
Decision Aiding Software Using FCA

Florent Domenach and Ali Tayari

Computer Science Department, University of Nicosia, 46 Makedonitissas Av.,
P.O.Box 24005, 1700 Nicosia, Cyprus, domenach.f@unic.ac.cy

Abstract. The consensus problem arises from social choice theory and
systematic biology where we are looking for the common information
shared by a series of trees. In this paper we present a decision aiding
software to help systematic biologist to choose the consensus function
the most appropriate for their need. This software is based on a previous
study between consensus functions and axiomatic properties, and their
underlined concept lattice.

1 Introduction

The consensus problem, which [11] deemed a ”problem for the future”, consists
of summarizing a series of structures, usually trees, into one representative struc-
ture. Axiomatic studies of consensus functions is often [26] described as an ”ideal
situation [in which] the researcher formulates a list of desirable axioms that a
consensus function should satisfy, and search for the best method that satisfies
these axioms” [33]. We present here a software following this approach almost
to the letter. Unfortunatly, it is still missing critical GUI features and is not
available yet.

The motivation for the software is originating from the separation existing
between theorizers and practitioners of consensus theory, what [7] denotes as
abstract consensus theory and concrete consensus theory. On one hand, math-
ematicians are developing sophisticated mathematical tools. The modern devel-
opment of the consensus problem originates from Arrow’s work [3] (followed
by [25]) who considered the problem of aggregating votes and showed that any
voting system is either inconsistent, arbitrary or unstable. Since then, a lot of
functions, together with a set of equivalent axioms, were developed (see [15, 22]
for a comprehensive survey).

On the other hand, practitioners like systematic biologists are rarely using
more than a handful of consensus functions. If you consider the most popular
software available like PAUP∗1 [37] (majority), PHYLIP2 [20] (majority, strict),
or COMPONENT 2.03 [30] (strict, majority-rule, loose, Nelson and Adams con-
sensus trees), only a handful are available for use. It was pointed out [38] that
this gap between the two communities was detrimental to both.

1 http://paup.csit.fsu.edu/
2 http://evolution.genetics.washington.edu/phylip.html
3 http://taxonomy.zoology.gla.ac.uk/rod/cpw.html

70 F. Domenach et al.

The goal of this paper is to present an approach – based on FCA – to the con-
sensus problem that would fill the gap between both communities. We created
a software that asks the user to think of desirable properties that a consensus
method should possess, and then we advise on which consensus function satis-
fying these properties he/she should use. Each step is described in detail in the
paper.

This paper is organized in four sections, the first one being this introduction.
In Section 2, we give a precise definition of the consensus problem, as well as the
definitions of the consensus functions (Section 2.1) and of the axiomatic proper-
ties (Section 2.2) that we implemented. We present in Section 3 the structure of
our program, and explain for every step why and how we are doing it. Finally a
brief conclusion is given in Section 4.

2 The Consensus Problem

Consider a finite set S, |S| = n. In phylogeny, the elements of S are called
operational taxonomic units, or taxa. A hierarchy H on S, also called n-tree, is
a family of subsets of S (called the classes or clusters of H) such that S ∈ H,
∅ 6∈ H, {s} ∈ H for all s ∈ S, and A ∩ B ∈ {∅, A,B} for all A,B ∈ H. We will
indifferently use the terms trees or hierarchies in the paper. We denote the set of
all hierarchies on S by H. Fig. 1 shows the graphical representation of different
trees; usually the internal nodes are simply denoted by the leaves underneath.

Consensus trees are summarizations of the information shared by two or more
classification trees of the same set of taxa. Given a profile H∗ of trees on S, i.e.
a series of trees, we want to know what they have in common - we want to
aggregate H∗ in a unique tree H. We consider in this paper the case where all
the trees of the profile are defined on the same set of taxa, as the generalization
to super-trees [34] (where the trees can have different sets of taxa) can create
computational problems.

