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Abstract

This paper presents work in progress on a new version, for public release, of the Logical
Framework with Side Conditions (LFSC), previously proposed as a proof meta-format for
SMT solvers and other proof-producing systems. The paper reviews the type-theoretic
approach of LFSC, presents a new input syntax which hides the type-theoretic details
for better accessibility, and discusses work in progress on formalizing and implementing a
revised core language.

1 LFSC and the Challenge of SMT Proofs

The recent widespread adoption of SMT solvers for applications in program analysis, hardware
and software verification, and others, has been enabled largely by the SMT community’s suc-
cessful adoption of first the SMT-LIB 1.x and now the SMT-LIB 2.x format [8, 1]. This is truly
a laudable achievement of the whole SMT community, which has provided many benefits to
applications. The community is also quite interested in doing the same for proofs produced by
SMT solvers. This would enable advanced applications which need proofs from SMT solvers
(e.g., [4]), and would benefit interactive theorem proving [3]. Having a common proof format
and providing suitable incentives (e.g., through competition) could help increase the number of
proof-producing solvers. But as the authors and others have argued, devising a common proof
system suitable for all SMT solvers is a daunting task, as proof systems tend to mirror solving
algorithms, which are quite diverse.

So the community has been considering different proposals for a common meta-format.
Besson et al. have proposed a meta-format parametrized by solver-specific rules [2]. Their
format provides notions of named clauses (via clause ids) and local proofs. This is quite use-
ful, as one can expect to need these features across all particular sets of solver-specific rules.
Nevertheless, their format does not provide means for formally defining the semantics of such
rules. The ability to give a formal, declarative specification of solver-specific inferences serves
as formal documentation, and also enables generic implementation of proof tools like proof
checkers or proof translators (to interactive theorem provers, say). We believe Besson et al.’s
format should be compatible with what we are proposing, though despite some preliminary
conversations (particularly with Pascal Fontaine) the details of this remain to be worked out.

In previous papers, we proposed a version of the Edinburgh Logical Framework (LF) [5],
extended with support for computational side conditions on inference rules, as a meta-format
for SMT [6, 12]. This Logical Framework with Side Conditions (LFSC) combines powerful
features of LF (reviewed below) with support for defining side conditions as recursive programs
written in a simple first-order functional language. This allows proof systems to be expressed
partly declaratively (with inference rules), and partly computationally (with side conditions).
The advantage of using computational side conditions is that proofs written in the proof system
do not contain any subproof corresponding to the side conditions. Instead, the proof checker
executes the side conditions whenever it checks inferences in the proof. This can save both space
and checking time. Previous work explored different balances of declarative and computational
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formulas φ ::= p | φ1 → φ2

contexts Γ ::= · | Γ, φ

φ ∈ Γ
Γ ` φ Assump

Γ, φ1 ` φ2

Γ ` φ1 → φ2
ImpIntro

Γ ` φ1 → φ2 Γ ` φ1

Γ ` φ2
ImpElim

·, (p→ (q → r)), q, p ` p→ (q → r) ·, (p→ (q → r)), q, p ` p
·, (p→ (q → r)), q, p ` q → r ·, (p→ (q → r)), q, p ` q

·, (p→ (q → r)), q, p ` r
·, (p→ (q → r)), q ` (p→ r)
·, (p→ (q → r)) ` (q → (p→ r))
· ` (p→ (q → r))→ (q → (p→ r))

Figure 1: Standard mathematical definition of minimal propositional logic, and example proof

rules for the SMT-LIB logics QF IDL and QF LRA, and showed how to use type computation
for LFSC to compute interpolants [10, 9]. Optimized LFSC proof checking is quite efficient
relative to solving time: for QF UF benchmarks we found a total average overhead of 30% for
proof generation and checking (together) over and above solving alone.

We are now focusing on providing a high-quality implementation of LFSC for public release.
It is our hope that the availability of such an implementation will be the final step which will
enable solver implementors to adopt LFSC as a single, semantics-based meta-format for SMT
proofs. In the rest of this short paper, we describe our work in progress towards this vision,
which consists of devising a more accessible input syntax (Section 2) and formalizing a new core
language which is able to accommodate features like local definitions and implicit arguments
(Section 3), which we found to be important in practice but which are often not considered in
standard treatments of LF.

We would like to acknowledge also the contributions of Jed McClurg and Cuong Thai to
earlier work on this new version of LFSC.

2 A Surface Syntax Based on Grammars and Rules

LF and LFSC are meta-languages based on a dependent type theory. The methodology for
using LF/LFSC is to encode object-language constructs using dependently typed data con-
structors in LF/LFSC. If used directly, this requires unfamiliar type-theoretic notation and
conceptualization, a burden we do not wish to impose on SMT solver implementors.

To illustrate these points, let us consider an example proof system in standard mathematical
notation. Figure 1 shows the syntax and inference rules of minimal propositional logic. As our
proposed syntax for side-condition code has not changed fundamentally, we are deliberately
restricting our attention here to a signature without side conditions. For more on side-condition
code in LFSC, including examples for a resolution calculus, see [6].

