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Preface

The goal of the PxTP workshop series is to bring together researchers working on proof produc-
tion from automated theorem provers with potential consumers of proofs. Machine-checkable
proofs have been proposed for applications like proof-carrying code and certified compilation,
as well as for exchanging knowledge between different automated reasoning systems. For exam-
ple, interactive theorem provers can import results from otherwise untrusted high-performance
solvers, by means of proofs the solvers produce. In such situations, one automated reasoning
tool can make use of the results of another, without having to trust that the second tool is
sound. It is only necessary to be able to reconstruct a proof that the first tool will accept, in
order to import the result without increasing the size of the trusted computing base.

This simple idea of proof exchange for theorem proving becomes quite complicated under
the real-world constraints of highly complex and heterogeneous proof producers and proof
consumers. For example, even the issue of a standard proof format for a single class of solvers,
like SMT solvers, is quite difficult to address, as different solvers use different inference systems.
It may be quite challenging, from an engineering and possibly also theoretical point of view, to
fit these into a single standard format. Emerging work from several groups proposes standard
meta-languages or parametrised formats to achieve flexibility while retaining a universal proof
language.

PxTP 2012, the Second International Workshop on Proof Exchange for Theorem Proving,
was held as a satellite event of IJCAR on June 30, 2012, in Manchester, UK. The workshop
featured invited talks by Robert L. Constable and Stephan Merz, a joint session with the Third
Workshop on Practical Aspects of Automated Reasoning (PAAR 2012), and presentations of
the five accepted papers that are collected in this volume. We would like to thank the IJCAR
organisers, the PxTP program committee, the authors and speakers, and everyone else who
contributed to the workshop’s success.
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Proof Assistants and the Dynamic Nature of

Formal Theories∗

Robert L. Constable

Cornell University

Abstract

This article shows that theory exploration arises naturally from the need to progressively
modify applied formal theories, especially those underpinning deployed systems that change
over time or need to be attack-tolerant. Such formal theories require us to explore a problem
space with a proof assistant and are naturally dynamic.

The examples in this article are from our on-going decade-long effort to formally syn-
thesize critical components of modern distributed systems. Using the Nuprl proof assistant
we created event logic and its protocol theories. I also mention the impact over this period
of extensions to the constructive type theory implemented by Nuprl. One of them led to
our solution of a long standing open problem in constructive logic.

Proof exchange among theorem provers is promising for improving the “super tactics”
that provide domain specific reasoners for our protocol theories. Both theory exploration
and proof exchange illustrate the dynamic nature of applied formal theories built using
modern proof assistants. These activities dispel the false impression that formal theories
are rigid and brittle artifacts that become less relevant over time in a fast moving field like
computer science.

1 Introduction

I believe that one of the major scientific accomplishments of computer science is the creation
of software systems that provide indispensable help in performing complex reasoning tasks
and in automating abstract intellectual processes. Among such systems are proof assistants.
They have helped people solve open mathematical problems, build provably correct hardware
and software, create attack-tolerant distributed systems, and implement foundational theories
of mathematics and computer science. These assistants are also finding a place in advanced
technical education [53]. This development fits John McCarthy’s early definition of computer
science as the subject concerned with the automation of intellectual processes [44], and I think it
would have fit Turing’s, who I regard as the founder of the field. In recognition of this historical
Turing celebration year, this article will include some bits of history related to Turing’s role in
logic and computer science and some bits related to constructive type theory.

These accomplishments with proof assistants are well documented in academic journals and
confirmed by industrial uptake. Nevertheless, many otherwise well-informed and influential
scientists believe that proof assistants are very difficult to use in these ways and that their
solutions are expensive, rigid, and inflexible [21]. I claim that in many cases the formal solutions
provided by proof assistants are flexible and easily modified. In some cases that I will discuss,
as in creating attack-tolerant networked systems, it is imperative that we automatically modify
the supporting formal theories.

∗This paper appears also, by agreement, in J. Fleuriot, P. Höfner, A. McIver, and A. Smaill (eds.), Proceedings
ATx/WInG 2012.
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The fact that we can easily modify, reuse, and replay formal theories might be the main
driving force spreading their widening use, just as it is a driving force in the universal spread
of text editors, compilers, programming environments, and other commonly used “tools for
precise thought”. I predict that we will see in the near future dynamic formal theories that
are developed and maintained by a community of researchers using proof assistants to support
applied formal theories that in turn support deployed software systems “on the fly”. We already
see communal activity in joint efforts to build mathematical theories or settle open problems,
and that is a first step.

1.1 Overview

I explain these claims by referring to proof assistants that implement constructive type theories
– because these are the proof assistants I know best and because they also connect directly to
programming practice. Indeed, they support what has come to be called correct-by-construction
programming and formal system evolution [39, 36, 38]. This is because critical elements of the
executing code in deployed systems built this way are synthesized from proofs. To reliably
change that code, one must change the proofs and extract new code. Such applied formal theo-
ries commonly evolve with the application. Moreover, we see another interesting phenomenon,
namely the underlying foundational type theories also continue to evolve, perhaps faster than
foundational theories that mainly support established mathematics. Those deep theory ex-
tensions can be brought to bear on improving the applied theories embedded in them. I will
illustrate this and claim that type theories will continue to evolve for quite some time.

I mention briefly just one example of the gradual extension of Constructive Type Theory
(CTT), the theory implemented by Nuprl. This example led my colleague Mark Bickford and
me to solve an open problem in logic by finding a completeness theorem for intuitionistic first-
order logic [14]. We systematically, but gradually over a few years, expanded the use of the
intersection type over a family of propositions – at times treating it as a polymorphic universal
quantifier because it made program extraction simpler; this led us to the idea of uniform validity
which became the key to solving the open problem in logic.

Additions to the underlying foundational type theory can be indexed by the years in which
they were made, up to the one we used to solve the problem, say from CTT00 to CTT10. The
base theory is CTT84, and we are now using CTT12.1 By and large each theory is an extension
of the previous one, although there was a major improvement from CTT02 onwards along with
a corresponding change in the proof assistant from Nuprl4 to Nuprl5.

In the special case of proof assistants based on the LCF tactic mechanism [29], there is an
interesting way to create domain specific reasoners. This is simple to describe and remarkably
effective in the case of proof assistants with distributed computing capabilities as is the case
with Nuprl in support of Constructive Type Theory circa 2012 (CTT12). We turn briefly to
that example later.

These scientific contributions are enabled by a powerful and ubiquitious information tech-
nology that integrates programming languages, interactive provers, automatic provers, model
checkers, and databases of formal knowledge. I believe that this integrated technology is rapidly
moving toward a point at which it will provide tools for thought able to accelerate scientific
research and enrich education in ways computer scientists have only imagined before. The
practical integration of computing and logic seen for the first time in this research area has
made us aware in detail that there is a computational reality to logic which Turning glimpsed
in general outline in 1936.

1In contrast, I believe that the formalized Tarski-Grothendieck set theory used by the Mizar system [43] to
support the Journal of Formalized Mathematics has been stable from 1989 until now.
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1.2 Historical Background

According to Andrew Hodges [34], one of Alan Turing’s deepest insights about computing was
that his universal machines would compute with logical formulas as well as numbers. Hodges
says: “It put logic, not arithmetic, in the driving seat.” Turing believed that this extension
would allow computers to participate in the whole range of rational human thought. Turing
also understood that we would reason precisely about programs.

Turing also made the notion of a computable function a central concept in science. This in
turn made the notion of data types fundamental and linked them to Russell’s conception of a
type. Now we see types in the curriculum from the school level through university education.
Sets are taught in mathematics, types in programming. In modern type theory, we see sets (in
their infinite variety) as a special data type that appeals to mathematicians. So we take a brief
historical look at types to explain their use in proof assistants.2

1.3 Types in programming and logic

The notion of type is a central organizing concept in the design of programming languages,
both to define the data types and also to determine the range of significance of procedures
and functions.3 Types feature critically in reasoning about programs as Hoare noted in his
fundamental paper on data types [33]. The role of types in programming languages is evident
in Algol 60 [59] and its successors such as Pascal and Algol 68 (where types were called modes).
One of the most notable modern examples is the language ML, standing for MetaLanguage,
designed by Milner as an integral part of the Edinburgh LCF mechanized Logic for Computable
Functions [29]. This ML programming language with its remarkably effective type inference
algorithm and its recursive data types is widely taught in computer science and is central to a
large class of proof assistants.

Type theory serves as the logical language of several interactive theorem provers including
Agda [12], Coq [19, 4], HOL [28], Isabelle [48], MetaPRL [32], Minlog [3], Nuprl [3, 1], PVS
[51], and Twelf [52]. Among these provers, the constructive ones build correct by construction
software. All of them formalize mathematical theories whose logical correctness is assured to
the highest standards of certainty ever achieved. Interactive provers have also been used to
solve open mathematical problems, e.g. definitively proving the Four Color Theorem [27]. The
accumulation of large libraries of formalized mathematical knowledge using proof assistants
has led to the field of mathematical knowledge management. Constructive type theories for
constructive and intuitionistic mathematics serve as practical programming languages, a role
imagined forty years ago [47, 30, 15] yet only recently made practical in several settings. The
programming language ML also provides the metalanguage for several of the interactive proof
assistants in service today, including Agda, Coq, HOL, Isabelle, MetaPRL, Nuprl among others.

2 Automated Reasoning in Constructive Type Theories

The gap between data types in programming languages and those in foundational type theory
and from there to constructive type theory are large. That first gap can be traced to the influence
of Principia Mathematica and the second to the influence of the mathematician L.E.J. Brouwer

2I wrote a longer unpublished paper in 2010 for the 100 year anniversary of Principia Mathematica entitled
“The Triumph of Types: Principia Mathematica’s Impact on Computer Science”. It describes the influence
of type theory on computer science and is available at the celebration web page. These notes rephrase a few
examples used there.

3This use matches Russell’s definition of a type as the range of significance of a propositional function.
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and his intuitionistic program for mathematics. We look very briefly at these historical gaps to
establish the context for the work of modern proof assistants supporting applied formal theories
and correct-by-construction programming.

2.1 Comprehensive Mathematical Theories

Near the turn of the last century, Frege [24, 22], Russell [55] and Whitehead [58] strove to design
of a logical foundation for mathematics free from the known paradoxes and able to support an
extremely precise comprehensive treatment of mathematics in an axiomatic logical language.
Principia Mathematica (PM) was created with those goals in mind, intended to be safe enough
to avoid paradox and rich enough to express all of the concepts of modern pure mathematics
of its time in a language its authors regarded as pure logic.

For Russell and Whitehead, type theory was not introduced because it was interesting on
its own, but because it served as a tool to make logic and mathematics safe. According to
PM page 37: Type theory “only recommended itself to us in the first instance by its ability
to solve certain contradictions. ... it has also a certain consonance with common sense which
makes it inherently credible”. This common sense idea was captured in Russell’s definition of
a type in his Principles of Mathematics, Appendix B The Doctrine of Types [56] where he says
“Every propositional function φ(x) – so it is contended – has, in addition to its range of truth,
a range of significance, i.e. a range within which x must lie if φ(x) is to be a proposition at
all,....” It is interesting that later in computer science, types are used precisely in this sense:
to define the range of significance of functions in programming languages. It is also interesting
that Frege devised a judgment form: −A to indicate that the syntactic term A made sense or
was a proposition. The notation ` A is the judgment that proposition A is provable. Both
of these judgment forms were used in ITT82 and then adopted in CTT84. These forms have
proved to be extremely important in practice. In CTT84 they are used to exploit the Turing
completeness of the computation system and thus produce efficient extracted code, suitable for
practical use.

According to PM, statements of pure mathematics are inferences of pure logic. All com-
mitments to “reality” (Platonic or physical) such as claims about infinite totalities, the inter-
pretation of implication as a relation, the existence of Euclidean space, etc. were taken as
hypotheses. At the time of PM it appeared that there would emerge settled agreement about
the nature of pure inferences and their axiomatization. That was not to be. Even the notion
of pure logic would change.

2.2 Computation in logic and mathematics

While Russell was working on his theory of types [55], circa 1907-1908, another conception of
logic arose in the writings of L.E.J. Brouwer [31, 57] circa 1907, a conception that would depart
radically from the vision of Frege and Russell, as they departed from Aristotle. By the early
1930’s a mature expression of a new semantics of the logical operators emerged from the work
of Brouwer, Heyting, and Kolmogorov; it is now called the BHK semantics for intuitionistic
versions of formalisms originally developed based on truth-functional semantics. BKH semantics
is also called the propositions-as-types principle. By 1945 Kleene captured this semantics for
first-order logic and Peano arithmetic in his notion of recursive realizability based on general
recursive functions [35]. By 1968, a formal version of a comprehensive theory of types based
on the propositions as types principle was implemented in the Automath theories of de Bruijn
and his colleagues [20]. Unlike Kleene’s work, these theories did not take advantage of the
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computational interpretation of the logical primitives made possible by BHK, instead treating
them formally as rules in the style of PM.