2.1 Consensus Functions

Let H∗ = (H1, H2, ...,Hk) be a profile of hierarchies on S, and K will denote
the set of indices of the hierarchies of H∗, K = {1, ..., k}. Formally, a consensus
function on H is a map c : Hk → H with k ≥ 2 and Hk the k cartesian product,
which associate to any profile H∗ a unique hierarchy consensus, c(H∗). We do
not aim to have an exhaustive list of consensus functions, a classification based
on refinement is available in [13]. Consensus functions can be divided in three
main categories:

Quota-based consensus functions. Consider a grouping and the associated index
defined as:

NH∗(A) = {i ∈ K : A ∈ Hi} and nH∗(A) = |NH∗(A)|

Decision Aiding Software Using FCA 71

a bc d e

(H1)

a bc d e

(H2)

a bc d e

(H3)

a bc d e

(HStrict)

a bc d e

(HMaj)

a bc d e

(HLoose)

Fig. 1. Different trees defined on the set of taxa S = {a, b, c, d, e}. For the profile
H∗ = (H1, H2, H3), the strict consensus tree is given by (HStrict), the majority by
(HMaj) and the loose by (HLoose)

We associate the consensus function c(p) : Hk → H to the index nH∗ for any p ∈
K. A subset A is called p-frequent if nH∗(A) ≥ p, and the p-frequent consensus
of H∗, denoted as c(p)(H

∗), is the family of all p-frequent subsets. Quota-based
consensus functions are particular cases of federation consensus functions [23].
Recall that a federation (simple game) is a family F of subsets of K such that
A ∈ F , B ⊇ A imply B ∈ F . A federation consensus function cF is then defined
as cF (H∗) = ∨S∈F (∩i∈SHi). If we take the simple case where, for some j ∈ K,
F = {S ⊆ K : j ∈ S}, we have cF (H∗) = Hj , a single hierarchy dictating the
result of the consensus, the so called projection consensus function.

Projection: ∃j ∈ K : Prj(H∗) = Hj

When we extend this to a subset J of K, we have the oligarchic consensus
function using F = {S ⊆ K : J ⊆ S}, and cF (H∗) =

⋂
j∈J Hj .

Oligarchy: ∃J ⊆ K : Ol(H∗) =
⋂
j∈J

Hj

In the family of quota-based consensus functions, one can notice c(k)(H
∗) =⋂

i∈K Hi the set of classes present in all trees of the profile, i.e. the strict con-
sensus function [36]. In Fig. 1, (HStrict) is the strict consensus of the profile
(H1, H2, H3).

Strict: Str(H∗) =
⋂
i∈K

Hi

If we take p = dk+1
2 e, the smallest natural number greater than k

2 , we have the
majority consensus function [24] which considers clusters appearing in at least

72 F. Domenach et al.

half of the trees. An example of the majority consensus function is given in Fig.
1, where (HMaj) = Maj(H1, H2, H3).

Majority: Maj(H∗) = {X ⊆ S : nH∗(X) >
k

2
}

Unfortunately, if p is less than dk+1
2 e, it cannot be guaranteed that the resulting

family will be a tree. In order to keep the structure of a tree, different strategies
can be used.

Frequency-based consensus functions A first approach considers the idea of com-
patibility, i.e. two sets A and B are compatible if A ∩B ∈ {∅, A,B}, denoted as
A‖B, and a set A is compatible with a hierarchy H if it is compatible with every
cluster of H (or, equivalently, if A ∪ H ∈ H). We then can define a consensus
function called loose consensus [6] (originally called combinable component [12],
also called semi-strict) which considers subsets as long as they are compatible
with every tree of the profile. Fig. 1 shows (HLoose), the loose consensus tree
obtained from (H1, H2, H3).

Loose: L(H∗) =
⋃
{X ⊆ S : ∃j ∈ K,X ∈ Hj and ∀i ∈ K,X ∪Hi ∈ H}

The loose consensus function was extended by [18] to two different consensus
functions. The first one is combining the classes obtained by the majority con-
sensus function with those of the loose consensus function:

Loose and Majority Function Property: LM(H∗) = Maj(H∗) ∪ L(H∗)

The second extension is to add classes that are more often compatible than not.
Define NH∗(X) = {i ∈ K : X ∪Hi 6∈ H} as the set of trees not compatible with
a subset X, then the majority (+) consensus function will take subsets that are
more often compatible than incompatible. It obviously contains all the classes
obtained by the majority function and by the loose function.