In the LF methodology, a proof system like the one in Figure 1 is encoded as a sequence
of type declarations called a signature. The syntactic categories, here Formula and Context,
are encoded as types, whose syntactic constructs are encoded as constructors of those types.
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formula : Type
imp : formula→ formula→ formula
holds : formula→ Type
ImpIntro : Πf1 : formula.Πf2 : formula.((holds f1)→ (holds f2))→ (holds (imp f1 f2))
ImpElim : Πf1 : formula.Πf2 : formula.(holds (imp f1 f2))→ (holds f1)→ (holds f2)

ImpIntro (imp p (imp q r)) (imp q (imp p r))
λu.ImpIntro q (imp p r)
λv.ImpIntro p r
λw.ImpElim q r (ImpElim p (imp q r) u w) v

Figure 2: Minimal propositional logic in LF (core syntax), with encoded example proof (no
inferred arguments)

The judgments of the proof system are also encoded as types, with the inference rules as
constructors. Object-language variables are represented with meta-language variables, object-
language binders with LF’s λ-binder, and logical contexts (like Γ in this example) with the LF
typing context.

Figure 2 shows the corresponding signature in standard type-theoretic notation for LF. The
Assump rule does not have a constructor, because assumptions in the object language have
been mapped to variables in LF. For the example proof, the λ-bound variables u, v, and w
correspond to the assumptions of p → (q → r), q, and p, respectively. Since inference rules
are encoded using term constructors with dependent types (Π types), there is rather a lot
of redundant information in that encoded example proof. Implementations of LF like Twelf
allow one to omit some of these arguments in some cases, if they can be inferred from other
parts of the proof term [7]. In our first implementation of LFSC, we allowed proofs to contain
underscores for omitted arguments, which we then sought to reconstruct in a similar way to
what is done in Twelf.

We are designing a surface language for LFSC, intended to rely on the more familiar concepts
of context-free grammars for describing syntax, and more familiar notation for inference rules,
as is done in tools like Ott (and others) [11]. Using this surface language, our sample signature is
encoded as in Figure 3. The ImpIntro rule uses square brackets and a turnstile for hypothetical
reasoning; in this case, to represent the fact that holds f2 is to be proved under the assumption
of holds f1. We use root names like f for formula to avoid specifying types for meta-variables
in the rules. Root names are specified when a syntactic category is defined. The example proof
term is similar to the one in Figure 2, except that arguments which an analysis determines can
be reconstructed can be omitted. Defining this analysis is still work in progress, but in this
case, it will determine that of the meta-variables used in the ImpIntro and ImpElim rules, only
f1 needs a value in order to guarantee that the types computed for terms are fully instantiated
(that is, without free meta-variables). The benefits of omitting arguments in dependently typed
languages are well known: notice how much more compact the example proof term is without
values for the meta-variables f2 for ImpIntro and f1 and f2 for ImpElim.

For encoding SMT logics, we made use, in our previous proposals, of LF type-checking to
implement SMT type-checking of SMT terms contained in proofs. This is done in a standard
way by using an indexed type term T to represent SMT terms which have (encoded) SMT type
T. Our new surface syntax also supports indexed syntactic categories. For example, Figure 4
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SYNTAX

formula f ::= imp f1 f2 .

JUDGMENTS

(holds f)

RULES

[ holds f1 ] |- holds f2

----------------------------- ImpIntro

holds (imp f1 f2) .

holds (imp f1 f2) , holds f1

----------------------------- ImpElim

holds f2 .

ImpIntro (imp p (imp q r))

u. ImpIntro q

v. ImpIntro p

w. ImpElim (ImpElim u w) v

Figure 3: LFSC encoding of minimal propositional logic in proposed surface syntax, with
example proof

SYNTAX

sort s ::= arrow s1 s2 | bool .

term<sort> t ::=

true<bool>

| (not t1<bool>)<bool>

| (impl t1<bool> t2<bool>)<bool>

| (forall t<s> ^ t<bool>)<bool>

| (ite t1<bool> t2<s> t3<s>)<s>

| (eq t1<s> t2<s>)<bool>.

formula f ::= t<bool>.

Figure 4: LFSC encoding (surface syntax) of part of the syntax of SMT terms, indexed by their
sorts

gives part of a signature for a minimal SMT theory. This syntax definition indexes the syntactic
category term by the syntactic category sort. Everywhere a meta-variable for terms is used, it
must be listed with its sort. Similarly, the definitions of constructors show the resulting indices.
For example, since equality is sort-polymorphic, we see that its meta-variables are indexed by
(the same) sort s, while its resulting sort is indicated as bool. This example also demonstrates
our surface syntax for binding, namely ^, in the declaration of forall. This notation means
that forall binds a variable ranging over terms of sort s, and then has a body which must be
a term of sort bool.

As a final example of the new syntax, Figure 5 shows the LFSC encodings of SMT rules
for universal quantifiers. The rules are complicated somewhat by the need to express the sort
information for terms. The first rule uses the ^ binding notation to indicate a parametric
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t<s> ^ holds f { t<s> }
--------------------------------- all_intro
holds (forall t<s> ^ f{t<s>} ).

holds (forall t<s> ^ f { t<s> } )
----------------------------------- all_elim
holds f{t<s>} .