This line of research eventually led to two extensional type theories, Intuitionistic Type
Theory (ITT82, ITT84) [41, 42] and Constructive Type Theory (CTT84) [17] related to ITT82.
Subsequently the type theory of the Calculus of Constructions (CoC) [18] was designed based
on Girard’s logic [25, 26]. Over the next few years, CoC moved closer to the ITT82 conception
and also built on the CTT82 recursive types [45, 46, 17] to produce the widely used (intensional)
type theory Calculus of Inductive Constructions (CIC) [19] implemented in the Coq prover [4].
Then an intensional version of ITT82 was defined [49], say ITT90, and implemented much
later in the Alf and Agda provers [12]. All three of these efforts, but especially CTT84 and
ITT82, were strongly influenced by Principia and the work of Bishop [11] presented in his book
Foundations of Constructive Analysis [11] who set about doing real analysis in the constructive
tradition.

Computational content is present in the provable assertions of the constructive type theories,
and one of the features of CIC, CTT, and ITT is that implementing the proof machinery makes it
possible to extract this content and execute it. This discovery has led to a new proof technology
for extracting computational content from assertions. That technology has proven to be very
effective in practice, where it is called correct-by-construction programming. There is a growing
literature on this subject with references in survey articles such as [1].

2.3 Effectively Computable, Turing Computable, and Subrecursive
Computation Systems

Brouwer’s notion of computability was not formal and not axiomatic. It was intuitive and
corresponds to what is called effective computability. The Church/Turing Thesis claims that
all effectively computable functions are computable by Turing machines (or any equivalent
formalism, e.g. the untyped λ-calculus). There is no corresponding formalism for Brouwer
Computable. However, I believe that this notion can be captured in intuitionistic logics by
leaving a Turing complete computation system for the logic open-ended in the sense that new
primitive terms and rules of reduction are possible. This method of capturing effective com-
putability may be unique to CTT in the sense that the computation system of CTT is open to
being “Brouwer incomplete” as a logic. We have recently added a primitive notion of general
process to formalize distributed systems whose potentially nonterminating computations are
not entirely effective because they depend on asynchronous message passing over a network
which can only be modeled faithfully by allowing unpredictable choices by the environment,
e.g. the internet.

3 A Case Study in Theory Exploration: the Logic of
Events

The PRL group’s most practical results in formal methods might be the optimization of protocol
stacks [39, 36]. The optimization system was adopted by Nortel as a product because it could
significantly improve the performance of a distributed system by using automatic compression
techniques that we proved were safe. That is, the optimized protocols produced identical results
to the original but over five times faster.

Based on our work in this area, we came to see that writing correct distributed protocols was
an extremely difficult business. Basically no one can write these protocols completely correctly
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“by hand”, so they are all gradually debugged in the field. This became an excellent target on
which to deploy formal methods, in particular correct-by-construction programming. To start
this we needed a specification language for distributed system behavior. We noticed that our
collaborators used message sequence diagrams as their main informal method of description and
reasoning. They did not use temporal logic in any form, they did not use any process algebra,
they did not use a logic of actions. So we decided to create a logic that matched their way of
thinking as closely as possible. As we spoke it with them, it gradually evolved. The tools of the
Nuprl proof assistant and its Logical Programming Environment greatly aided that evolution
in ways that I will explain as an example of theory exploration in action.

3.1 A sequence of theories

The interested reader could track the evolution of the logic of events from the first publications
in 2003 to the latest publications in 2012, [8, 13, 10, 9, 5, 6, 7]4 All stages of this evolution
were formalized and applied. They illustrate theory exploration in detail. I will summarize the
nature of the changes briefly here. In the lecture associated with this article, I will tell some of
the stories about why the changes were made and the formal tools used to manage them.

3.2 Summarizing an example of theory exploration and evolution

In A Logic of Events [8] circa 2003, we defined together a logic and a computing model. The
computing model was based closely on the IO Automata from the book of Nancy Lynch,
Distributed Algorithms[40]. We called our machines Message Automata (MA) because they
differed from IOA in the way they composed; we added frame conditions to the automata to
facilitate reasoning about composition. We also provide addresses which identified the machines
and explicit communication channels. We intermixed axioms about events with axioms about
the machines, and proved that these axioms were validated by the standard model of computing
for the automata. This model was close to that presented by Lynch and also the model used
in other textbooks [2]. We used axioms about sending and receiving messages, about state
change, and ordering of events, about kinds of events, about how processes represented as
Message Automata were composed, and how their computations validated the axioms. Later
in A Causal Logic of Events [10] circa 2005, we classified the event logic axioms more finely
in a progression, starting with axioms for event ordering, then events with values, then events
relative to states, and so on.

We learned that the key axiom for many proofs was that causal ordering [37] of events is well
founded. We could justify this property based on the computation model, and we made that
an explicit axiom. We used it to formally prove many important theorems and derive several
simple protocols. As we began to specify and prove properties about complex consensus proto-
cols, we discovered that small changes in the protocol would cause disproportionate expansion
of our proofs which had to be redone by hand. So we modified the theory to raise the level
of abstraction and increase the amount of automation connecting layers of abstraction. The
discovery of the notion of an event class by 2008 [5] allowed us to postpone reasoning about spe-
cific automata until we had the abstract argument finished at this much higher level. The event
classes eventually led us to a more abstract programming notation called event combinators
that we have now implemented directly [7].

By 2010 we could automatically generate proofs from the higher level event classes to the
lowest level process code, now implemented in our new programming interface to Nuprl built

4This style has the unintended consequence of citing a very large number of our own papers.
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by Vincent Rahli called EventML [54]. We were able to create domain specific tactics that
would automate in a matter of a day or two the work that previously took us a month or two
of hand proofs. By exploiting the distributed implementation of Nuprl, we can now run these
domain specific proof tactics in a matter of a few hours by using a cluster of many multi-core
processors.

During the period from 2005 to 2009 we learned to modify and extend the entire theory step
by step and replay all the proofs. Mark Bickford and Richard Eaton developed mechanisms
to replay the proofs, find the broken steps, and modify the tactics and then replay the entire
event theory library.

I can only cover one point of this long and rich technical story in this short article. We turn
to that one point next. In due course we will publish more “chapters” of the story now that
we have deployed our synthesized consensus protocols in a working system called ShadowDB
and have started collecting data about its performance [50]. We will also be studying how this
system adapts to attack by exploiting synthetic code diversity, discussed briefly later in this
article.

3.3 Evolving understanding – causal order

We now look briefly at how our understanding of causal order changed as the theories evolved.
The same kind of story could be told about minimizing the role of state, about the need for
event combinators, and about the need for sub-processes that live only for short periods. All
of this would take a monograph. So I will focus on only one such aspect.

Lamport discovered in 1978 that causal order was the right notion of time in distributed
systems [37]. Intuitively, an event e comes before e′ if e can influence e′. We give the definition
below.

To show that causal order is well-founded, we notice that in any execution of a distributed
system given by reduction rules, we can conduct a “tour of the events” and number them so
that events caused by other events have a higher number. Thus causal order is well founded
and if equality of events is decidable, then so is causal order. We show this below.

3.3.1 Signature of EOrder

The signature of these events requires two types, and two partial functions. The types are
discrete, which means that their defining equalities are decidable. We assume the types are
disjoint. We define D as {T : Type | ∀x, y : T. x = y in T ∨ ¬ (x = y in T )}, the large type of
discrete types.

Events with order (EOrder)

E: D
Loc:D
pred?: E → E + Loc
sender?: E → E + Unit

The function pred? finds the predecessor event of e if e is not the first event at a locus or
it returns the location if e is the first event. The sender?(e) value is the event that sent e if e
is a receive, otherwise it is a unit. We can define the location of an event by tracing back the
predecessors until the value of pred belongs to Loc. This is a kind of partial function on E.

7
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From pred? and sender? we can define these Boolean valued functions:

first(e) = if is left (pred?(e)) then true else false
rcv?(e) = if is left (sender?(e)) then true else false

The relation is left applies to any disjoint union type A+B and decides whether an element is
in the left or right disjunct. We can “squeeze” considerable information out of the two functions
pred? and sender?. In addition to first and rcv?, we can define the order relation

pred!(e, e′) == (¬ first(e′)⇒ e = pred?(e′)) ∨ e = sender(e′).

The transitive closure of pred! is Lamport’s causal order relation denoted e < e′. We can
prove that it is well-founded and decidable; first we define it.

The nth power of relation R on type T , is defined as

xRoy iff x = y in T
xRny iff ∃z : T. xRz & zRn−1y

The transitive closure of R is defined as xR∗y iff ∃n : N+.(xRny).

Causal order is x pred!∗y, abbreviated x < y.

3.3.2 Axioms for event structures with order (EOrder)

There are only three axioms that constrain event systems with order beyond the typing con-
straints.

Axiom 1. If event e emits a signal, then there is an event e′ such that for any event e′′ which
receives this signal, e′′ = e′ or e′′ < e′.

∀e : E.∃e′ : E. ∀e′′ : E. (rcv?(e′′) & sender?(e′′) = e)⇒ (e′′ = e′ ∨ e′′ < e)

Axiom 2. The pred? function is injective.

∀e, e′ : E. loc(e) = loc(e′)⇒ pred?(e) = pred?(e′)⇒ e = e′

Axiom 3. The pred! relation is strongly well founded.

∃f : E → N. ∀e, e′ : E.pred!(e, e′)⇒ f(e) < f(e′)

To justify f in Axiom 3 we arrange a linear “tour” of the event space in any computation.
We imagine that space as a subset of N× N where N numbers the locations and discrete time.
Events happen as we examine them on this tour, so a receive can’t happen until we activate the
send. Local actions are linearly ordered at each location. Note, we need not make any further
assumptions.

We can define the finite list of events before a given event at a location, namely

before(e) == if first(e) then[]
else pred?(e) append before (pred? (e))

Similarly, we can define the finite tree of all events causally before e, namely

prior(e) == if first(e) then[]
else if rcv?(e)
then < e, prior(sender?(e)), prior(pred?(e)) >
else < e, prior(pred?(e)) >

8
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3.3.3 Properties of events with order

We can prove many interesting facts about events with order. The basis for many of the proofs
is induction over causal order. We prove this by first demonstrating that causal order is strongly
well founded.

Theorem 3.1. ∃f : E → N. ∀e, e′ : E. e < e′ ⇒ f(e) < f(e′)

The argument is simple. Let x � y denote pred!(x, y) and let x �n y denote pred!n(x, y).
Recall that x �n+1 y iff ∃z : E. x � z & z �n y. From Axiom 3 there is function fo : E → N
such that x � y implies fo(x) < fo(z). By induction on N we know that fo(z) < fo(y). From
this we have fo(x) < fo(y). So the function fo satisfies the theorem. The simple picture of the
argument is

x� z1 � z2 � . . .� zn � y

so

fo(x) < fo(z1) < . . . < fo(zn) < fo(y).

We leave the proof of the following induction principle to the reader.

Theorem 3.2. ∀P : E → Prop. ∀e′ : E. ((∀e : E. e < e′. P (e))⇒ P (e′))⇒ ∀e : E. P (e)

Using induction we can prove that causal order is decidable.

Theorem 3.3. ∀e, e′ : E. e < e′ ∨ ¬ (e < e′)

We need the lemma.

Theorem 3.4. ∀e, e′ : E. (e� e′ ∨ ¬ (e� e′))

This is trivial from the fact that pred!(x, y) is defined using a decidable disjunction of
decidable relations, recall

x� y is pred!(x, z)

and

pred!(x, y) = ¬ first(y)⇒ x = pred?(y) ∨ x = sender?(y).

The local order given by pred? is a total order. Define x <loc y is x = pred?(y).

Theorem 3.5. ∀x, y : E. (x <loc y ∨ x = y ∨ y <loc x)

The environment as well as the processes are players in the execution, determining whether
protocols converge or not and whether they converge sufficiently fast. However, unlike the
processes, the environment is not a Turing computable player. It’s behavior was not lawlike.
This means that the reduction rule semantics should not be taken as the whole story, and the
justification of causal order based on the computations is not the fundamental explanation,
only a suggestive approximation. The best explanation are the axioms that define what the
environment can contribute, and the induction principle on causal order.
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3.4 The formal distributed computing model - circa 2012

Here is a brief overview of our General Process Model circa 2010 [6]. From it we can generate
structures we call event orderings. We mention key concepts for reasoning about event orderings
from these computations. A system consists of a set of components. Each component has a
location, an internal part, and an external part. Locations are just abstract identifiers. There
may be more than one component with the same location.

The internal part of a component is a process—its program and internal (possibly hidden)
state. The external part of a component is its interface with the rest of the system. In this
account, the interface will be a list of messages, containing either data or processes, labeled
with the location of the recipient. The “higher order” ability to send a message containing a
process allows a system to grow by “forking” or “bootstrapping” new components.