Majority-rule (+) : Maj+(H∗) = {X ⊆ S : |NH∗(X)| > |NH∗(X)|}

Consider the weight function w(X) = nH∗(X)− 1 on classes. The Nelson-Page
consensus tree is the tree constructed from the clique G containing the com-
ponents most frequently replicated in the profile. If two or more cliques have
the same, maximal number of replications of components, then the consensus
tree is constructed from those components common to all those cliques. In the
literature, the Nelson-Page tree [27, 29] has often been confused with the strict
consensus tree.

The frequency difference consensus function consider the subsets of S that
are more frequent than any other subsets non-compatible.

Freq. Diff.: FD(H∗) = {X : nH∗(X) > max
Y not compatible with X

{nH∗(Y)}}

Previous consensus functions may miss some structural features of the trees,
particularly if the data is noisy. For example, a desirable feature would be that

Decision Aiding Software Using FCA 73

if two taxa are closer than a third one, we want these two taxa to be separated
from the third one in the consensus hierarchy - which is what Adams’ function [1]
achieves. Historically the first one, an Adams consensus tree contains the nestings
common to all trees in a profile. X nests in Y in H, denoted as X <H Y if and
only if X ⊂ Y and there is Z ∈ H such that X ⊆ Z and Y 6⊆ Z. π(H) is the
maximal cluster partition for H with blocks equal to the maximal clusters of H.
Adams’ consensus function is best described algorithmically (from [13]):

Procedure AdamsTree(H1, ...,Hk)
Construct π(H), the product of π(H1), ..., π(Hk).
For each block B of π(H) do

AdamsTree(H1|B , ...,Hk|B)

Distance-based consensus functions Another consensus family is based on dis-
tance, either as a height function, or as distance between trees. Durchschnitt [28]
consensus function takes the intersection of all classes at the same height. The
canonical height η0(X) of a class X ⊆ S is defined as η0(S) = 0 and η0(X) = h if
and only if there is a maximal sequence S ⊃ X1 ⊃ ... ⊃ Xh−1 ⊃ Xh = X. Define
ω = mini∈KmaxX∈Hiη0(X) as the height of the smallest tree of the profile.

Durchschnitt: Dur(H∗) =

ω⋃
j=1

{
⋂
i∈K

Xi : Xi ∈ Hi and η0(Xi) = j}

The median and asymmetric median consensus functions both use a distance
between trees, i.e. a distance on H. The median consensus is the tree minimizing
the distance of the symmetric difference from it to every tree of the profile.
The median consensus was extensively studied, particularly in the case of semi-
lattices [35] (as trees can be seen as semi-lattices).

Median: Med(H∗) = minH∈H

k∑
i=1

|H4Hi|

The asymmetric median consensus [32] on the other hand is the tree minimiz-
ing the distance between each tree and the consensus tree, i.e. minimizing the
number of classes in Hi that are not present in c(H∗).

Asymmetric Median: AMed(H∗) = minH∈H

k∑
i=1

|Hi −H|

2.2 Axiomatic Properties of Consensus Functions

Historically, consensus functions were studied through a series of (desirable) ax-
ioms proved to be equivalent to the function. Arrow’s pioneer work proved the
impossibility of a non-dictatorial consensus function satisfying fundamental ax-
ioms (transitivity, Pareto and independence of irrelevant alternatives) on linear

74 F. Domenach et al.

orders. We implemented a series of axioms that a user may find desirable or
undesirable.

A consensus function is Pareto relatively to a specific kind of relationships
(classes, triplets, nestings) when the consensus tree will contain the relationship
present in all the trees, i.e. will contain the intersection of the trees of the profile
with respect to the relationship. For example, when we are interested in the
common classes, we have the Pareto optimal [31] axiom:

Pareto Optimality: (∀X ⊆ S)(X ∈
k⋂

i=1

Hi ⇒ X ∈ c(H∗))

Trees can also be defined [14] through triplets ab|c, a, b, c ∈ S, denoting the
grouping of a and b relative to c. We say that ab|c ∈ H if there exists a class
X ∈ H such that a, b ∈ X but c 6∈ X. The Pareto property on triplets is that a
common separation of two taxa from a third taxon among every input tree must
be respected and applied in the consensus tree.

