
Rule Based Business Process Compliance

Guido Governatori, Sidney Shek

NICTA, Australia

Abstract. In this paper we report on the development and evaluation of a busi-
ness process compliance checker, based on the compliance-by-design methodol-
ogy proposed by Governatori and Sadiq [9].
For a screencast see http://www.youtube.com/watch?v=gFmDQJNai_4

1 Introduction
Regulatory compliance is the set of activities an enterprise does to ensure that its core
business does not violate relevant regulations, in the jurisdictions in which the business
is situated, governing the (industry) sectors where the enterprise operates.

The activities an organisation does to achieve its business objectives can be under-
stood as business processes, and consequently they can be represented by business pro-
cess models. On the other hand a normative document (e.g., a code, a bill, an act) can
be understood as a set of clauses, and these clauses can be represented in an appro-
priate formal language. Based on this [5] proposed that business process compliance
is a relationship between the formal representation of a process model and the formal
representation of a relevant regulation.

To gain compliance different strategies can be devised. [16] classifies approaches to
compliance as detective, corrective and preventative.

Detective measures are intended to identify “after-the-fact” un-compliant situations.
There are two main approaches: (a) retrospective reporting through manual audits by
consultants or through IT forensics and Business Intelligence tools; (b) automated de-
tections generating audit reports against hard-coded checks performed on the requisite
system. Unlike the first approach, automated detection reduces the assessment time and
consequently also the time of un-compliance remediation/mitigation.

Corrective measures are intended to limit the extent of any consequence caused by
un-compliant situations. For example, situations that can arise from the introduction of
a new norm impacting upon the business, to the organisation coming under surveillance
and scrutiny by a control authority or to an enforceable undertaking.

The two approaches above suffer from lack of sustainability, caused by the extreme
interest of companies in continuous improvements of the quality of services, and for
changing legislations and compliance requirements. Indeed, even with automated de-
tection means, the hard coded checking of repositories can quickly grow to a very large
scale making it extremely difficult to evolve and maintain. To obviate these problem
[17,13] propose a preventative focus based on the idea of compliance-by-design.

The key aspect of the compliance-by-design methodology is to supplement business
process models with additional information to ensure that a business process is compli-
ant with relevant normative frameworks before the deployment of the process itself.

http://www.youtube.com/watch?v=gFmDQJNai_4


2 BPCC Architecture

In this section we first introduce the architecture of BPCC, a business process com-
pliance checker based on the business process compliance methodology proposed by
Governatori and Sadiq [9].

As we have already discussed to check whether a business process is compliant with
a relevant regulation, we need an annotated business process model and the formal rep-
resentation of the regulation. The annotations are attached to the tasks of the process,
and it can be used to record the data, resources and other information related to the single
tasks in a process.

For the formal representation of the regulation we use FCL [4,8]. FCL is a simple,
efficient, flexible rule based logic. FCL has been obtained from the combination of de-
feasible logic (for the efficient and natural treatment of exceptions, which are a common
feature in normative reasoning) [1] and a deontic logic of violations [6]. In FCL a norm
is represented by a rule

𝑎1, … , 𝑎𝑛 ⇒ 𝑐

Where 𝑎1, … , 𝑎𝑛 are the conditions of applicability of the norm/rule and 𝑐 is the nor-
mative effect of the norm/rule. FCL distinguishes two normative effects: the first is that
of introducing a definition for a new term. For example the rule

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑥), 𝑠𝑝𝑒𝑛𝑑𝑖𝑛𝑔(𝑥) > 1000 ⇒ 𝑝𝑟𝑒𝑚𝑖𝑢𝑚_𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟(𝑥)