A system executes as follows. At each step, the environment may choose and remove a
message from the external component. If the chosen message is addressed to a location that
is not yet in the system, then a new component is created at that location, using a given
boot-process, and an empty external part. Each component at the recipient location receives
the message as input and computes a pair that contains a process and an external part. The
process becomes the next internal part of the component, and the external part is appended to
the current external part of the component.

A potentially infinite sequence of steps, starting from a given system and using a given
boot-process, is a run of that system. From a run of a system we derive an abstraction of its
behavior by focusing on the events in the run. The events are the pairs, 〈x, n〉, of a location and
a step at which location x gets an input message at step n, i.e. information is transferred. Every
event has a location, and there is a natural causal-ordering on the set of events, the ordering
first considered by Lamport [37]. This allows us to define an event-ordering, a structure,
〈E, loc, <, info〉, in which the causal ordering < is transitive relation on E that is well-
founded, and locally-finite (each event has only finitely many predecessors). Also, the events
at a given location are totally ordered by <. The information, info(e), associated with event e
is the message input to loc(e) when the event occurred.

We have found that requirements for distributed systems can be expressed as (higher-order)
logical propositions about event-orderings. To illustrate this and motivate the results in the
rest of the paper we present a simple example of consensus in a group of processes.

Example 1. A simple consensus protocol: TwoThirds

Each participating component will be a member of some groups and each group has a name,
G. A message 〈G, i〉 from the environment to component i informs it that it is in group G.
The groups have n = 3f + 1 members, and they are designed to tolerate f failures. When any
component in a group G receives a message 〈[start ], G〉 it starts the consensus protocol whose
goal is to decide on values received by the members from clients. We assume that once the
protocol starts, each process has received a value vi or has a default non-value.

The simple TwoThirds consensus protocol is this: A process Pi that has a value vi of type
T starts an election to choose a value of type T (with a decidable equality) from among those
received by members of the group from clients. The elections are identified by natural num-
bers, eli initially 0, and incremented by 1, and a Boolean variable decidei is initially false. The
function from lists of values, Msg i to a value is a parameter of the protocol. If the type T of
values is Boolean, we can take f to be the majority function.

Begin
Until decidei do:

10
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1. Increment eli; 2. Broadcast vote 〈eli, vi〉 to G;
3. Collect in list Msg i 2f + 1 votes of election eli;
4. Choose vi := f(Msg i);
5. If Msg i is unanimous then decidei := true
End

We describe protocols like this by classifying the events occurring during execution. In this
algorithm there are Input, Vote, Collect, and Decide events. The components can recognize
events in each of these event classes (in this example they could all have distinctive headers),
and they can associate information with each event (e.g. 〈ei, vi〉 with Vote, Msg i with Collect,
and f(Msg i) with Decide). Events in some classes cause events with related information content
in other classes, e.g. Collect causes a Vote event with value f(Msg i).

In general, an event class X is function on events in an event ordering that effectively
partitions events into two sets, E(X) and E − E(X), and assigns a value X(e) to events
e ∈ E(X).

Example 2. Consensus specification

Let P and D be the classes of events with headers propose and decide, respectively. Then the
safety specification of a consensus protocol is the conjunction of two propositions on (extended)
event-orderings, called agreement (all decision events have the same value) and responsiveness
(the value decided on must be one of the values proposed):

∀e1, e2 :E(D). D(e1) = D(e2)
∀e :E(D). ∃e′ :E(P ). e′ < e ∧ D(e) = P (e′)

It is easy to prove about TwoThirds the safety property that if there are two decide
events, say Decide(e) and Decide(e′), then Decide(e) = Decide(e′). We can also show that if
Decide(e1) = v, then there is a prior input event, e0 such that Input(e0) = Decide(e1).

We can prove safety and the following liveness property about TwoThirds. We say that
activity in the protocol contracts to a subset S of exactly 2f + 1 processes if these processes all
vote in election n say at vt(n)1, ..., vt(n)k for k = 2f+1 and collect these votes at c(n)1, ..., c(n)k,
and all vote again in election n+1 at vt(n+1)1, ..., vt(n+1)k, and collect at c(n+1)1, ..., c(n+1)k.
In this case, these processes in S all decide in round n+ 1 for the value given by f applied to
the collected votes. This is a liveness property.

If exactly f processes fail, then the activity of the group G contracts to some S and decides.
Likewise if the message traffic is such that f processes are delayed for an election, then the
protocol contracts to S and decides. This fact shows that the TwoThirds protocol is non-
blocking, i.e. from any state of the protocol, there is a path to a decision. We can construct the
path to a decision given a set of f processes that we delay.

We also proved safety and liveness of a variant of this protocol that may converge to con-
sensus faster. In this variant, if Pi receives a vote 〈e, v〉 from a higher election, e > eli, then Pi

joins that election by setting eli := e; vi := v; and then going to step 2.

3.5 Attack Tolerant Distributed Systems

Networked systems will be attacked. One way to protect them is to enable them to adapt to
attacks. One way to adapt is to change the protocol, but this is dangerous, especially for the
most critical protocols. The responsible system administrators don’t ever want to modify the
most critical protocols such as consensus. One alternative is to switch to another provably
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equivalent protocol, a task familiar to us from the stack optimization work. So we proposed
to formally generate a large number of logically equivalent variants, store them in an attack
response library, and switch to one of these variants when an attack is detected or even pro-
actively. Each variant uses distinctly different code which a system under attack can install
on-the-fly to replace compromised components. Each variant is known to be equivalent and
correct.

We express threatening features of the environment formally and discriminate among the
different types. We can do this in our new GPM model because the environment is an explicit
component about which we can reason. This capability allows us to study in depth how diversity
works to defend systems. We can implement attack scenarios as part of our experimental
platform. It is interesting that we can implement a constructive version [16] of the famous
FLP result [23] that shows how an attacker can keep any deterministic fault-tolerant consensus
protocol from achieving consensus.

Synthetic Code Diversity We introduce diversity at all levels of the formal code devel-
opment (synthesis) process starting at a very high level of abstraction. For example, in the
TwoThirds protocol, we can use different functions f , alter the means of collecting Msg i, syn-
thesize variants of the protocol, alter the data types, etc. We are able to create multiple provably
correct versions of protocols at each level of development, e.g. compiling TwoThirds into Java,
Erlang, and F#. The higher the starting point for introducing diversity, the more options we
can create.
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Sciences Publication, Oxford, 1990.

[50] N. Schiper, V. Rahli, R. van Renesse, and R. L. Constable M. Bickford. Shadowdb: A repli-
cated database on a synthesized consensus core. Technical report, Computer Science Department,
Cornell University, Ithaca, NY, 2012.

14



Proof Assistants and the Dynamic Nature of Formal Theories R. L. Constable

[51] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In Deepak Kapur,
editor, Proceedings of the 11th International Conference on Automated Deduction, volume 607 of
Lecture Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.
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Abstract

TLA+ is a specification language originally designed for specifying concurrent and dis-
tributed systems and their properties. It is based on Zermelo-Fraenkel set theory for
modeling data structures and on the linear-time temporal logic TLA for specifying system
executions and their properties. The TLA+ proof system (tlaps) has been designed as an
interactive proof assistant for deductively verifying TLA+ specifications. Designed to be
independent of any particular theorem prover, it is based on a hierarchical proof language.
A proof manager interprets this language and generates proof obligations corresponding
to leaf proofs, which can be discharged by different back-end provers. The current release,
restricted to non-temporal reasoning, includes Isabelle/TLA+, an encoding of the set the-
ory underlying TLA+ as an object logic in the proof assistant Isabelle, the tableau prover
Zenon, and a back-end for SMT solvers.

This article will first give an overview of the overall design of tlaps and its proof
language and then focus on proof certification in tlaps. Since the use of different back-end
provers raises legitimate concerns about the soundness of the integration, we expect back-
end provers to produce proofs that can be checked by Isabelle/TLA+, our most trusted
back-end, and this is currently implemented for the Zenon back-end. I will review our
experiences with proof certification, and to what extent it has contributed to avoiding
soundness bugs, and will indicate future work that we intend to carry out in order to
improve our confidence in the soundness of tlaps.

1 The TLA+ proof language

TLA+ [4] is a specification language originally designed for specifying concurrent and distributed
systems and their properties. It is based on Zermelo-Fraenkel set theory for modeling data
structures and on the linear-time temporal logic TLA for specifying system executions and
their properties. The TLA+ proof system tlaps [2, 3] has been designed as an interactive
proof assistant for deductively verifying TLA+ specifications. Designed to be independent of
any particular theorem prover, it is based on a hierarchical proof language.

As a simple example of the TLA+ proof language, let us consider the proof of Cantor’s
theorem. Given the definitions1

Range(f ) ∆= {f [x ] : x ∈ domain f }
Surj (f ,S ) ∆= S ⊆ Range(f )

of the range of a function and the notion of a function f being surjective for set S , Cantor’s
theorem can be stated as

theorem Cantor ∆= ∀S : ¬∃f ∈ [S → subset S ] : Surj (f , subset S )

1The application of function f to argument x is written as f [x ] in TLA+. The TLA+ expression [S → T ]
denotes the set of functions whose domain is S and such that f [x ] ∈ T for all x ∈ S .
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theorem Cantor ∆= ∀S : ¬∃f ∈ [S → subset S ] : Surj (f , subset S )
proof

〈1〉1. assume newS ,

∃f ∈ [S → subset S ] : Surj (f , subset S )
prove false

〈2〉. pick f ∈ [S → subset S ] : Surj (f , subset S )
obvious

〈2〉2. ¬Surj (f , subset S )
〈3〉1. define D ∆= {x ∈ S : x /∈ f [x ]}
〈3〉2. D ∈ subset S

obvious

〈3〉3. D /∈ Range(f )
by def Range

〈3〉4. qed

by 〈3〉2, 〈3〉3 def Surj
〈2〉3. qed

by 〈2〉2
〈1〉2. qed

by 〈1〉1

Figure 1: A hierarchical proof of Cantor’s theorem in TLA+.

where subset S denotes the powerset (the set of all subsets) of S . A hierarchical proof of that
theorem appears in Figure 1. Proof steps carry labels of the form 〈d〉n, where d is the depth
of the step (which is also indicated by indentation in the presentation of the proof), and n is
a freely chosen name—in the example, steps at any given level are just numbered. There are
many different ways to write any given proof; in fact, Cantor’s theorem could simply be proved
by one of the automatic proof backends available in tlaps. The user chooses how to decompose
a proof, starting a new level of proof that ends with a qed step establishing the assertion of
the enclosing level. Assertions appearing at the leaves of the proof tree are considered trivial
enough to be passed to the automatic provers of tlaps.

Step 〈1〉1 reformulates Cantor’s theorem as a sequent (TLA+ sequents are written as assume
. . . prove . . . ) that assumes given some set S for which there exists a surjective function from
S to subset S , in order to prove a contradiction. Step 〈1〉2 deduces the assertion of the
theorem from that sequent. (In general, proofs of qed steps are written before the proofs of
the steps that precede it.) The level-2 proof starts by picking some such surjective function f
and then shows that it cannot in fact be surjective—hence 〈2〉3 deduces a contradiction. The
main argument of the proof appears in the level-3 step, which defines the diagonal set D ⊆ S ,
which can by definition not be in the range of f .

The proof of Cantor’s theorem shows some of the main features of the TLA+ proof language.
Hierarchical structure is the key to managing complexity. All proof obligations that appear in
a proof are independent of one another and can be elaborated and verified in any order. In
general, facts and definitions to be used to establish leaf proof steps must be cited explicitly in
order to keep the search space for the automatic proof backends manageable.

In our experience, the proof language scales well to large proofs. tlaps is integrated into
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Figure 2: Architecture of tlaps.

the TLA+ Toolbox, an Eclipse-based IDE that provides features to help reading and writing
hierarchical proofs. In particular, proof levels can be hidden or expanded selectively, and the
results of proof checking are indicated by color coding. The prover also maintains a database of
fingerprints of proof obligations in order to remember what it has already proved previously—
even if the proof has been reorganized, or if a step has been deleted and reinserted.

2 Proof checking in TLAPS

Figure 2 shows the basic architecture of the system. The central part of tlaps is the proof
manager, which interprets the proof language and generates proof obligations corresponding
to leaf proofs. These can be dispatched to different backend provers. The current release [5],
restricted to non-temporal reasoning, includes Isabelle/TLA+, an encoding of the set theory
underlying TLA+ as an object logic in the proof assistant Isabelle, the tableau prover Zenon [1],
and a backend for SMT solvers.