Ternary Pareto Optimality: (∀x, y, z ∈ S)((∀i ∈ K)(xy|z ∈ Hi)⇒ xy|z ∈ c(H∗))

Adams [2] extended that idea to nestings, where if two clusters are separated
from each other in every input tree, therefore they must also be separated in the
consensus tree:

Nesting Preservation: (∀∅ 6= X,Y ⊆ S)((∀i ∈ K)(X <Hi
Y)⇒ (X <c(H∗) Y))

Conversely, a consensus function is co-Pareto for a particular relationship if one
can find every relationship of that kind of the consensus tree in one or more tree
of the profile. Every cluster from the consensus tree must appear in at least one
of the input tree, or in other words it should be a member of the union of all
input trees. We will consider here only co-Pareto optimally for classes.

co-Pareto Optimality: (c(H∗) ⊆
k⋃

i=1

Hi)

In order to characterize his consensus function, Adams introduced a reciprocal
property of nesting preservation, although stronger than just a co-Pareto prop-
erty. It states that if two subsets are nested in the consensus tree, they must be
nested in all the trees of the profile.

Strong Presence: (∀∅ 6= X,Y ⊆ S)(X <c(H∗) Y ⇒ (∀i ∈ K)(X <Hi
Y))

It happened that Strong Presence property was too constraining, so instead of
considering all possible nested subsets, Adams considered only the nested classes.
Any two clusters of the consensus tree that are separated from each other must
also be separated in every input tree.

Qualified Strong Presence: (∀X,Y ∈ c(H∗))(X <c(H∗) Y ⇒ (∀i ∈ K)(X <Hi
Y))

Decision Aiding Software Using FCA 75

Qualified strong presence was weakened to consider the clusters of the consensus
tree to be nested in S in each tree of the profile:

Upper Strong Presence: (∀X ∈ c(H∗))(X <c(H∗) S ⇒ (∀i ∈ K)(X <Hi S))

The dictatorship property (an input tree dictates over the consensus tree by
having all of its clusters included in the consensus tree) is often consider unde-
sirable; however, this can change if there is a particular tree that can be consider
an oracle, i.e. for which we want the consensus tree to refine it.

Dictatorship: (∃j ∈ K)(∀X ⊆ S)(X ∈ Hj ⇒ X ∈ c(H∗))

Another desirable property, also called faithful, is the following: for every group
of clusters containing only one cluster from each input tree there must be a
cluster in the consensus tree such that it includes the intersection of the group
of the group of clusters and it is included in the union of the groups of the group
of clusters.

Betweenness: (∀i ∈ K with Xi ∈ Hi)(∃Y ∈ c(H∗))(
k⋂

i=1

Xi ⊆ Y ⊆
k⋃

i=1

Xi)

3 Decision Aiding Software

We used Formal Concept Analysis (FCA) [21] as our formal background. FCA is
particularly suitable as it provides a structure on the power set of attributes, here
the consensus functions and axioms, and allow calculations of distances on that
structure. Since we assume the reader familiar with FCA, we will only briefly
recall main terminologies and results used in our program: a formal context
(G,M, I) is defined as a set G of objects, a set M of attributes, and a binary
relation I ⊆ G × M . (g,m) ∈ I is read as ”object g has attribute m”. To
this formal context, one can associate to a set of objects A ⊆ G its intension
A′ = {m ∈M : ∀g ∈ A, (g,m) ∈ I} of all properties shared by A. Dually, we can
define B′ = {g ∈ G : ∀m ∈ B, (g,m) ∈ I}, the extension of a set of properties
B ⊆ M . A pair (A,B), A ⊆ G,B ⊆ M , is a formal concept if A′ = B and
B′ = A. The set of all formal concepts, ordered by inclusion, forms a lattice [5],
called concept lattice. For more terms and definitions on lattice theory, one can
refer to [10, 16].

This D.A. software has three different functional layout (see Fig. 2): a pre-
processing is first done on consensus functions and axioms in order to create the
context that then will be used, with the associated lattice, in order to advise
users on which consensus function to use. The last layer is concerned with the
obtainment of the tree itself from some input profile.

