reaction RuleML messaging constructs can directly map to the mes-
saging reaction rules in Prova with: sendMsg predicates to send messages, re-
action rcvMsg rules which react to inbound messages, and rcvMsg or rcvMult
inline reactions in the body of messaging reaction rules to receive one or more
context-dependent multiple inbound event messages, shown as follows:

sendMsg(XID,Protocol,Agent,Performative,Payload |Context)
rcvMsg(XID,Protocol,From,Performative,Paylod|Context)
rcvMult(XID,Protocol,From,Performative,Paylod|Context)

where XID is the conversation identifier. Protocol defines the communication
protocol. From denotes the source of the message. Performative describes the
pragmatic context in which the message is sent. And Payload—Context denotes
the actual content of the event message.

The event messages between distributed agents conversation invoke the rule
functions of the receiving agents if there exists a matching rule interface. For in-
stance, the example given in Section 3 indicates that the receiver agent ”RuleML-
2011-IJCAI” needs to specify an appropriate signature for ”getPapers” queries.
In SymposiumPlanner 2011, the receiver ”RuleML-2011-IJCAI” agent is a Prova
engine, which implements the interface definition via its platform specific rule
syntax: interface(getPapers(Type, Status, Papers),getPapers(”+”, ”+”, ”-”), ”re-
turn related papers of RuleML-2011@IJCAI.”). This public interface can be
queried in backward-reasoning style in a Prova engine and a ”no further answers”
message will be sent to the sender if there is no suitable public interface is found:



10 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

% look-up interface
processMessage(XID,From,Primitive,[X|Args]):-

not(interface([X|Args],ModeDeclarations,Description)),
sendMsg(XID,esb,From,"answer", noPublicInterface(interface([X|Args]))),
sendMsg(XID,esb,From,"no_further_answers", [X|Args]),
fail().

The implementation of a rule interface can be implemented by arbitrary rule
agents, which might have different levels of expressiveness. For example, the
implementation of the interface ”getPapers” in Prova is shown as follows:

getPapers(XID, Type, Status, Papers):-
sysTime(CT),

@paperType(Type)
getAcceptedPapers(Papers)[validate(CT)].

validate(CT) :-
compare(CT,’>’,datetime(2011,5,31,0,0,0)).

@paperType(full)
getAcceptedPapers(Papers) :-

QueryString = ’
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
SELECT ?paper ?title

FROM <http://de.dbpedia.org/redirects/ruleml/ruleml2011.rdfs>
WHERE {

?paper a ?type .
?paper dc:title ?title .

FILTER (?type = <http://ruleml.org/ontology#FullPaper> ) .
}

’,
sparql_select(QueryString,[title(Papers)]).

@paperType(short)
getAcceptedPapers(Papers) :-

QueryString = ’
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
SELECT ?paper ?title

FROM <http://de.dbpedia.org/redirects/ruleml/ruleml2011.rdfs>
WHERE {

?paper a ?type .
?paper dc:title ?title .

FILTER (?type = <http://ruleml.org/ontology#ShortPaper> ) .
}

’,
sparql_select(QueryString,[title(Papers)]).

...

Prova supports modularization of its knowledge base and allows constructing
metadata based views on the knowledge base, so called scopes. For example, the
annotation ”@paperType(Type)” on the followed goal literal ”getAcceptedPa-
pers(Papers)” is a scope constraint which applies the goal literal only on the tar-
get rule with matching metadata (”@paperType(full)”, ”@paperType(short)”,
etc.) during unification, i.e. there must be a match between the value given for
the annotation @paperType and the value listed for the key in the target rule



Interactions with Reaction RuleML 1.0 in Rule Responder 11

of getAcceptedPapers. In the example, it would bind the metadata annotation
values ”full”, ”short”, etc. to the variable ”Type”. The metadata can act as an
explicit scope for constructive queries (creating a view) on the knowledge base
and enables scoped (meta) reasoning with the semantic annotations. Besides,
Prova supports literal guards which act as additional precondition constraints.
In the above example, the goal literal is only available ”after 31st, May, 2011”,
which is defined by the guard ”[validate(CT)]” and its implementation as a rule
”validate(CT):- compare(CT,’¿’,datetime(2011,5,31,0,0,0)).”.

Reaction RuleML 1.0 provides corresponding expressiveness for metadata
annotations <meta>, scope definitions <scope> and guards <guard>, which can
be defined on the global level of a rule module and rule base as well as on the
level of rules and literals. Scopes defined on the level of rule bases/modules set
the context in which the knowledge of the rule base/module is applied, i.e. all
queries and goal literals automatically apply within the scope. Nested scopes can
be defined which override and specialize the outer (global) scopes, e.g. a scope
within a rule <Rule> and on a particular goal literals <Atom> within the body of
a rule. Scopes are e.g. useful to implement and distinguish different (behavioral)
roles of a rule-based agent as scoped rule modules in the agent’s knowledge base.
Scopes are also useful to implement reactive workflow logics and (transactional)
update logics [9].