The proof language is designed to be independent of any particular backend prover. For
example, users indicate which definitions to expand and which facts to use, but they cannot
tell the backends how to use any given fact—such as for forward or backward chaining, or for
rewriting. The set of backends integrated into tlaps is therefore open-ended: it is enough
to implement a translation from (a fragment of) TLA+ to the input language of the backend,
and an interface to call the backend with the input corresponding to a proof obligation and
retrieve the result. However, the use of different backends, based on different logical theories,
raises legitimate concerns about the soundness of their joint use. tlaps therefore provides a
facility for proof certification. Whenever possible, we expect backend provers to produce a
proof trace that can be checked by Isabelle/TLA+, our most trusted backend. This is currently
implemented for Zenon, which can produce a proof script in the Isar language that is checked
by Isabelle.

In our experience, the overhead of proof checking is insignificant—all the more so because
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users will check the proof only at the very end, after proof development has finished. The proofs
that Zenon produces are detailed and can be checked without any significant proof search. We
suspect that checking SMT proofs could become more problematic because SMT solvers can
handle much larger formulas that may lead to correspondingly larger proof traces. Techniques
for compressing SMT proofs by transforming them in order to avoid redundant steps are then
likely to be of interest.

We have yet to find our first Zenon bug. However, certain transformations carried out by
the proof manager are critical for soundness, and these should also be checked. The operations
of the proof manager fall into two categories. First, it maintains the context of the current
proof step, including the symbols that are currently declared and the facts and hypotheses that
can be used. The proof language has a block structure with clear scoping rules, and therefore
errors in this part can in general be avoided by enforcing a clear program structure.

Secondly, the proof manager is responsible for eliminating references to state variables in
(non-temporal) TLA+ formulas. State variables appear in formulas describing state and tran-
sition predicates, such as

x > c or x > c ∧ x ′ = x − 1

where x is a state variable and c is a constant.2 Such formulas are evaluated over pairs of
states, with the convention that unprimed variable occurrences denote the value of the variable
in the first state, and primed occurrences in the second state. If P is a state predicate (i.e., a
formula without free primed state variables), the notation P ′ refers to a copy of P where all
state variables have been replaced by their primed versions, so (x > c)′ is x ′ > c. Similarly, for
any transition predicate A, the notation enabled A denotes A with existential quantification
over all primed state variables, so3

enabled (x > c ∧ x ′ = x − 1) ≡ ∃x ′ : x > c ∧ x ′ = x − 1

Since backend provers implement standard first-order logic and do not know about state
variables, they handle x and x ′ as two unrelated first-order variables, and the proof manager
must expand notation such as the above. Although this is not difficult as long as definitions
are completely expanded, it is easy to get the translation wrong in the presence of unexpanded
definitions, in the case of more complicated expressions such as (enabled A)′, or when ex-
pressions appear in argument positions of operators. The soundness of these transformations
should therefore be checked by the trusted backend Isabelle/TLA+ of tlaps, and indeed we
have already seen errors in our implementations of these operations. However, this requires a
proper definition in Isabelle not only of the set theory underlying TLA+, but also of the notions
of state, state variables, and state and transition expressions.

3 Conclusion

tlaps is based on a hierarchical proof language that results in a clear proof structure and
enables independent checking of the different proof obligations that arise in a proof. From a
logical point of view, TLA+ proof trees correspond to natural-deduction proofs. The language
is interpreted by the proof manager that tracks the context, computes the proof obligations,
and translates them to the input formats of backend provers. tlaps provides an option for
retrieving proof traces produced by the backends and having them certified by Isabelle/TLA+,

2The category of each symbol appearing in a TLA+ module is declared in the header part of the module.
3Semantically, the state predicate enabled A holds in a state s if there is some state t such that A holds

over the pair (s, t).
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a faithful encoding of the TLA+ set theory as an object logic in the proof assistant Isabelle.
This is currently implemented for the tableau prover Zenon, and we plan to extend proof
certification to the SMT backend. However, in our experience, it is much more likely that a
proof is meaningless because of some error in the underlying specification than because of an
error in one of the backends. Moreover, the proof manager implements some transformations
that are critical for the overall soundness of the system, and these are currently not checked. In
the near future, we plan to extend tlaps for supporting temporal reasoning, and in particular
the verification of liveness properties, and this will pose new challenges for proof certification.
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Abstract

This paper presents work in progress on a new version, for public release, of the Logical
Framework with Side Conditions (LFSC), previously proposed as a proof meta-format for
SMT solvers and other proof-producing systems. The paper reviews the type-theoretic
approach of LFSC, presents a new input syntax which hides the type-theoretic details
for better accessibility, and discusses work in progress on formalizing and implementing a
revised core language.

1 LFSC and the Challenge of SMT Proofs

The recent widespread adoption of SMT solvers for applications in program analysis, hardware
and software verification, and others, has been enabled largely by the SMT community’s suc-
cessful adoption of first the SMT-LIB 1.x and now the SMT-LIB 2.x format [8, 1]. This is truly
a laudable achievement of the whole SMT community, which has provided many benefits to
applications. The community is also quite interested in doing the same for proofs produced by
SMT solvers. This would enable advanced applications which need proofs from SMT solvers
(e.g., [4]), and would benefit interactive theorem proving [3]. Having a common proof format
and providing suitable incentives (e.g., through competition) could help increase the number of
proof-producing solvers. But as the authors and others have argued, devising a common proof
system suitable for all SMT solvers is a daunting task, as proof systems tend to mirror solving
algorithms, which are quite diverse.

So the community has been considering different proposals for a common meta-format.
Besson et al. have proposed a meta-format parametrized by solver-specific rules [2]. Their
format provides notions of named clauses (via clause ids) and local proofs. This is quite use-
ful, as one can expect to need these features across all particular sets of solver-specific rules.
Nevertheless, their format does not provide means for formally defining the semantics of such
rules. The ability to give a formal, declarative specification of solver-specific inferences serves
as formal documentation, and also enables generic implementation of proof tools like proof
checkers or proof translators (to interactive theorem provers, say). We believe Besson et al.’s
format should be compatible with what we are proposing, though despite some preliminary
conversations (particularly with Pascal Fontaine) the details of this remain to be worked out.

In previous papers, we proposed a version of the Edinburgh Logical Framework (LF) [5],
extended with support for computational side conditions on inference rules, as a meta-format
for SMT [6, 12]. This Logical Framework with Side Conditions (LFSC) combines powerful
features of LF (reviewed below) with support for defining side conditions as recursive programs
written in a simple first-order functional language. This allows proof systems to be expressed
partly declaratively (with inference rules), and partly computationally (with side conditions).
The advantage of using computational side conditions is that proofs written in the proof system
do not contain any subproof corresponding to the side conditions. Instead, the proof checker
executes the side conditions whenever it checks inferences in the proof. This can save both space
and checking time. Previous work explored different balances of declarative and computational
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formulas φ ::= p | φ1 → φ2

contexts Γ ::= · | Γ, φ

φ ∈ Γ
Γ ` φ Assump

Γ, φ1 ` φ2

Γ ` φ1 → φ2
ImpIntro

Γ ` φ1 → φ2 Γ ` φ1

Γ ` φ2
ImpElim

·, (p→ (q → r)), q, p ` p→ (q → r) ·, (p→ (q → r)), q, p ` p
·, (p→ (q → r)), q, p ` q → r ·, (p→ (q → r)), q, p ` q

·, (p→ (q → r)), q, p ` r
·, (p→ (q → r)), q ` (p→ r)
·, (p→ (q → r)) ` (q → (p→ r))
· ` (p→ (q → r))→ (q → (p→ r))

Figure 1: Standard mathematical definition of minimal propositional logic, and example proof

rules for the SMT-LIB logics QF IDL and QF LRA, and showed how to use type computation
for LFSC to compute interpolants [10, 9]. Optimized LFSC proof checking is quite efficient
relative to solving time: for QF UF benchmarks we found a total average overhead of 30% for
proof generation and checking (together) over and above solving alone.

We are now focusing on providing a high-quality implementation of LFSC for public release.
It is our hope that the availability of such an implementation will be the final step which will
enable solver implementors to adopt LFSC as a single, semantics-based meta-format for SMT
proofs. In the rest of this short paper, we describe our work in progress towards this vision,
which consists of devising a more accessible input syntax (Section 2) and formalizing a new core
language which is able to accommodate features like local definitions and implicit arguments
(Section 3), which we found to be important in practice but which are often not considered in
standard treatments of LF.

We would like to acknowledge also the contributions of Jed McClurg and Cuong Thai to
earlier work on this new version of LFSC.

2 A Surface Syntax Based on Grammars and Rules

LF and LFSC are meta-languages based on a dependent type theory. The methodology for
using LF/LFSC is to encode object-language constructs using dependently typed data con-
structors in LF/LFSC. If used directly, this requires unfamiliar type-theoretic notation and
conceptualization, a burden we do not wish to impose on SMT solver implementors.

To illustrate these points, let us consider an example proof system in standard mathematical
notation. Figure 1 shows the syntax and inference rules of minimal propositional logic. As our
proposed syntax for side-condition code has not changed fundamentally, we are deliberately
restricting our attention here to a signature without side conditions. For more on side-condition
code in LFSC, including examples for a resolution calculus, see [6].

In the LF methodology, a proof system like the one in Figure 1 is encoded as a sequence
of type declarations called a signature. The syntactic categories, here Formula and Context,
are encoded as types, whose syntactic constructs are encoded as constructors of those types.
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formula : Type
imp : formula→ formula→ formula
holds : formula→ Type
ImpIntro : Πf1 : formula.Πf2 : formula.((holds f1)→ (holds f2))→ (holds (imp f1 f2))
ImpElim : Πf1 : formula.Πf2 : formula.(holds (imp f1 f2))→ (holds f1)→ (holds f2)

ImpIntro (imp p (imp q r)) (imp q (imp p r))
λu.ImpIntro q (imp p r)
λv.ImpIntro p r
λw.ImpElim q r (ImpElim p (imp q r) u w) v

Figure 2: Minimal propositional logic in LF (core syntax), with encoded example proof (no
inferred arguments)

The judgments of the proof system are also encoded as types, with the inference rules as
constructors. Object-language variables are represented with meta-language variables, object-
language binders with LF’s λ-binder, and logical contexts (like Γ in this example) with the LF
typing context.

Figure 2 shows the corresponding signature in standard type-theoretic notation for LF. The
Assump rule does not have a constructor, because assumptions in the object language have
been mapped to variables in LF. For the example proof, the λ-bound variables u, v, and w
correspond to the assumptions of p → (q → r), q, and p, respectively. Since inference rules
are encoded using term constructors with dependent types (Π types), there is rather a lot
of redundant information in that encoded example proof. Implementations of LF like Twelf
allow one to omit some of these arguments in some cases, if they can be inferred from other
parts of the proof term [7]. In our first implementation of LFSC, we allowed proofs to contain
underscores for omitted arguments, which we then sought to reconstruct in a similar way to
what is done in Twelf.

We are designing a surface language for LFSC, intended to rely on the more familiar concepts
of context-free grammars for describing syntax, and more familiar notation for inference rules,
as is done in tools like Ott (and others) [11]. Using this surface language, our sample signature is
encoded as in Figure 3. The ImpIntro rule uses square brackets and a turnstile for hypothetical
reasoning; in this case, to represent the fact that holds f2 is to be proved under the assumption
of holds f1. We use root names like f for formula to avoid specifying types for meta-variables
in the rules. Root names are specified when a syntactic category is defined. The example proof
term is similar to the one in Figure 2, except that arguments which an analysis determines can
be reconstructed can be omitted. Defining this analysis is still work in progress, but in this
case, it will determine that of the meta-variables used in the ImpIntro and ImpElim rules, only
f1 needs a value in order to guarantee that the types computed for terms are fully instantiated
(that is, without free meta-variables). The benefits of omitting arguments in dependently typed
languages are well known: notice how much more compact the example proof term is without
values for the meta-variables f2 for ImpIntro and f1 and f2 for ImpElim.

For encoding SMT logics, we made use, in our previous proposals, of LF type-checking to
implement SMT type-checking of SMT terms contained in proofs. This is done in a standard
way by using an indexed type term T to represent SMT terms which have (encoded) SMT type
T. Our new surface syntax also supports indexed syntactic categories. For example, Figure 4
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SYNTAX

formula f ::= imp f1 f2 .

JUDGMENTS

(holds f)

RULES

[ holds f1 ] |- holds f2

----------------------------- ImpIntro

holds (imp f1 f2) .

holds (imp f1 f2) , holds f1

----------------------------- ImpElim

holds f2 .

ImpIntro (imp p (imp q r))

u. ImpIntro q

v. ImpIntro p

w. ImpElim (ImpElim u w) v

Figure 3: LFSC encoding of minimal propositional logic in proposed surface syntax, with
example proof

SYNTAX

sort s ::= arrow s1 s2 | bool .

term<sort> t ::=

true<bool>

| (not t1<bool>)<bool>

| (impl t1<bool> t2<bool>)<bool>

| (forall t<s> ^ t<bool>)<bool>

| (ite t1<bool> t2<s> t3<s>)<s>

| (eq t1<s> t2<s>)<bool>.

formula f ::= t<bool>.