3.1 Pre-processing

The first layer of the D.A. software concerns the pre-processing of the data that
will be used. In order to insure scientific validity of the decision aiding, we imple-
mented the previous consensus functions of Sec. 2.1 and the axiomatic properties

76 F. Domenach et al.

Fig. 2. D.A. software functional layout.

of Sec. 2.2 in C++ on a laptop Intel Core i5, 2.3 GHz. Initially, it generates all
possible hierarchies based on a given set of n taxa, and traverses through all pos-
sible profiles of k hierarchies, together with all possible consensus trees. Then
we exhaustively list what we called configurations, each configuration is a pair
consisting of a profile and a consensus tree. Every configuration was systemati-
cally compared against axiomatic properties and consensus functions in order to
create a first (raw) context. Attributes of the context are the consensus functions
and the axiomatic properties, while the objects are every possible configuration.
We discussed in [17] the implications generated by the context.

During the pre-processing phase, we encountered a series of computational
challenges, as the number of n-trees grows exponentially [19] and some consen-
sus functions are NP-hard [32]. We were able to exhaustively investigate the
configurations only up to n = 5, for which we obtained around 9.57× 1012 con-
figurations. Since the running time of the simulation increases exponentially with
slight addition to n or k, in order to have partial results, controlled randomly
selected configurations were chosen in order to have a more accurate - and so a
more refine - context.

3.2 Underlined Structure

Given the number of objects in our context (over one trillion), we first eliminate
duplicates. If several configurations share the same attributes, we simply keep
the first one as representative. No information is lost as we are interested in

Decision Aiding Software Using FCA 77

the structure of the attributes, and the objects (the configurations) sole purpose
is to systematically investigate this structure. Our simplified context has 5379
objects for 23 attributes, and Fig. 3 shows the overall concept lattice, having
3718 concepts. In order to derive the lattice, we followed The Next Closure [21]
algorithm. This algorithm uses the lectic order on the set of attributes M , which
is a total order on P(M). Given two subsets A and B of M , A is said to be
lectically smaller than B at position i, and we denote it by A ≺i B, if and only
if i = min(A∆B) and i ∈ B. Finally, we say that A is lectically smaller than B
if A = B or A ≺i B for some i ∈ K. We used Next Closure algorithm as it is an
efficient and easy to implement.

Fig. 3. Concept lattice associated with the configurations with minimal labeling of the
properties (drawn with ConExp [39]).

78 F. Domenach et al.

After constructing the list of concepts and listing them in ascending order,
the program also keeps track of the children and parents of each concept of
the lattice. The user can then select a set of axiomatic properties depending
on the one he/she finds desirable or undesirable: each axiom can be preferred
(positive), disliked (negative), or neutral. Based on that input, the program
finds the meet of the selected properties, i.e. the concept C associated to his/her
choices. Concept C is the smallest concept containing all the positive user’s
choices and no negative ones if it exists. If the user’s choices are conflicting, i.e.
C doesn’t exist, positive choices will be given priority over negative ones.

3.3 Distances in the lattice

In order to advise which consensus function would be suitable depending on the
user’s choices, for each consensus function, we first find the smallest concepts Ci

containing that consensus function. Then we used different distances between C
(the concept representing the user’s choice) and each Ci (the concepts associated
with consensus function i) in order to find the consensus function the closest to
the user’s choice. The use of different distances lets the user freely choose which
distance is more suitable.

We can consider two types of distances in a lattice: distances based on con-
cepts and distances on the covering graph (or Hasse diagram) of the lattice. For
the first type, we used the distance of the symmetric difference between con-
cepts, d1(C,Ci) = |C∆Ci|, i.e the number of properties present in either C or
Ci but not in both. For the second type, distances in the covering graph, we
considered four distinct distances:

– Any Path Distance: weight of the shortest path (topological distance) be-
tween the corresponding attribute concepts; the closer the two concepts are
in the graph, the greater their likelihood.

– Any Path Distance Without ⊥L and >L: we remove the top and the bot-
tom concepts of the lattice to compute the topological distance because such
concepts don’t bear any information (even if 1L can have attributes associ-
ated, it still doesn’t have any meaning). It is particularly important when
we consider the co-atoms of the lattice (such as Pareto Optimal or co-Pareto
Optimal, see Fig. 3), as the shortest path could go through 1L and short-
circuit the ”real” distance.

– Meet Distance: It is the topological distance between C and Ci passing
through their meet, i.e. the distance from C to C ∧ Ci plus the distance
from Ci to C ∧ Ci.

– Join Distance: Dual to the meet distance, it is the topological distance be-
tween C and Ci passing through their join.