5 Decoupled Interaction

The event messaging in Rule Responder also enables completely decoupled inter-
action via standardized Reaction RuleML event messages. Here some agents are
event producers which publish events, e.g. in an event stream or in an event cloud
/ data source, irrespective of the event consumers. Other agents are consumers
which try to detect and consume relevant events on those streams applying rule-
based complex event processing techniques. That is, in difference to the loosely-
coupled interaction, where the events are sent directly to other agents and the
interaction with them takes place in a loosely-coupled way according to their
interface definitions, the events in the decoupled scenario are just published, but
there is no direct interaction with the consumers of those events.

For the decoupled interaction the message content itself is an event. Like
for rules, the generic syntax pattern for an Event again distinguishes between
the general event information, the event interface with the signature defining
the event pattern (event type) and the concrete implementation in terms of an
event instance.

<Event @key @keyref @iri @type>
<!-- event info and life cycle management, modularization -->

<oid> <!-- R: event instance object id --> </oid>
<meta> <!-- R: (semantic) metadata of the event --> </meta>
<scope> <!-- R: scope of the event --> </scope>

<!-- event pattern description -->
<evaluation> <!-- R: semantics: selection, consumption policies --> </evaluation>
<signature> <!-- R: event pattern declaration --> </signature>

<!-- event instance -->
<qualification> <!-- R: e.g. qualifying event declarations, e.g.



12 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

priorities, validity, strategy --> </qualification>
<quantification> <!-- R: quantifying rule declarations --> </quantification>

<content> <!-- R: event instance content --> </content>
</Event>

Reaction RuleML 1.0 provides the support for rule-based event processing
and semantic complex event processing. With its typed logic, RuleML provides
the support for (re)using external temporal, spatial, situation, event, and ac-
tion ontologies and a metamodel which can be applied in the definition of se-
mantic event/action types and temporal and spatial relations [3, 17]. Reaction
RuleML defines a library of typical event, action, interval algebra operators and
generic elements such as Event, Action , Situation, Time, Location, Interval,
Operator. The type of these generic elements can be defined by an @type refer-
ence to external ontologies, e.g. to the Reaction RuleML metamodel (see [17]).
For instance, <Operator type="ruleml:Sequence"> instead of <Sequence>.
The following example shows a complex event pattern definition:

<Event key="ce2" type="ruleml:ComplexEvent">
<signature> <!-- pattern signature definition -->

<Sequence>
<!-- atomic event -->
<signature>

<Event type="ruleml:SimpleEvent">
<signature><Atom>...event_A...</Atom></signature>

</Event>
</signature>
<!-- nested complex event referenced by @keyref -->
<signature><Event type="ruleml:ComplexEvent" keyref="ce1"/></signature>
<!-- Common Base event selected via xpointer/xpath query in iri attribute -->
<signature>

<Event type="cbe:CommonBaseEvent" iri="cbe.xml#xpointer(//CommonBaseEvent)"/>
</signature>

</Sequence>
</signature>

</Event>

<Event key="ce1">
<signature> <!-- event pattern signature -->

<Concurrent>
<Event><meta><Time>...t3</Time></meta><signature>...event_B</signature></Event>
<Event><meta><Time>...t3</Time></meta><signature>...event_C</signature></Event>

</Concurrent>
</signature>

</Event>

Such a complex event pattern definition can be used for event detection in
the <on> part of a reaction rule of a rule-based event consuming agent:

<Rule style="active">
<on><Event keyref="ce2"/></on>
...
<do> ... </do>

</Rule>

These Reaction RuleML rules for Complex Event Processing (CEP) can be
translated and executed e.g. in Prova. For an overview on typical (complex)
event pattern functions and their implementations see [19]16.

16 slides at http://goo.gl/E30Vu



Interactions with Reaction RuleML 1.0 in Rule Responder 13

In our SymposiumPlanner demo scenario we consume and process the events
of the symposium, such as the news from the Twitter feed, calendar events
(deadlines etc.), etc. We apply a typical publish-subscribe approach where users
can subscribe their information needs in terms of (complex) event pattern to
the rule-based semantic event processing agents. The agents actively inform the
subscribers if they detect the relevant event patterns by continuously processing
the published events on the news feeds.

6 Summary

In this paper, we presented how the standardized Reaction RuleML 1.0 inter-
change format supports loosely-coupled and de-coupled event-messaged interac-
tions in the rule-based semantic multi-agent system Rule Responder. We demon-
strated several expressiveness features of Reaction RuleML 1.0 on the example
of the Symposium Planner use case. We also showed how the computational
independent (natural) language Attempto Controlled English (ACE) is used to
construct user queries against rule-based KBs in distributed Rule Responder
agents (inference services), which are using Reaction RuleML as an intermedi-
ary platform-independent language between the computational independent user
interface language (ACE) and the platform-specific execution languages (Prova,
OO jDrew, Drools, ...).