Figure 4: LFSC encoding (surface syntax) of part of the syntax of SMT terms, indexed by their
sorts

gives part of a signature for a minimal SMT theory. This syntax definition indexes the syntactic
category term by the syntactic category sort. Everywhere a meta-variable for terms is used, it
must be listed with its sort. Similarly, the definitions of constructors show the resulting indices.
For example, since equality is sort-polymorphic, we see that its meta-variables are indexed by
(the same) sort s, while its resulting sort is indicated as bool. This example also demonstrates
our surface syntax for binding, namely ^, in the declaration of forall. This notation means
that forall binds a variable ranging over terms of sort s, and then has a body which must be
a term of sort bool.

As a final example of the new syntax, Figure 5 shows the LFSC encodings of SMT rules
for universal quantifiers. The rules are complicated somewhat by the need to express the sort
information for terms. The first rule uses the ^ binding notation to indicate a parametric
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t<s> ^ holds f { t<s> }
--------------------------------- all_intro
holds (forall t<s> ^ f{t<s>} ).

holds (forall t<s> ^ f { t<s> } )
----------------------------------- all_elim
holds f{t<s>} .

Figure 5: LFSC encoding (surface syntax) of SMT quantifier rules

judgment in the premise: to apply all_intro, we must supply a proof of holds f{t<s>}
for an arbitrary term t of sort s. The fact that the term is arbitrary is indicated by the
use of ^ in the premise. We also see a notation for expression contexts, using curly braces.
Any meta-variable can be used as a context variable, although if that meta-variable is from
an indexed syntactic category, the result index must also be shown. Here, we make use of a
defined syntactic category of formulas, so that no result sort need be listed for meta-variable f.
All these different binding concepts (expression contexts, parametric proofs, and hypothetical
proofs) are ultimately implemented with just the single λ-binder of LF. But for the surface
language, our common informal meta-language tends to distinguish them, and so we follow
that approach in our surface language.

3 Improving the Core Language

While the surface language distinguishes syntactic constructs and proof rules, LF elegantly
unites them (under encoding) as just term constructors for possibly indexed datatypes. So
both for conciseness and to give a semantics for the different features sketched above, we are
working to compile signatures from our surface language to a core language for LFSC, which
we are specifying formally with the help of the Ott tool [11]. We are addressing a number of
issues important for practical use of LF/LFSC for large proofs:

• We have explicit syntax to indicate which arguments to term constructors are implicit
and which are explicit.

• We are devising an algorithm to ensure that all higher-order implicit arguments (which
our surface language limits to second order) can be automatically reconstructed during
proof checking. Other approaches simply delay constraints falling outside the decidable
higher-order pattern fragment in the hopes of not needing to solve them.

• In general, we only intend to execute side-condition code on concrete terms. So we are
designing the language to help ensure that as much as statically possible, the arguments
to side condition programs do not contain meta-variables for omitted implicit arguments.
Such meta-variables can be filled in by type checking, but not during execution of side-
condition code.

• We have support for global and local definitions, both of which are incorporated into
definitional equality. Some other treatments of LF do not handle definitions at all, but
these are essential for keeping proof sizes down.
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sample.sig

Surface LFSC

sample.core sig

Core LFSC

C++ checker for sample.sigsample.pf
Pass: pf valid

Fail: pf invalid

Figure 6: System architecture for new implementation of LFSC

• Since we use definitions, we cannot so easily make use of the so-called “canonical forms”
version of LF, where all terms are assumed to be in β-short η-long normal form: appli-
cations of defined symbols can be redexes. Instead, we are formulating a system with
explicit definitional equality, which can also fill in implicit arguments.

• We retain support for compiling proof rules to efficient low-level (C/C++) code by avoid-
ing explicit substitutions in our formalization. Meta-level substitutions will be carried out
directly in code emitted by the compiler, so using explicit substitutions merely obscures
what will happen in compiled code.

• We are designing the language for side-condition programs to respect dependent typing of
terms. This does not require implementing a full-blown dependently typed programming
language, because indices to types can only contain terms which normalize to constructor
terms. (In contrast, in dependently typed programming, indices can include terms with
recursion.)

While none of these features is terribly complex, designing detailed typing rules that ac-
commodate them all simultaneously has taken time. For example, we are implementing a
requirement that all omitted arguments to a term constructor C must be reconstructed by the
time we complete the type checking of an application of C. For this, we constrain the syntax of
types for term constructors so that implicit arguments are listed first, then explicit arguments
and possible invocations of side-condition code, and finally a possibly indexed result type.

4 Status and Conclusion

Figure 6 shows the architecture for the LFSC system we are currently implementing. A sample
signature sample.sig in the surface syntax discussed above is translated to a core-language
signature sample.core sig, which is then compiled to C++ code optimized for checking proofs
in that signature. A sample proof sample.pf can then be fed to that checker, which reports
whether the proof passes (all inferences correct and all side conditions succeed) or fails.
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Co-author Corey Oliver has completed the translator for surface-language signature (“Sur-
face LFSC” in Figure 6). Co-author Austin Laugesen has completed implementation of the
compiler for side-condition code (part of LFSC core in Figure 6). This compiler translates the
LFSC side-condition language to C++, and supports both reference counting or regions for
managing memory allocated during execution of side-condition code. A preliminary evaluation
confirms the performance benefits for this application of region-based memory management,
where all new memory is allocated from a single monolithic region of memory which can then
be reclaimed at once in constant time. Co-authors Harley Eades and Ruoyu Zhang have worked
with Aaron Stump on the design of the core language, which is almost complete. The first three
co-authors have worked to devise the surface syntax, which is complete now. Implementation
of the core-language type checker and compiler (“Core LFSC” in Figure 6) in OCaml are just
beginning, and should be done Summer 2012. We expect to have an initial public release of
the tool in early Fall 2012. We hope that this release will be a decisive step in the quest for
a standard meta-format for SMT proofs, and will help the community continue its remarkable
success in providing high-performance, usable logic solvers for advanced applications in many
fields of Computer Science.
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Abstract

The λΠ-calculus forms one of the vertices in Barendregt’s λ-cube and has been used
as the core language for a number of logical frameworks. Following earlier extensions of
natural deduction [14], Cousineau and Dowek [11] generalize the definitional equality of this
well studied calculus to an arbitrary congruence generated by rewrite rules, which allows
for more faithful encodings of foreign logics. This paper motivates the resulting language,
the λΠ-calculus modulo, as a universal proof language, capable of expressing proofs from
many other systems without losing their computational properties. We further show how
to very simply and efficiently check proofs from this language. We have implemented this
scheme in a proof checker called Dedukti.

1 Introduction

The success of formal methods since the pioneering efforts of the teams around LCF and Au-
tomath, both as tools of practical importance and as objects of intellectual curiosity, has
spawned a bewildering variety of software systems to support them. While the field has de-
veloped to maturity in academia and has registered some important successes in the industry,
such as in aerospace, mass transit and smart cards to name a few, the full benefit of formal
methods in an industrial setting remains largely untapped. We submit that a lack of standards
and easy interoperability in the field is one explanation to this state of affairs.

Indeed, the field of formal methods has largely passed on the typical trend of other fields
in computer science and engineering as they mature: the shift from systems to data. Stan-
dards have emerged for numbers, texts, images, sounds, videos, structured data, etc. These
standards are not linked to a particular application, but all the applications comply to these
standards, allowing the interoperability of various software, even on heterogeneous networks.
When a community reaches a critical mass, standardization is unavoidable to allow exchange
and collaborative improvements. As long as the use of proof systems was restricted to a small
community, each system could develop its own independent language. But, this is not possible
anymore: the success of proof systems and the widening of their audience put the interoper-
ability problem to the fore.

Yet, importing and exporting lumps of proofs from system to system is a thorny issue,
because different systems implement different formalisms: some are constructive, some are not,
some are predicative, some are not, some are first-order, some are not, etc. Thus, a standard
must not only be able to define the proofs themselves, but also to specify the formalism in which
they are expressed. To define such a standard, we propose the λΠ-calculus modulo, a simple
but very powerful extension of a well-known and well understood proof language for minimal
first-order logic that embeds a congruence on types generated by a set of rewrite rules.
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1.1 From deep to shallow

Avoiding the quadratic blowup in the number of adapters necessary between n different systems
means introducing one common target for all these adapters. All foreign systems read and
write a single proof format. One might hope to construct a formalism so powerful that other
formalisms form a fragment of this super formalism, but this is infeasible in practice. For
one, different formalisms require different but incompatible features, such as predicativity or
impredicativity. Moreover, justifying the consistency of such a tower of Babel might not be
quite so easy. Finally, the vast majority of proofs simply would not need the full power offered
by the formalism, only ever using a small fragment of it.

The alternative is to chose a simple formalism, say first-order logic, and make other for-
malisms the objects of discourse of this simple formalism. This is known as a deep embedding.
One will assert appropriate axioms to introduce these objects of discourse, such as axioms
characterizing the set of formulas, proof objects, validity judgments on proof objects, etc. This
is the approach used by Edinburgh Logical Framework [18], Twelf [24], Isabelle [23] and
others.

Proofs, however, are not interesting merely for the validity of the judgment they establish.
It can be desirable to reason about the proofs themselves. Realistic proofs of interesting facts
typically contain detours in the reasoning. These detours often make the proof shorter, though
they will usually be taken to be equivalent in some precise sense to a canonical derivation
that does not contain any detours, or cuts. Eliminating cuts in a proof is a procedure, i.e. a
computation.

When proofs are objects of discourse, it is convenient to be able to reason about them
modulo elimination of any cuts. Many formalisms, such as the Calculus of Constructions or
the original LF, include a powerful notion of definitional equality that includes equality modulo
cuts. Hence, identity of two proof objects can be established not by writing tedious reasoning
steps, but rather by an appeal to this rather large definitional equality, written (≡), which
can be decided by applying the cut elimination procedure. The more powerful the definitional
equality, the more often derivations may appeal to it, hence the shorter they become.

Pure Type Systems (PTS), of which the Calculus of Constructions and LF are an instance,
internalize definitional equality using the following conversion rule:

Γ `M : A Γ ` A : s Γ ` B : s
A ≡ BΓ `M : B

where s is some PTS dependent sort. Arguing that two objects are equal can be done in only
one derivation step if they are definitionally equal. The trouble here is that the notion of
definitional equality is fixed once and for all, no matter the objects of discourse du jour. Hence,
a deep embedding of foreign logics treats formulas, judgments and proofs of these logics as
second class citizens — one can always define a judgment (≡L) on proofs of a foreign logic L,
but given two proofs P,Q in L, one can only justify P ≡L Q using a derivation, not the native
definitional equality decision procedure.

In short, deep embeddings destroy the computational behaviour of proofs, because proof
identity can no longer be justified computationally. Moreover, in general desirable properties
such as canonicity of values and the existence of empty types are lost due to the presence of
axioms. Many of these axioms uniquely characterize functions on the objects of discourse, for
example as a set of equations. If only we could turn these equations into rewrite rules instead,
we would be able to directly compute the results of applying these functions, rather than having
to systematically prove using derivations that a function application is related to its result.

The λΠ-calculus modulo extends the λΠ-calculus, the core calculus of the original LF,
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with the ability to define one’s own rewrite rules. The conversion rule above is modified to
take definitional equality to be an arbitrary congruence, generated by some set of user defined
rewrite rulesR. In the λΠ-calculus modulo, we eschew equational axioms and instead turn them
into rewrite rules. Intuitively, because the native definitional equality is now extensible, when
embedding a foreign logic within the λΠ-calculus modulo, we can tune the native definitional
equality to internalize the foreign definitional equality. The computational behaviour of proofs
is thus restored. The resulting embeddings are still deep embeddings, but we can introduce
rewrite rules in a systematic way that essentially interpret a deep embedding into another
shallow embeddings.

1.2 Specifying logics

In the λΠ-calculus modulo, a theory is specified by a finite set of typed constants and a finite
set of typed rewrite rules. This set of rules defines the computational behavior of the set of
constants. Encoding proofs of a logical system is achieved by writing a translation function from
proofs of the original logical system to well typed terms of the λΠ-calculus modulo extended
by the appropriate constants and rewrite rules. The same translations as the ones defined for
LF could be reused since LF is a strict subset of the λΠ-calculus modulo. However, in this case
no benefit is drawn from the new computational facilities offered by our framework and the
computational properties of proof objects are lost.

We propose to use shallow embeddings as described above. Not only do proofs enjoy smaller
representations but consistency of theories can be proved with more generic techniques using,
for instance, super-consistency based approaches as described in [15]. Specifying full theories
with rewrite rules only, as opposed to traditional axiomatic encodings, allows to show semantic
properties of the logical system by checking properties on the set of rewrite rules. For example,
if a theory can be expressed in λΠ-calculus modulo with a set of rewrite rules R and if the
rewriting modulo R+ β is well-behaved, then the theory is consistent and constructive proofs
have the disjunction property and the witness property. Moreover, these shallow embeddings
present theories in ways which share a generic notion of cut, rather than a theory specific notion
of cut.