specifies that, typically, a premium customer is a customer who has spent over 1000 dol-
lars. The second normative effect is that of triggering obligations and other deontic no-
tions. The deontic notions covered by FCL are obligations1, permissions, and reparation
chains. For obligations FCL supports both maintenance obligations and achievement
obligations, and for achievement obligations both pre-emptive and non-pre-emptive obli-
gations (see [8] for full details). A reparation chair is an expression 𝑂1𝑐1 ⊗ 𝑂2𝑐 ⊗ ⋯ ⊗
𝑂𝑛𝑐𝑛, where each 𝑂𝑖 is an obligation, and each 𝑐𝑖 is the content of the obligation (mod-
elled by a literal). The meaning of a reparation chain is that we have that 𝑐1 is obligatory,
but if the obligation of 𝑐1 is violated, i.e., we have ¬𝑐1, then the violation is compen-
sated by 𝑐2 (which is then obligatory). But if even 𝑂2𝑐2 is violated, then this violation
is compensated by 𝑐3 which, after the violation of 𝑐2, becomes obligatory, and so on.

It is worth noticing that FCL allows deontic expression (but not reparation chains)
to appear in the body of rules, thus we can have rules like:

𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡, [P]𝑠𝑒𝑙𝑙_𝑎𝑙𝑐𝑜ℎ𝑜𝑙 ⇒ [OM]𝑠ℎ𝑜𝑤_𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ⊗ [OAPNP]𝑝𝑎𝑦_𝑓𝑖𝑛𝑒.

The rule above means that if a restaurant has a license to sell alcohol (i.e, it is permitted
to sell it, [P]𝑠𝑒𝑙𝑙_𝑎𝑙𝑐𝑜ℎ𝑜𝑙), then it has a maintenance obligation to expose the license
([OM]𝑠ℎ𝑜𝑤_𝑙𝑖𝑐𝑒𝑛𝑠𝑒), if it does not then it has to pay the fine ([OAPNP]𝑝𝑎𝑦_𝑓𝑖𝑛𝑒). The
obligation to pay the fine is non-pre-emptive (this means it cannot be paid before the
violation). For full description of FCL and its feature see [4,8].
1 Note the obligations allow us to capture prohibitions; a prohibition is an obligation plus nega-
tion, for example the prohibition to smoke can be understood as the obligation not to smoke.



Finally, FCL is agnostic about the nature of the literals it uses. They can represent
tasks (activities executed in a process) or propositions representing state variables.

Compliance is not just about the tasks to be executed in a process but also onwhat the
tasks do, the way they change the data and the state of artifacts related to the process, and
the resources linked to the process. Accordingly, process models must be enriched with
such information. [17] proposes to enrich process models with semantic annotations.
Each task in a process model can have attached to it a set of semantic annotations. In our
approach the semantic annotations are literals in the language of FCL, representing the
effects of the tasks. The approach can be used tomodel business process data compliance
[10]

Recommendations

W
h

at
-if

 a
n

al
ys

is

S
ta

tu
s 

re
po

rt

Compliance checker

Obligations

Input

Annotated 
process model

.

.

.

Logical state 
representation

FormalisationLegalese
Rule1

Rule2

Rule3

Rule4

Rule5

Rule6

Rule7

Rule8

Rule9

...

Compliance rule 
base & checker

Recommendation sub-system

I*(e1)

I*(e3)

I*(e4)

I*(e2)

T2

Post2

T1

Post1

T4

Post4

T3

Post3

T5

Post5

T6

Post6
T7

Post7

Fig. 1. Architecture of BPCC

Figure 1 depicts the architecture of BPCC. Given an annotated process and the for-
malisation of the relevant regulation, we can use the algorithm propose in [7,8] to deter-
mine whether the annotated process model is compliant. The process runs as follows:
– Generate an execution trace of the process.
– Traverse the trace:

• for each task in the trace, cumulate the effects of the task using an update se-
mantics (i.e., if an effect in the current task conflicts with previous annotation,
update using the effects of the current tasks).

• use the set of cumulated effects to determine which obligations enter into force
at the current tasks. This is done by a call to an FCL reasoner.

• add the obligations obtained from the previous step to the set of obligations
carried over from the previous task.



• determine which obligations have been fulfilled, violated, or are pending; and
if there are violated obligation check whether they have been compensated.

– repeat for all traces.

A process is compliant if and only if all traces are compliant (all obligations have been
fulfilled or if violated they have been compensated). A process is weakly compliant if
there is at least one trace that is compliant.