Since each previous distance has its own advantages and disadvantages, we also
implemented a weighted average distance for which the user can freely assign
the weights. It is a weighted average of all the above distances based on user’s
preference. Fig. 4 shows an example of user’s choice and the advised consensus
function.

Decision Aiding Software Using FCA 79

Fig. 4. Screen shot of the second layer of the software, with an example of user’s
choices.

3.4 Decision Aiding

In the third layer, the D.A. Software recognizes input trees which are given
in Newick format. The Newick tree format is a well-known representation of
graph-theoretical trees which denotes trees using parentheses and commas. The
simplicity and standard nature of Newick makes it a suitable method for scien-
tists to provide the software with their input. There are several ways through
which trees can be represented, however the representation that contains only
the information about the leaves are recognized as the valid ones. For example, in
Fig. 1, (H1) has the Newick format (((a, c), b), d, e), while (H2) is ((a, c), (b, d, e)).

Upon selection of consensus functions by the user, the D.A. software generates
the unique (or set of all possible consensus trees) for the selected functions, so
that the user can compare them with each other. Using this feature, the user is
able to find out which model would be more suitable for the nature of their work,
for which he/she will be provided with respective consensus tree(s). This allows
the user to have a narrowed list of candidates for the representative consensus
trees as well as having a hands-on experience to find out the most suitable
functional property and consensus tree.

4 Conclusion and Future Work

In this paper, we presented a decision aiding software which explore via Formal
Concept Analysis the space of consensus functions and their axioms. It provides
the user with means to generate consensus tree(s) representative(s) depending
on their choices. It initially imports the raw context obtained via pre-processing,
constructs the associated lattice and, depending on the user’s preferences, advise

80 F. Domenach et al.

based on distances in the lattice on which function to use. Upon selection of
functions, the program generates the consensus trees of the collection of user’s
input tree using selected functional properties.

In continuation of this project, we are planning to expand the capabilities
of this software. Firstly, besides the (rooted) trees that are currently supported
as input and output, the program will be able to support super-trees as well
as unrooted trees as its input and output. Another possibility would be the
addition of other types of structures of sets such as pyramids [9], weak-trees
[4], and, more generally, lattices. In addition, the concept of independence and
neutrality as axiomatic properties are planned to be incorporated. Moreover,
other commonly used consensus functions are going to be added to the result,
therefore with a further refined and exhaustive approach, the program’s precision
and usefulness would be improved.

References

[1] Adams III, E.N.: Consensus Techniques and the Comparison of Taxonomic Trees.
Systematic Zoology 21 (1972) 390–397

[2] Adams III, E.N.: N-trees as nestings: Complexity, similarity, and consensus. J.
Classif 3 (1986) 299-317

[3] Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)

[4] Bandelt, H.-J., Dress, A.: Weak hierarchies associated with similarity measures: an
additive clustering technique Bull. Math. Biology 51 (1989) 133-166

[5] Barbut, M., Monjardet, B.: Ordres et classification: Algèbre et combinatoire (tome
II). Hachette, Paris (1970)

[6] Barthélemy, J.-P., McMorris, F.R., Powers, R.C: Dictatorial consensus functions
on n-trees. Math. Soc. Sci. 25 (1992) 59-64

[7] Barthélemy, J.-P., Brucker, F.: Average Consensus in Numerical Taxonomy. In
Data analysis, Eds. W. Gaul, O. Opitz, and M. Schader, Springer (2000) 95-104

[8] Bertrand, P.: Set Systems and Dissimilarities. Europ. J. Combinatorics 21 (2000)
727-743

[9] Bertrand, P., Diday, E.: A visual representation of compatibility between an order
and a dissimilarity index: the pyramids. Comput. Stat. Quart. 2 (1985) 31-44

[10] Birkhoff, G.: Lattice Theory, 3rd ed. Amer. Math. Soc., Providence (1967)

[11] Bock, H.H.: Classification and clustering: Problems for the future. In Diday, E.,
Lechevallier, Y., Schader, M., Bertrand, P., Burtschy, B.: New approaches in clas-
sification and data analysis. Springer-Verlag, Berlin (1994) 3–24

[12] Bremer, K.: Combinable component consensus. Cladistics 6 (1990) 369-372

[13] Bryant, D.: A Classification of Consensus Methods for Phylogenetics. In: Janowitz,
M., Lapointe, F.J., McMorris, F., Mirkin, B., Roberts, F. (eds.) Bioconsensus,
DIMACS (2003) 163-184