1.3 A new proof checker

To support this language, we propose a new proof-checker called Dedukti. A number of proof
checkers for similar logical frameworks have been proposed, such as Twelf [24] and LFSC [27],
alternately aiming for relative simplicity and correctness, or for focusing more on performance
but hopefully also maintaining correctness. LFSC in particular focuses on checking proofs of
very large size or many proofs with respect to a fixed signature. Within the design space, we
focus on checking small but computationally intensive proofs, through translations of proofs
into higher order data and into functional programs. We obtain a very simple implementation
to boot, that directly corresponds to the bidirectional typing rules that form its specification.

1.4 Overview

This paper will first present the λΠ-calculus modulo and motivate its use as a target language
for many other systems (Section 2). We will then describe informally the rationale behind a
purpose built proof-checker we have developped. A companion paper [8] describes in details
the encoding of the calculus of constructions inside the λΠ-calculus modulo, as well as practical
results in checking Coq’s standard library.
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Γ WF Context Γ is well-formed

(empty) · WF
Γ WF Γ ` A : s x /∈ Γ(decl) s ∈ {Type,Kind}

Γ, x:A WF

Γ `M : A Term M is of type A in context Γ

Γ WF(sort)
Γ ` Type : Kind

Γ WF x:A ∈ Γ(var)
Γ ` x : A

Γ ` A : Type Γ, x:A ` B : s
(prod) s ∈ {Type,Kind}

Γ ` Πx:A. B : s

Γ ` A : Type Γ, x:A ` B : s Γ, x:A `M : B
(abs) s ∈ {Type,Kind}

Γ ` λx:A. M : Πx:A. B

Γ `M : Πx:A. B Γ ` N : A(app)
Γ `M N : {N/x}B

Γ `M : A Γ ` A : s Γ ` B : s(conv) A ≡ BΓ `M : B

Figure 1: Typing rules for the λΠ-calculus (modulo)

2 The λΠ-calculus modulo

2.1 The λΠ-calculus

The λΠ-calculus modulo is a familiar formalism — it is a variation on the λΠ-calculus, which
under the guise of many names (LF, λP , etc), has been used with great success to specify other
formalisms, from logics to programming languages. The λΠ-calculus is a simple proof language
for minimal first-order logic, whose syntax for pre-terms can be given succinctly as follows,
provided we have an infinite set X of variable names:

M,N,A,B ::= x | λx:A. M | Πx:A. B | M N | Type | Kind

The notation A→ B stands for Πx:A. B when x does not appear in B. In the tradition of Pure
Type Systems (PTS) [3], we conflate the language of formulas, proofs and sorts (or types, terms
and kinds if we are looking from the other side of Curry-Howard lens) into a single language.
Within the set of pre-terms (or raw terms) we distinguish the set of terms, which are well-typed.

The type system for the λΠ-calculus, given in figure 1, does enforce a stratification between
sublanguages, that of terms, of types and of kinds: terms are typed by a type, types are typed
by a kind and kinds are of type Kind.

Notice that in general types can be indexed by terms, giving a family of types, and that
one can λ-abstract not only over terms but also over types. For these two reasons, β-redexes
can appear at the level of types and it is convenient to quotient them by β-equivalence (written
(≡)) through the conversion rule. In figure 1, all the contexts are lists of pairs of a variable
name and a type:

Γ,∆ ::= · | Γ, x:A

Figure 1 serves just as well as a presentation of the rules of the λΠ-calculus modulo — the
only difference between the two formalisms is in the conversion rule. In the λΠ-calculus, the
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congruence is generated by the β-reduction rule alone, while in the λΠ-calculus modulo it is
generated by β-reduction and the rewrite rules, as presented below.

2.2 Adding rewrite rules: the λΠ-calculus modulo

Well-typed terms live within a context. One can segregate this context into a global shared
context and a local context. We will write Σ for this global context, which we call a signature
and we assume to be well-formed. The assumptions of a signature are constants.

A system of rewrite rules is declared over constants of some signature Σ. Each rewrite rule
pertains to one constant of the signature. A typed rewrite rule is a rewrite rule paired with a
typing context Γ that assigns types to all the free variables appearing in the left hand side of
the rule. Both sides of a rewrite rule must be typable with the same type A.

Definition 1 (Rewrite rule). Let Σ be a context. A rewrite rule in Σ is a quadruple l −→Γ,A r
composed of a context Γ, and three β-normal terms l, r, A, such that it is well-typed:
• the context Σ,Γ is well-formed,
• and Σ,Γ ` l : A and Σ,Γ ` r : A are derivable judgments.

In order to use the rewrite rule, we must rewrite the instances of the left member by instances
of the right member. Instances are done through typed substitutions.

Definition 2. Let Σ,Γ and ∆ be contexts. A substitution binding the variables declared in Γ
is said to be of type Γ ∆ if for any x:T ∈ Γ, we can derive Σ,∆ ` θx : θT .

Lemma 3. Let Σ and ∆ be contexts, l −→Γ,T r be a rewrite rule in Σ and θ be a substitution
of type Γ ∆. Then Σ,∆ ` θl : θT and Σ,∆ ` θr : θT and we say that θl rewrites to θr.

For Σ a context and R a set of rewrite rules in Σ, we let ≡R be the smallest congruence
generated by R. We write (−→) and (≡) (respectively) for the contextual closure and the
smallest congruence generated by β-reduction and R.

2.3 How to encode formalisms in the λΠ-calculus modulo

The claim of this paper is that the λΠ-calculus modulo can serve as a melting pot, capable of
expressing all manner of other type theories. This is in particular the case for all functional
PTS [11]. By way of example, let us see how to encode polymorphism ( la System F).

The typing rules of System F are identical to the rules of the λΠ-calculus that are presented
in figure 1, except for the rules (prod) and (abs) that become:

Γ ` A : s Γ, x : A ` B : Type
(F-prod) s ∈ {Type,Kind}

Γ ` Πx : A.B : Type

Γ ` A : s Γ, x : A ` B : Type Γ, x : A `M : B
(F-abs) s ∈ {Type,Kind}

Γ ` λx:A. M : Πx:A. B

System F is also stratified into kinds (Type is the only kind), types and terms. For brevity and
to lift any ambiguities, in the following we write ? (resp. 2) for the constant Type (resp. Kind)
of System F. A typical example of term that is typable in System F is the polymorphic identity:

` λA: ? . λx:A. x : ΠA: ? . A→ A

It is not possible to write this term in the pure λΠ-calculus.
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To encode System F in the λΠ-calculus modulo, we introduce four constants. U?, U2, also
called universe constants reflect the types ? and 2 of System F in the λΠ-calculus modulo. To
each universe is associated a decoding function ε from System F types and function spaces to
the native λΠ-calculus modulo types and function spaces.

U2 : Type ε2 : U2 → Type
U? : Type ε? : U? → Type

We also introduce a constant ? : U2 reflecting the fact that ? : 2 and the following rewrite rule:

ε2 ? −→ U?

Now we introduce a constant that represents a deep embedding of the Π-types of System F as
higher order abstract syntax into the λΠ-calculus modulo:

Π̇〈2,?,?〉 : ΠX:U2. (ε2 X → U?)→ U?

Π̇〈?,?,?〉 : ΠX:U?. (ε? X → U?)→ U?

Together with rewrite rules extending the decoding function to these System F types:

ε? (Π̇〈2,?,?〉 X Y ) −→ Πx:(ε2 X). ε? (Y x)
ε? (Π̇〈?,?,?〉 X Y ) −→ Πx:(ε? X). ε? (Y x)

Both rewrite rules have type Type (see Definition 1). They contain the free variables X and Y ,
so they are defined (respectively) in the contexts:

X : U2, Y : (ε2 X) −→ U?

X : U? , Y : (ε? X) −→ U?

Cousineau and Dowek [11] go on to define a translation from terms and types of System
F to terms and types using the above constants, and proving conservativity results for this
translation. Since our goal here is didactic, we will only give the example of the translation
of the previous polymorphic identity, that can now be written in our settings as (keeping the
global signature made up of the above constants implicit):

` (λA:(ε2 ?). λx:(ε? A). x) : ε?

(
Π̇〈2,?,?〉 ?

[
λA : (ε2 ?). (Π̇〈?,?,?〉 A (λx : (ε? A). A))

])
which, after simplification of ε2 ? in U? and rewriting of the Π̇〈2,?,?〉 constant gives the term:

` λA:U?. λx:(ε? A). x : ΠA:(ε2 ?). ε?

([
λA:U?. (Π̇〈?,?,?〉 A (λx:(ε? A). A))

]
A

)
after β-reduction and rewriting of (ε2 ?), we get:

` λA:U?. λx:(ε? A). x : ΠA:U?. ε?

(
Π̇〈?,?,?〉 A (λx:(ε? A). A)

)
and after another step of rewriting of the Π̇〈?,?,?〉:

` λA:U?. λx:(ε? A). x : ΠA:U?. Πy:(ε? A). (ε? ((λx:(ε? A). A) y))
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After β-reduction and α-conversion, we have:

` λA:U?. λx:(ε? A). x : ΠA:U?. Πx:(ε? A). (ε? A)

a judgment for which one can easily construct a derivation in the λΠ-calculus modulo.
Remark in particular how the use of higher order abstract syntax in the encoding of System

F types affords us substitution on those types for free. Also, polymorphism has been introduced
in this term, through the constant ε? that behave as a lifting from terms to types and from deep
to shallow embeddings: this is clearly allowed by its nonempty computational content. Finally,
conceivably one could along the same lines encode the λΠ-calculus into the λΠ-calculus modulo
through the same mechanisms described above. This encoding would not be the identity (we
would still have ε and “dotted” constants appearing in types).

3 An abstract type checking algorithm

3.1 Bidirectional type checking

Dedukti’s internal representation of terms is domain-free, as introduced in [5], meaning that
abstractions are not annotated by the type of the variable that they bind. This information
is largely redundant if one adopts a bidirectional typing discipline, a technique going back to
[10]. Hence, input terms are smaller at no cost to the complexity or size of the type checker.
Bidirectional type systems split the usual type judgments into two forms: checking judgments
and synthesis judgments. Dropping the domains on abstractions means that some terms cannot
have their type readily inferred — these terms can only be checked against a given type, their
type cannot be synthesized.

Contrary to the usual presentation of λΠ-calculus as a PTS, given in Section 2, the bidi-
rectional type system we present in Figure 2 is syntax directed. As such, the choice of rule to
apply at each step of the derivation is entirely determined by the shape of the term that is being
typed. In particular, conversion only happens during a phase change between checking mode
and synthesis mode. The moment at which this phase change is allowed to occur is guided
by the “inputs” to the judgments. As such, the type system presented here is deterministic.
One can therefore readily extract an algorithm from these typing rules: checking rules should
be read as functions taking a context, a term and type as input and answering true or false;
synthesis rules should be read as functions taking a context and term as input and producing
a type as output.

3.2 Context-free type checking

One particularly thorny issue when checking dependently typed terms is the treatment of re-
naming of variables to ensure that contexts remain well-formed and the implementation of
substitution. In keeping with the spirit of the de Bruijn criterion [13], we strive to obtain an
implementation of a type checker that is as simple and small as possible. In Dedukti, we
have done so using a higher-order abstract representation (HOAS) of terms, which allows us to
piggy-back substitution over terms on the substitution already provided by the implementation
language. In such a setting, abstractions are encoded as functions of the implementation lan-
guage. They are therefore opaque structures that cannot be directly analyzed. Functions are
black boxes whose only interface is that they can be applied. In HOAS, it is therefore neces-
sary to draw the parameter/variable distinction common in presentations of first-order logic —
variables are always bound and parameters (or eigenvariables) are variables that are free. As
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we move under a binding, such as an abstraction, the bound variable becomes a parameter. In
HOAS, this means that we must substitute a piece of data representing a new parameter for the
previously bound variable. In this section we do not address the implementation of a concrete
algorithm (postponed to Section 4) but elaborate a type system that capture the essence of the
way the implementation of Section 4 works.

If in order to proceed to the body of abstractions it is necessary to unfold implementation-
level functions by feeding them parameters, we might as well feed more than just a parameter
to these functions. We can indeed pass the type of the parameter along with it. In other words,
we substitute a box — a pair of a term and its type — for bound variable as we move between
bindings. We arrive in this way at a context-free type system, so-called because we no longer
need to carry around a typing context in judgments, provided all free variables (parameters) in
terms are always boxed.

3.3 Putting it all together

The resulting type system, bidirectional and context-free, is given in Figure 2. A straightforward
mapping of these rules into a purely functional program is discussed in Section 4. The syntax
over which these rules are defined is given below.