Fig. 2. An Opening Credit Card Account Process with Annotations in BPCC

3 Implementation and Evaluation

BPCC is implemented on top of Eclipse. For the representation of process models, it
uses the Eclipse Activiti BPMN 2.0 plugin, extended with features to allow users to add
semantic annotations to the tasks in the process model. BPCC is process model agnostic,
this means that while the current implementation is based on BPMN all BPCC needs is
to have a description of the process and the annotations for each task. Amodule of BPCC
take the description of the process and generates the execution traces corresponding to
the process. After the traces are generated, it implements the algorithm outlined in the
previous section, where it uses the SPINdle rule engine [12] for the evaluation of the
FCL rules. In case a process is not compliant (or if it is only weakly compliant) BPCC



Fig. 3. Regulations Relevant to the Opening Credit Card Process

reports the traces, tasks, rules and obligations involved in the non compliance issues (see
Figure 4).

BPCC was tested against an 2012 Australian Telecommunications Customers Pro-
tection Code (C628-2012). The code is effective from September 1st 2012. The code
requires telecommunication operators to provide annual attestation of compliance with
the code staring from April 1st 2013. The evaluation was carried out in May-June 2012.
Specifically, the section of the code on complaint handling has been manually mapped
to FCL. The section of the code contains approximately 100 commas, in addition to ap-
proximately 120 terms given in the Definitions and Interpretation section of the code.
The mapping resulted in 176 FCL rules, containing 223 FCL (atomic) propositions, and
7 instances of the superiority relation. Of the 176 rules 33 were used to capture defini-
tions of terms used in the remaining rules. Mapping the section of the code required all
features of FCL: all types of obligations apart punctual obligations were used, repara-
tion chains, permissions, defeasibility to easily capture exceptions, and obligations and
permissions in the body of rules.

The evaluationwas carried over in cooperationwith an industry partner subject to the
code. The industry partner did not have formalised business processes. Thus, we worked
with domain experts from the industry partner (who had not been previously exposed to
BPM technology, but who were familiar with the industry code) to draw process models
for the activities covered by the code. The evaluation was carried out in two steps. In the
first part we modelled the processes they were. BPCC was able to identify several areas
where the existing processes were not compliant with the new code. In some cases the
industry partner was already aware of some of the areas requiring modifications of the
existing processes. However, some of the compliance issues discovered by the tools were
novel to the business analysts and were identified as genuine non-compliance issues that
need to be resolved. In the second part of the experiment, the existing processes were
modified to comply with the code based on the issues identified in the first phase. In
addition a few new business process models required by the new code were designed.
As result we generated and annotated 6 process models. 5 of the 6 models are limited
in size and they can be checked for compliance in seconds. The largest process contains
41 tasks, 12 decision points, xor splits, (11 binary, 1 ternary). The shortest path in the
model has 6 tasks, while the longest path consists of 33 tasks (with 2 loops), and the



Fig. 4. BPCC report of traces, rules, and tasks responsible for non-compliance



longest path without loop is 22 task long. The time taken to verify compliance for this
process amounts approximately to 40 seconds on a MacBook Pro 2.2Ghz Intel Core i7
processor with 8GB of RAM (limited to 4GB in Eclipse).

4 Conclusions

We reported on the development of a tool, BPCC, for checking the compliance of busi-
ness processes with relevant regulations. The BPCC was successfully tested for real
industry scale compliance problems. In the recent years, a few other compliance proto-
types have been proposed:MoBuCom [15], Compass [2] and SeaFlows [14].MoBuCom
and Compass are based on Linear Temporal Logic (LTL) and mostly they just address
“structural compliance” (i.e., that the tasks are executed in the relative order defined by
a constraint model). The use of LTL implies that the model on which these tools are
based on is not conceptual relative to the legal domain, and it fails to capture nuances of
reasoning with normative constrains such as violations, different types of obligations,
violations and their compensation. For example, obligations are represented by temporal
operators. This raises the problem of how to represent the distinction between achieve-
ment and maintenance obligations. A possible solution is to use always for maintenance
and sometimes for achievement, but this leaves no room for the concept of permission
(the permission is dual of obligation, and always and sometimes are the dual of each
other). In addition using temporal operators to model obligations makes hard to capture
data compliance [10], i.e., obligations that refer to literals in the same task. SeaFlow
is based on first-order logic, and it is well know that first oder logic is not suitable to
capture normative reasoning [11]. On the other hand FCL complies with the guidelines
set up in [3] for a rule languages for the representation of legal knowledge and legal
reasoning.