[14] Colonius, H., Schulze, H.-H.: Tree structure for proximity Data. Brit. J. of Math.
Stat. Psych. 34 (1981) 167-180

[15] Day, W.H.E., McMorris, F.R.: Axiomatic Consensus Theory in Group Choice and
Biomathematics. Siam, Philadelphia (2003)

[16] Davey, B.A., Priestley, H. A.: Introduction to Lattices and Order, 2nd ed. Cam-
bridge University Press (2002)

Decision Aiding Software Using FCA 81

[17] Domenach, F., Tayari, A.: Implications of Axiomatic Consensus Properties. To
appear (2012)

[18] Dong, J., Fernández-Baca, D., McMorris, F.R., Powers. R.C.: An Axiomatic Study
of Majority-rule (+) and associated Consensus Functions on Hierarchies. Disc. App.
Math. 159 (2011) 2038-2044

[19] Felsenstein, J.: The Number of Evolutionary Trees. Syst. Zool. 27 (1978) 27-33
[20] Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics

5 (1989) 164-166
[21] Ganter, B., Wille, R.: Formal Concept Analysis : Mathematical Foundations.

Springer (1996)
[22] Hudry, O., Monjardet, B.: Consensus Theories. An Oriented Survey. Math. Sci.

hum 190 (2010) 139-167
[23] Leclerc, B. Monjardet, B.: Latticial theory of consensus. In: Barnett, V., Moulin,

H., Salles M., Schofield N. (eds.) Social choice, Welfare and Ethics. Cambridge
University Press, Cambridge (1995) 145-159

[24] Margush, T., McMorris, F.R.: Consensus n-trees. Bull. Math. Biol. 43 (1981)
239-244

[25] May, K.O.: A Set of Independent Necessary and Sufficient Conditions for Simple
Majority Decision. Econometrica 20 (1952) 680-684

[26] McMorris, F.R.: : Axioms for consensus functions defined on undirected phyloge-
netic trees. Math. Biosciences 74 (1985) 77-80

[27] Nelson, G.: Cladistic analysis and synthesis: Principles and definitions, with a
historical note on Adanson’s Famille des Plantes (1763-1764). Syst. Zool. 28 (1979)
1-21

[28] Neumann, D.A.: Faithful consensus methods for n-trees. Math. Biosci 63 (1983)
271-287

[29] Page, R.D.M.: Tracks and Trees in the Antipodes: A Reply to Humphries and
Seberg. Syst. Zool. 39 (1990) 288-299

[30] Page, R.D.M.: User’s manual for COMPONENT, Version 2.0. Natural History
Museum, London (1993)

[31] Pareto, V.: Cours d’économie politique. F. Rouge, Lausanne (1896)
[32] Phillips, C., Warnow, T.J.: The aymmetric median tree - A new model for building

consensus trees. Disc. App. Math. 71 (1996) 311-335
[33] Powers, R.C., White, J.M.: Wilson’s theorem for consensus functions on hierar-

chies. Disc. Appl. Math. 156 (2008) 1321–1329
[34] Semple, M., Steel, C.: A supertree method for rooted trees. Disc. App. Math. 105

(2000) 147-158
[35] Sholander M.: Medians, Lattices, and Trees. Proceedings of the American Math-

ematical Society 5 (1954) 808-812
[36] Sokal, R.R., Rohlf, F.J., Taxonomic congruence in the Leptopodomorpha re-

examined. Syst. Zool. 30 (1981) 309-325
[37] Swofford, D.L.: PAUP: Phylogenetic Analysis Using Parsimony, version 3.0. Illinois

Natural History Survery, Champaign (1990)
[38] Wilkinson, M., Thorley, J.L., Pisani, D.E., Lapointe, F.-J., McInerney, James O.:

Some Desiderata for Liberal Supertrees. In: Phylogenetic Supertrees: Combining
Information to Reveal the Tree of Life, Kluwer Academic Publishers (2004) 564-582

[39] Yevtushenko, S.A.: System of data analysis ”Concept Explorer”. Proceedings of
the 7th national conference on Artificial Intelligence KII-2000, Russia (2000) 127-
134