In its essence, a proof script consists of a sequence of non-recursive declarations of the form
x : A. Later declarations have earlier declarations in scope. Proof scripts are type checked
following the order of the sequence. Given a term M , checking that this term has some given
type A will first assume that A has already been type checked, just as the types of constants
appearing in A may be assumed to already be checked when checking A. Therefore adding
premises ensuring that contexts are well-formed to the leaf rules and mixing premises about
types in the deduction rules for term typing as is done in the standard presentation of Section 2
does not accurately reflect how type checking works in practice. In the rules of Figure 2, the
type A in a judgment `M ⇐ A is assumed to be a proper type or kind.

For the needs of type checking we can therefore use two distinct representations: one for
the subject of a judgment (to the left of ⇒ or ⇐), underlined,

M,N,A,B ::= x | [y : A] | λx. M | Πx:A. B | M N | Type

and one for the classifier of a judgment (to the right of ⇒ or ⇐), overlined,

M,N,A,B ::= x | y | λx. M | Πx:A. B | M N | Type | Kind

We reuse the same syntactic elements for both representations. The essential difference between
the two representations is that in the first, parameters y are tagged with their type, whereas
in the second parameters are bare. This is because it is not the classifiers that we are type
checking, but only the subjects of typing judgments. The type of a parameter in a classifier
is therefore not needed. We split the infinite set of variables into two disjoint infinite sets of
(bound) variables x on the one hand and parameters y on the other. There is no way of binding
parameters, because they stand in place of free variables.

In the rules of Figure 2, the judgment ` M ⇒ A reads “the expression N synthesizes type
A” and the judgment ` M ⇐ A reads “the expression M checks against type A”. Within
judgments, we omit making the representation explicit through overlining and underlining,
because which representation we mean is evident from the position in a judgment. In some
rules we observe a crossover of subparts of the subject into the classifier and vice versa. In
the (appb) rule, the argument part N crosses over to the right of the synthesis arrow. In the
(absb) rule, the type A appears both in the subject part of a premise, but in the classifier part
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`M ⇒ A Term M synthesizes type A

(sortb) ` Type⇒ Kind
(varb) ` [x : A]⇒ A

`M ⇒ C C −→∗w Πx:A. B ` N ⇐ A
(appb) `M N ⇒ {N/x}B

`M ⇐ A Term M checks against type A

C −→∗w Πx:A. B ` {[y : A]/x}M ⇐ {y/x}B
(absb) ` λx. M ⇐ C

` A⇐ Type ` {[y : A]/x}B ⇐ s
(prodb) s ∈ {Type,Kind}` Πx:A. B ⇐ s

` N ⇒ B
(convb) A ≡ B` N ⇐ A

Figure 2: Bidirectional context-free type checking for the λΠb-calculus modulo

of the conclusion. We are therefore implicitly applying a coercion between representations,
determined by the following relation between subject and classifier representations:

x ∼ x [y : A] ∼ y Type ∼ Type Kind ∼ Kind

M ∼M
λx. M ∼ λx. M

A ∼ A B ∼ B
Πx:A. B ∼ Πx:A. B

M ∼M N ∼ N
M N ∼M N

This relation is left-total and right-unique, so that it determines a function from subject repre-
sentations to classifier representations. Synthesis rules should be read top-down and checking
rules bottom-up, so we don’t need a coercion in the opposite direction.

In the (absb) and (prodb) rules, the new parameter y introduced in the premises must be
chosen fresh. This condition can always be satisfied since terms are of finite size and the set of
parameters is infinite.

Example 4. Consider the polymorphic identity as described in section 2. A type derivation
for this term in the λΠb-calculus modulo can be given as follows:

ΠA. ... −→∗w ΠA. ...
Πx:(ε? y1). (ε? y1) −→∗w Πx:(ε? y1). (ε? y1)

` [y2 : ε? y1]⇒ ε? y1

` [y2 : ε? y1]⇐ ε? y1

` λx. x⇐ Πx:(ε? y1). (ε? y1)
` λA. λx. x⇐ ΠA:U?. Πx:(ε? A). (ε? A)
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3.4 Reduction on types

The algorithm presented here relies on finding the weak head normal form of types in order to
proceed. This imposes that the set of rewrite rules used to generate the congruence (≡) verifies
a certain number of properties for the algorithm to be deterministic and complete. Notice that
reduction happens only on the classifier parts of a judgment. Reduction hence does not need
to concern itself with dealing with boxes.

Definition 5 (Weak reduction). Given a set R of rewrite rules, we define weak reduction
(−→w) as the contextual closure of the union of the usual β-rule with R under the reduction
context

C ::= [] | C M | M C | Πx:C. B

Its reflexive and transitive closure is written (−→∗w) and its reflexive, transitive and symmetric
closure is written (≡w).

Definition 6 (Standardization). A relation on terms, provided it is confluent, is said to be
standardizing if:

1. M ≡ x N1 . . . Nn implies M −→∗w x N ′1 . . . N ′n and N1 ≡ N ′1, . . . , Nn ≡ N ′n;
2. M ≡ λx. N implies M −→∗w λx. N ′ and N ′ ≡ N ;
3. M ≡ Πx:A. B implies M −→∗w Πx:A′. B′ and A′ ≡ A and B′ ≡ B;
4. M ≡ Type implies M −→∗w Type;
5. M ≡ Kind implies M −→∗w Kind.

If (−→) is confluent, standardizing and strongly normalizing, then it is sufficient to compute
weak head normal forms [2], which are the normal forms of the weak reduction relation defined
above. The reduction relation (−→w) may in general be non-deterministic — in that case one
can fix a specific reduction strategy. This can also be a way to ensure confluence and strong
normalization.

Remark 7. The typing rules of this section are closer to an actual implementation of a type
checker, but a legitimate question to ask is how do we know that they are sound and complete
with respect to the typing rules of Figure 1. Coquand [10] presents essentially the same algo-
rithm as above (though not context-free) for a simple dependent type theory where Type : Type,
and proves it sound through semantic means. Abel and Altenkirch [2] prove soundness and par-
tial completeness of a very similar algorithm to that of Coquand through syntactic means. Their
proof relies only on confluence and standardization properties of β-reduction and can readily
be adapted to a type system such as the λΠ-calculus modulo provided the rewrite rules respect
the same properties. The first author has formalized soundness and completeness results about
various context-free type systems [7].

3.5 Rewriting and dependent types

Rewrite rules can be classified according to the head constant to which they pertain. One can
read the set of rewrite rules for one same head constant as clauses of a functional program, the
left hand side of which contains a number of patterns.

However, contrary to an ordinary functional program, in the presence of dependent types
matching one term might force the shape of another term. This will typically happen when a
constructor forces one of the indexes of the type family in its result type. One simple example
of this situation is the head function on vectors, defined in the following signature:

Nat : Type Z : Nat S : Nat→ Nat
Vector : Πn : Nat. Type Nil : Vector Z Cons : Πn:Nat. Nat→ Vector n→ Vector (S n)
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The type and the rewrite rule associated to the head function are:

head : Πn:Nat. Vector n→ Nat head {S n} (Cons n h tl) −→ h

A non-linear pattern seems to be needed because n appears twice in its left hand side. We
cannot just generalize the first pattern in this rewrite rule, because then the left hand side
would be ill-typed. A non-linear pattern would mean that we must check that the instances
for the two occurrences of n are convertible. Moreover, in general inductive type families might
be indexed by higher-order terms, meaning that we would need to implement higher-order
matching. However, what we actually want to express is that any instance to the first pattern
of the rewrite rule above is uniquely determined by a matching instance of the second pattern.
Indeed, matching on the Cons constructor forces the dependent first argument to head to be
S n. As such, the first argument to head plays no operational role; it is merely there for the
sake of typing. Following Agda [22], in Dedukti we support marking parts of the left hand
side of a rule as operationally irrelevant using curly braces — actual arguments are not pattern
matched against these operationally irrelevant parts, hence we can avoid having to implement
full higher-order matching, which carries with it an inherent complexity that we would rather
keep out of a proof checking kernel.

Note that the braces could equally have been placed around the n that is fed as argument
to Cons. The only important property to verify is that one and only one occurrence of n must
not have braces. This occurrence will be the one that binds n.

4 An implementation of the type checking algorithm

We have by now developed an abstract characterization of a proof checking algorithm. However,
we have not so far been explicit about how to implement substitution on terms, nor have we
discussed how to decide definitional equality algorithmically. Ideally, whatever implementation
we choose, it should be both simple and efficient. Indeed, encodings in the style of Section 2.3
introduce many more redexes in types than were present in the original input. Moreover,
computing the weak head normal form of some types may require an arbitrarily large number
of reductions, even before any encoding overhead, such as can be the case in proofs by reflection.

Normalization by evaluation (NbE) is one particularly easy to implement normalization
scheme that alternates phases of weak reduction (i.e. evaluation) and reification phases (or
readback phases [17]). Weak reduction is significantly easier to implement than strong reduc-
tion, which in general requires reduction under binders. Evaluation conveniently side steps
the traditionally vexing issues of substitution such as renaming of variables to avoid capture,
because evaluation only ever involves substituting closed terms for variables1. What’s more, if
evaluation is all that is required, we can pick efficient off-the-shelf evaluators for stock functional
programming languages to do the job. These evaluators are invariably much more efficient than
we could feasibly implement ourselves — their implementations have been fine-tuned and well
studied for the benefit of faster functional programs over many years. What’s more, we achieve
a better separation of concerns by using off-the-shelf components: we are in the business of
writing type checkers, not evaluators. The size of the trusted base arguably does not decrease
if we are to rely on an existing evaluator, but trust is all the better for it nonetheless, because a
mature off-the-shelf component has likely been stress tested by many more users in many more
settings than any bespoke implementation we can come up with.

1A term may contain parameters but those cannot be captured: there are no binding forms for parameters
in the syntax of terms.
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||x|| = x
||y|| = VarC y

||λx. M || = LamC (λx → ||M ||)
||Πx:A. B|| = PiC ||A|| (λx → ||B||)
||M N || = app ||M || ||N ||
||Type|| = TypeC

||Kind|| = KindC

(a)

|x| = x

|[y : A]| = BoxT y
|λx. M | = LamT (λx → |M |)
|Πx:A. B| = PiT |A| (λx → |B|)
|M N | = AppT |M | |N |
|Type| = TypeT

(b)

Figure 3: Deep embedding of (a) classifiers and (b) subjects into Haskell.

For simplicity, we use an untyped variant of NbE, in the style of [6] (see also [16, 20, 9]).
We proceed by translating terms of the λΠ-calculus modulo into Haskell programs. Assume
the following datatype of evaluated terms:

data Code = VarC Int | AppC Code Code
| LamC (Code→ Code) | PiC Code (Code→ Code)
| TypeC | KindC

One can view the values of this datatype as code because these values are interesting for their
computational behavior. Translation of terms into values of this type is given in Figure 3.
Because we only ever need to compute with classifiers during type checking, this translation is
defined over the classifier representation of terms, not the subject representation.

The actual identity of a bound variable is usually quite irrelevant2. What is relevant is to
be able to conveniently substitute another term for all free occurrences of a variable under its
binder. Paramaters are dual, in that we never need to substitute for a parameter, nor do they
have scope since they cannot be bound, but their identity is crucial. During type-checking, we
must be able to ask whether this parameter is the same as this other parameter.

We therefore map (bound) variables to variables of the target language, allowing us to piggy
back substitution and scope management onto that of the target language. We get substitution
essentially for free. Parameters, on the other hand, are a ground piece of data: a name. Here,
for simplicity, we use integers for names.

In a similar spirit, we wish to reuse the target language’s computational facilities to reduce
terms to normal forms. Therefore applications are mapped to target language applications.
However, our embedding of terms in the target language is not quite shallow, in that functions
and so on are not represented directly as functions of the target language but rather as values of
type Code. This embedding into a monomorphic datatype is essentially an untyped embedding,
thus avoiding the impedence mismatch between the type system of the λΠ-calculus modulo
and that of the target language, in our case Haskell. Therefore we must introduce app,
a wrapper function around the native application operation, which essentially decapsulates
functions embedded in values of type Code:

app :: Code→ Code→ Code

2Indeed this is why formal developments in the presence of binding internalize Barendregt’s variable conven-
tion in some form.
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app (LamC f ) t = f t
app t1 t2 = AppC t1 t2

If the first argument of app is a function, then we can proceed with the application. If not, we
are stuck, and the result is a neutral term.

Deciding the equality between two terms can now be done near structurally:

conv :: Int→ Code→ Code→ Bool
conv n (VarC x ) (VarC x ′) = x ≡ x ′

conv n (LamC t) (LamC t ′) = conv (n + 1) (t (VarC n)) (t ′ (VarC n))
conv n (PiC ty1 ty2) (PiC ty3 ty4) = conv n ty1 ty3 ∧

conv (n + 1) (ty2 (VarC n)) (ty4 (VarC n))
conv n (AppC t1 t2) (AppC t3 t4) = conv n t1 t3 ∧ conv n t2 t4
conv n TypeC TypeC = True
conv n KindC KindC = True
conv n = False

Descending under binding structures gives the weak head normal form of their body, which is
computed automatically according to the semantics of the target language. The first argument
serves as a supply of fresh parameter names; these need only be locally unique so a local supply
is sufficient.