References

1. Harold Boley, Taylor Osmun, and Benjamin Craig. Social Semantic Rule Sharing
and Querying in Wellness Communities. In Asuncin Gmez-Prez, Yong Yu, and
Ying Ding, editors, The Semantic Web, volume 5926 of Lecture Notes in Computer
Science, pages 347–361. Springer Berlin / Heidelberg, 2009.

2. Harold Boley and Adrian Paschke. Rule Responder Agents Framework and In-
stantiations. In Atilla Eli, MamadouTadiou Kon, and MehmetA. Orgun, editors,
Semantic Agent Systems, volume 344 of Studies in Computational Intelligence,
pages 3–23. Springer Berlin Heidelberg, 2011.

3. Harold Boley, Adrian Paschke, and Omair Shafiq. RuleML 1.0: The Overarching
Specification of Web Rules. In RuleML, pages 162–178, 2010.

4. Jens Dietrich and Adrian Paschke. On the Test-Driven Development and Valida-
tion of Business Rules. In ISTA, pages 31–48, 2005.

5. Norbert E. Fuchs, Kaarel Kaljurand, and Gerold Schneider. Attempto Controlled
English Meets the Challenges of Knowledge Representation, Reasoning, Interoper-
ability and User Interfaces. In Geoff Sutcliffe and Randy Goebel, editors, FLAIRS
Conference, pages 664–669. AAAI Press, 2006.

6. Tichomir Jabarski. Design and Development of A Translator Framework for Rule
Languages Based on RuleML, Master Thesis. Master’s thesis, Free University
Berlin, 2012.

7. A. Paschke, J. Dietrich, A. Giurca, G. Wagner, and S. Lukichev. On Self-
Validating Rule Bases. In Int. Semantic Web Enabled Software Engineering Work-
shop (SWESE’06), 2006.



14 Z. Zhao, K. Teymourian, A. Paschke, H. Boley and T. Athan

8. Adrian Paschke. The ContractLog Approach Towards Test-driven Verification and
Validation of Rule Bases - A Homogeneous Integration of Test Cases and Integrity
Constraints into Dynamic Update Logic Programs and Rule Markup Languages
(RuleML). In IBIS, TUM, Technical Report 10/05, 2005.

9. Adrian Paschke. ECA-RuleML: An Approach Combining ECA Rules with Tem-
poral Interval-based KR Event/Action Logics and Transactional Update Logics.
CoRR, abs/cs/0610167, 2006.

10. Adrian Paschke. Verification, Validation and Integrity of Distributed and Inter-
changed Rule Based Policies and Contracts in The Semantic Web. In In Second
International Semantic Web Policy Workshop (SWPW06), pages 2–16, 2006.

11. Adrian Paschke. Rule Responder HCLS eScience Infrastructure. In Proceedings of
the 3rd International Conference on the Pragmatic Web: Innovating the Interactive
Society, ICPW ’08, pages 59–67, New York, NY, USA, 2008. ACM.

12. Adrian Paschke. A Semantic Rule and Event Driven Approach for Agile Decision-
Centric Business Process Management - (Invited Paper). In ServiceWave, pages
254–267, 2011.

13. Adrian Paschke and Martin Bichler. Knowledge Representation Concepts for Au-
tomated SLA Management. Decision Support Systems, 46(1):187–205, 2008.

14. Adrian Paschke and Harold Boley. Rules Capturing Events and Reactivity. In
Adrian Giurca, Dragan Gasevic, and Kuldar Taveter, editors, Handbook of Re-
search on Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches, pages 215–252. IGI Publishing, May 2009.

15. Adrian Paschke and Harold Boley. Rule Responder: Rule-Based Agents for The
Semantic-Pragmatic Web. International Journal on Artificial Intelligence Tools,
20(6):1043–1081, 2011.

16. Adrian Paschke, Harold Boley, Alexander Kozlenkov, and Benjamin Larry Craig.
Rule responder: RuleML-based Agents for Distributed Collaboration on The Prag-
matic Web. In ICPW, pages 17–28, 2007.

17. Adrian Paschke, Harold Boley, Zhili Zhao, Kia Teymourian, and Tara Athan. Re-
action RuleML 1.0: Standardized Semantic Reaction Rules. In Proceddings of
RuleML 2012, 2012.

18. Adrian Paschke and Alexander Kozlenkov. A Rule-based Middleware for Business
Process Execution. In Multikonferenz Wirtschaftsinformatik, 2008.

19. Adrian Paschke, Paul Vincent, Alexandre Alves, and Catherine Moxey. Tutorial
on Advanced Design Patterns in Event Processing. In DEBS, pages 324–334, 2012.

20. L.M. Surhone, M.T. Tennoe, and S.F. Henssonow. Drools. VDM Verlag Dr. Mueller
AG & Co. Kg, 2010.

21. Zhili Zhao, Adrian Paschke, Chaudhry Usman Ali, and Harold Boley. Principles of
The SymposiumPlanner Instantiations of Rule Responder. In Proceedings of The
5th International Conference on Rule-based Modeling and Computing on The Se-
mantic Web, RuleML’11, pages 97–111, Berlin, Heidelberg, 2011. Springer-Verlag.