Acknowledgment

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. G. Antoniou, D. Billington, G. Governatori, and M.J. Maher. Representation results for de-
feasible logic. ACM Transactions on Computational Logic, 2(2):255–287, 04 2001.

2. A. Elgammal, O. Türetken, and W.-J. van den Heuvel. Using patterns for the analysis and
resolution of compliance violations. Int. J. Cooperative Inf. Syst., 21(1):31–54, 2012.

3. T.F. Gordon, G. Governatori, and A. Rotolo. Rules and norms: Requirements for rule inter-
change languages in the legal domain. In G. Governatori, J. Hall, and A. Paschke, editors,
RuleML 2009, lNCS 5858, pp. 282–296. Springer, 2009.

4. G. Governatori. Representing business contracts in RuleML. International Journal of Coop-
erative Information Systems, 14(2-3):181–216, 2005.



5. G. Governatori, Z.Milosevic, and S. Sadiq. Compliance checking between business processes
and business contracts. In P.C..K. Hung, ed., EDOC 2006, pp. 221–232. IEEE Computing
Society, 2006.

6. G. Governatori and A. Rotolo. Logic of violations: A Gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 4:193–215, 2006.

7. G. Governatori and Antonino Rotolo. An algorithm for business process compliance. In E.
Francesconi, G, Sartor, and D. Tiscornia, eds, Jurix 2008, pp. 186–191. IOS Press, 2008.

8. G. Governatori and A. Rotolo. A conceptually rich model of business process compliance.
In S. Link and A. Ghose, eds, APCCM 2010, CRPIT 110, pp. 3–12. ACS, 2010.

9. G. Governatori and S. Sadiq. The journey to business process compliance. In J. Cardoso and
W. van der Aalst, eds, Handbook of Research on BPM, pp. 426–454. IGI Global, 2009.

10. M. Hashmi, G. Governatori, and M. Thandar Wynn. Business process data compliance. In
RuleML 2012, LNCS 7438. Springer, 2012.

11. H Herrestad. Norms and formalization. In ICAIL 1991, pp 175–184. ACM, 1991.
12. H-.P. Lam and G. Governatori. The making of SPINdle. In G. Governatori, J. Hall, and A.

Paschke, eds, RuleML 2009, LNCS 5858, pp. 315–322. Springer, 2009.
13. R. Lu, S. Sadiq, and G. Governatori. Compliance aware business process design. In A.H.M.

ter Hofstede, B. Benatallah, and H.-Y. Paik, eds, BPD’07, LNCS 4928, pp 120–131. Springer,
2007.

14. L.T. Ly, S. Rinderle-Ma, K. Göser, and P. Dadam. On enabling integrated process compli-
ance with semantic constraints in process management systems - requirements, challenges,
solutions. Information Systems Frontiers, 14(2):195–219, 2012.

15. F.M. Maggi, M. Montali, M. Westergaard, and W.M.P. van der Aalst. Monitoring Business
Constraints with Linear Temporal Logic: An Approach Based on Colored Automata. In BPM
2011, LNCS 6896, pp. 132–147. Springer, 2011.

16. S. Sadiq and G. Governatori. Managing regulatory compliance in business processes. In J.
van Brocke and M. Rosemann, eds, Handbook of Business Process Management, volume 2,
pp. 157–173. Springer, 2010.

17. S. Sadiq, G. Governatori, andK.Naimiri. Modelling of control objectives for business process
compliance. In G. Alonso, P. Dadam, and M. Rosemann, eds, BPM 2007, LNCS 4714, pp.
149–164. Springer, 2007.


	Rule Based Business Process Compliance
	Guido Governatori, Sidney Shek