Figure 5: LFSC encoding (surface syntax) of SMT quantifier rules

judgment in the premise: to apply all_intro, we must supply a proof of holds f{t<s>}
for an arbitrary term t of sort s. The fact that the term is arbitrary is indicated by the
use of ^ in the premise. We also see a notation for expression contexts, using curly braces.
Any meta-variable can be used as a context variable, although if that meta-variable is from
an indexed syntactic category, the result index must also be shown. Here, we make use of a
defined syntactic category of formulas, so that no result sort need be listed for meta-variable f.
All these different binding concepts (expression contexts, parametric proofs, and hypothetical
proofs) are ultimately implemented with just the single λ-binder of LF. But for the surface
language, our common informal meta-language tends to distinguish them, and so we follow
that approach in our surface language.

3 Improving the Core Language

While the surface language distinguishes syntactic constructs and proof rules, LF elegantly
unites them (under encoding) as just term constructors for possibly indexed datatypes. So
both for conciseness and to give a semantics for the different features sketched above, we are
working to compile signatures from our surface language to a core language for LFSC, which
we are specifying formally with the help of the Ott tool [11]. We are addressing a number of
issues important for practical use of LF/LFSC for large proofs:

• We have explicit syntax to indicate which arguments to term constructors are implicit
and which are explicit.

• We are devising an algorithm to ensure that all higher-order implicit arguments (which
our surface language limits to second order) can be automatically reconstructed during
proof checking. Other approaches simply delay constraints falling outside the decidable
higher-order pattern fragment in the hopes of not needing to solve them.

• In general, we only intend to execute side-condition code on concrete terms. So we are
designing the language to help ensure that as much as statically possible, the arguments
to side condition programs do not contain meta-variables for omitted implicit arguments.
Such meta-variables can be filled in by type checking, but not during execution of side-
condition code.

• We have support for global and local definitions, both of which are incorporated into
definitional equality. Some other treatments of LF do not handle definitions at all, but
these are essential for keeping proof sizes down.
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sample.sig

Surface LFSC

sample.core sig

Core LFSC

C++ checker for sample.sigsample.pf
Pass: pf valid

Fail: pf invalid

Figure 6: System architecture for new implementation of LFSC

• Since we use definitions, we cannot so easily make use of the so-called “canonical forms”
version of LF, where all terms are assumed to be in β-short η-long normal form: appli-
cations of defined symbols can be redexes. Instead, we are formulating a system with
explicit definitional equality, which can also fill in implicit arguments.

• We retain support for compiling proof rules to efficient low-level (C/C++) code by avoid-
ing explicit substitutions in our formalization. Meta-level substitutions will be carried out
directly in code emitted by the compiler, so using explicit substitutions merely obscures
what will happen in compiled code.

• We are designing the language for side-condition programs to respect dependent typing of
terms. This does not require implementing a full-blown dependently typed programming
language, because indices to types can only contain terms which normalize to constructor
terms. (In contrast, in dependently typed programming, indices can include terms with
recursion.)

While none of these features is terribly complex, designing detailed typing rules that ac-
commodate them all simultaneously has taken time. For example, we are implementing a
requirement that all omitted arguments to a term constructor C must be reconstructed by the
time we complete the type checking of an application of C. For this, we constrain the syntax of
types for term constructors so that implicit arguments are listed first, then explicit arguments
and possible invocations of side-condition code, and finally a possibly indexed result type.

4 Status and Conclusion

Figure 6 shows the architecture for the LFSC system we are currently implementing. A sample
signature sample.sig in the surface syntax discussed above is translated to a core-language
signature sample.core sig, which is then compiled to C++ code optimized for checking proofs
in that signature. A sample proof sample.pf can then be fed to that checker, which reports
whether the proof passes (all inferences correct and all side conditions succeed) or fails.
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Co-author Corey Oliver has completed the translator for surface-language signature (“Sur-
face LFSC” in Figure 6). Co-author Austin Laugesen has completed implementation of the
compiler for side-condition code (part of LFSC core in Figure 6). This compiler translates the
LFSC side-condition language to C++, and supports both reference counting or regions for
managing memory allocated during execution of side-condition code. A preliminary evaluation
confirms the performance benefits for this application of region-based memory management,
where all new memory is allocated from a single monolithic region of memory which can then
be reclaimed at once in constant time. Co-authors Harley Eades and Ruoyu Zhang have worked
with Aaron Stump on the design of the core language, which is almost complete. The first three
co-authors have worked to devise the surface syntax, which is complete now. Implementation
of the core-language type checker and compiler (“Core LFSC” in Figure 6) in OCaml are just
beginning, and should be done Summer 2012. We expect to have an initial public release of
the tool in early Fall 2012. We hope that this release will be a decisive step in the quest for
a standard meta-format for SMT proofs, and will help the community continue its remarkable
success in providing high-performance, usable logic solvers for advanced applications in many
fields of Computer Science.
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