We now have a succinct and yet efficient way of deciding equality of two terms that we
know to be well-typed. The translation of Figure 3 for classifiers isn’t appropriate, however,
for subjects of type checking, because contrary to classifiers, subjects are not a priori well-
typed. Therefore, we cannot assume that any kind of normal form exists for subjects, lest we
compromise the decidability of type checking. We therefore introduce an alternative translation
for subjects, where terms are not identified modulo any reduction. This translation is given in
part (b) of Figure 3. Note that it is a completely standard mapping of terms to higher order
abstract syntax, into values of following datatype:

data Term = BoxT Code Code | AppT Term Term
| LamT (Term→ Term) | PiT Term (Term→ Term)
| TypeT

One particularly nice feature of this translation is that it differs from that for classifiers in one
single place: the interpretation of applications.

In Dedukti, to control the amount of code that we generate, and to avoid writing wasteful
coercions between values of type Term and values of type Code, which we would have to invoke
at every application node in the term that we are checking, we generate a single Haskell source
for a single proof script, containing both the subject translation and classifier translation for
every subterm of the proof script. That is, Term and Code representations are tied together for
every subterm, through a system of pairing (or gluing). This way no coercion is necessary, but
if we performed this gluing naively, it would obviously provoke and explosion in the size of the
generated code. The size would grow exponentially with the tree depth of terms, because we
would be duplicating subtrees at every level.

For this reason, in the actual implementation, we first transform terms into a linear form,
namely A-normal form. In this form, all subterms are named, so that it becomes possible
to share substructures of translations at every level, hence avoiding any kind of exponential
blowup. The rationale for this translation is similar to that of let-insertion to avoid blowups
during partial evaluation [12]. We also perform closure conversion to further improve sharing.
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||x||pat = x

||c N1 . . . Nn||pat = App (. . . (App (Var c) ||N1||pat) . . .) ||Nn||pat

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
c N11 . . . N1n −→ M1

...
...

c Nm1 . . . Nmn −→ Mm

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =

c ||N11||pat . . . ||N1n||pat = ||M1||
...

...
...

c ||Nm1||pat . . . ||Nmn||pat = ||Mm||
c . . . = ||c x1 . . . xn||pat

Figure 4: Translation of rewrite rules as functions over classifiers.

Both of these standard code transformations can be performed selectively, only for subterms
where both the subject and classifier representations are needed (both forms are need only
when checking applications M N , and then only when the type synthesized for M is of the
form Πx:A. B where x does occur in B).

4.1 Extending the algorithmic equality

If we commit to a particular rewrite strategy, and for convenience we commit to a particular
rewrite strategy that matches the evaluation order of the target language, then we can extend
the scheme given previously to gracefully handle custom rewrite rules. The idea is to read the
rewrite rules for one same head constant as the clauses of a functional program. This is the idea
behind the translation of rewrite rules as functional programs over values of type Code given in
Figure 4. The resulting functional program implements the rewrite rules in exactly the same
way that the app function implements β-reduction; if for a given subterm none of the rewrite
rules apply, then the result is a neutral term.

5 Conclusion

We have presented in this paper a simple and extensible calculus that works well as a common
format for a large number of other proof systems. The essential difference with previous pro-
posals is that through an extensible definitional equality, the λΠ-calculus modulo can act as a
logical framework that respects the computational properties of proofs. We showed how this
calculus can be implemented very succinctly by leveraging existing evaluation technology.

Our approach is firmly grounded in type theory; computation only happens as a result of
checking for convertibility between two types, just as in other type theories. Other recent efforts
for a common proof format, such as the proposal of Miller [21] grounded in proof theory, use
focusing to structure proofs and to formulate customized macro proof rules in terms of some
primitive rules. This framework captures a more general notion of computation than the one
presented here: Miller’s is formulated as proof search rather the functional programming centric
approach we present here (our implementation views rewrite rules as inducing a recursive,
pattern matching function). Computations in Miller’s framework need not be deterministic and
can indeed backtrack. The cost of this generality is that the proof checker needs to know how
to perform unification and backtracking, whereas in our approach the trusted base is arguably
smaller but effects such as backtracking need to be encoded as a pure functional program, for
example by using a monad [26].
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We have an implementation of a proof checker, Dedukti, which expects the system of
rewrite rules provided by the user to be reasonably well behaved. This proof checker is therefore
only one small piece of the larger puzzle: confidence in the results of this tool are contingent
upon trusting that the provided rewrite rules do not compromise logical consistency, or that
these rewrite rules indeed form a confluent and terminating system. Dedukti only checks
types, it does not check the rewrite rules. Future work will focus providing these other pieces to
support our methodology: tools to (semi-)automatically verify properties about rewrite rules,
for example.

For given translations, a system of rewrite rules or a schema of rewrite rules need only be
proven to behave properly once, rather than every time for every results of these translations.
However, we could also envisage making the λΠ-calculus modulo the core of a full fledged proof
environment for end users, in which users can define their own domain specific rewrite rules,
in which case automated certification of properties about the resulting system of rewrite rules
becomes essential.

We are currently working on adapting size-based termination techniques [1, 25, 4]. This
would give a general criterion that would work for the rewrite rules that encodes inductive or
coinductive structures. This criterion would be more powerful than purely syntactic criteria
such as Coq’s guard condition [4].

Finally, we currently type check by first translating proofs and formulas into a functional
program in Haskell, which we compile to native code using the GHC compiler. However,
the compilation process is slow. Its cost is only amortized given proofs with significant compu-
tational content and even then, we would rather not have the compiler waste time optimizing
parts of the proof that are computationally completely irrelevant. Other systems such as Coq
and Isabelle ask the user to decide exactly when to use an optimizing compiler and when
to compute using a much more lightweight interpreter. The advantage of our approach is its
simplicity, both for the user and for the implementation. We would like to keep this model,
but to make it scale, we are investigating translating terms to a language that supports “just
in time” compilation, whereby hotspots that are worth compiling to native code are identified
at runtime and automatically, still without any intervention from the user.

A stable release of Dedukti is available at https://www.rocq.inria.fr/deducteam/
Dedukti/index.html, however some of the improvements discussed here (in particular, the
dot patterns of section 3.5) have been integrated only in the development version of Dedukti,
that can be found on Github: https://github.com/mpu/dedukti.
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Jouannaud and Shao [19], pages 362–377.

[10] Thierry Coquand. An algorithm for type-checking dependent types. Sci. Comput. Program.,
26(1-3):167–177, 1996.

[11] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of LNCS, pages 102–117.
Springer, 2007.

[12] Olivier Danvy. Pragmatics of type-directed partial evaluation. In Olivier Danvy, Robert Glück,
and Peter Thiemann, editors, Dagstuhl Seminar on Partial Evaluation, volume 1110 of LNCS,
pages 73–94. Springer, 1996.

[13] NG De Bruijn. A plea for weaker frameworks. In Logical frameworks, pages 40–67. Cambridge
University Press, 1991.

[14] Gilles Dowek. Proof normalization for a first-order formulation of higher-order logic. In Elsa L.
Gunter and Amy P. Felty, editors, TPHOLs, volume 1275 of LNCS, pages 105–119. Springer, 1997.

[15] Gilles Dowek and Olivier Hermant. A simple proof that super-consistency implies cut-elimination.
Notre-Dame Journal of Formal Logic, 2012. to appear.

[16] Andrzej Filinski and Henning Korsholm Rohde. A denotational account of untyped normalization
by evaluation. In Igor Walukiewicz, editor, FoSSaCS, volume 2987 of LNCS, pages 167–181.
Springer, 2004.
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2 ÉNSIIE/Cédric/Inria AE Deducteam

1 square de la résistance, 91025 Évry cedex, France
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Abstract

We show how to translate the Calculus of Inductive Constructions (CIC) as imple-
mented by Coq into the λΠ-calculus modulo, a proposed common backend proof format
for heterogeneous proof assistants.

1 Introduction

Verification of large developments will rely increasingly on a combination of heterogeneous
provers, each being adapted to a particular aspect of the specification to realize. The question
of the validity of the whole proof quickly arises. A way to recover confidence over all parts of
the proofs is to translate them into a unique, simple but strong enough, formalism, in which
they are all checked. A good candidate for such a formalism is the λΠ-calculus modulo, a
simple yet extensible logical framework that conserves good properties of proofs, as presented
in a companion paper [3]. A proof checker based on it, called Dedukti, has been developed
by the first author. It was shown that many proof systems, if not all, can be encoded into the
λΠ-calculus modulo, including HOL [7], pure type systems [4], resolution proofs for first-order
logic, etc. In this paper, we present how to translate proofs of the Coq proof assistant into
this formalism. This translation has been implemented in a tool called CoqInE1, making it
possible to use Dedukti to check Coq’s developments.

The core formalism implemented by Coq, the Calculus of inductive Constructions (CIC),
is an immensely expressive type theory. As implemented by Coq, it embeds all other sys-
tems of the λ-cube [1], includes local and global definitions, full dependent inductive datatype
definitions, guarded fixpoint definitions and pattern matching, large eliminations, as well as
a cumulative hierarchy of universes, to name but a few features. None of these features are
native to the λΠ-calculus modulo in its bare form, which we call the λΠ-calculus. Encoding
specifications and proofs from such a powerful formalism is therefore a good benchmark as to
the adaptability and versatility of the λΠ-calculus modulo, and its convenience as a common
proof format for all manner of systems.

2 Encoding the Calculus of Inductive Constructions

2.1 The Calculus of Constructions

The calculus of inductive constructions (CIC) is an extension of the calculus of constructions
(CC), which is a type system for the λ-calculus with dependent types. [4] provides a sound

1Available at https://github.com/gburel/coqine.
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and conservative encoding of all pure type systems, including CC, into the λΠ-calculus modulo
(see also in [3] the instance of this encoding for System F). The CIC as implemented in Coq
is in fact a pure type system with an infinity of sorts, called universes. To keep things simple,
we will as a first approximation keep to only three sorts, Prop, Set and Type. Section 2.5 will
discuss how to deal with universes.

In this paper, we use Dedukti’s syntax for the λΠ-calculus modulo, where x : A -> B de-
notes the dependent product, x : A => B denotes the abstraction ( la Church) and
[ Γ ] l --> r. is the rule rewriting l to r, Γ being the typing context of the free variables
of l. Following [4], we have the following constants for each sort s ∈ {Prop,Set, Type}:
Us : Type.
es : Us -> Type.

The first is called a universe constant, for which we also have an associated decoding function
(εs). For each axiom s1 : s2 in {Prop : Type,Set : Type}, [4] introduce a constant (ṡ) and a rewrite
rule:

dots1 : Us2.
[] es2 dots1 --> Us1.

For each rule 〈s1, s2, s2〉 in {〈Prop,Prop,Prop〉, 〈Prop,Set,Set〉, 〈Prop, Type, Type〉, 〈Set,Prop,Prop〉,
〈Set,Set,Set〉, 〈Set, Type, Type〉, 〈Type,Prop,Prop〉, 〈Type,Set,Set〉, 〈Type, Type, Type〉} we have a con-
stant encoding the dependent product (Π̇〈s1,s2,s2〉) together with a rewrite rule:

dotpis1s2 : x : Us1 -> y : (es1 x -> Us2) -> Us2).
[x : Us1, y : es1 x -> Us2] es2 (dotpis1s2 x y) --> w : es1 x -> es2 (y w).

[4] also defines two translations: |t| translates t viewed as a term, and ||t|| translates t viewed
as a type, with ||A|| = es |A| for terms A typed by a sort s.

2.2 Inductive Types

CIC extends CC such that it becomes possible to define inductive types. In our translation,
each time an inductive type is defined, we add new declarations and rewrite rules corresponding
to the type. To give an intuition, let us first present how a concrete example, namely the vector
indexed type, is translated.

Indexed vectors are defined in Coq by:

Inductive vector (A : Type) : nat -> Type :=
Vnil : vector A O

| Vcons : forall (a : A) (n : nat), vector A n -> vector A (S n).

where nat is itself an inductive type with constructors O and S. The translation consists first
in declaring two corresponding types in λΠ-calculus modulo:

vector : A : Utype -> (eset nat) -> Utype.
pre__vector : A : Utype -> (eset nat) -> Utype.

The pre__vector will be used to tag constructors. This will be useful for fixpoints (see next
section). First, we give constants for each constructor, building a pre__vector:

Vnil : A : Utype -> etype (pre__vector A (nat__constr O)).
Vcons : A : Utype -> a : etype A -> n : eset nat ->
etype (vector A n) -> etype (pre__vector A (nat__constr (S n))).
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As we can see above in the case of the constructors of nat, constructors are guarded by a
constant vector__constr allowing to pass from pre__vectors to vectors:

vector__constr : A : Utype -> n : eset nat ->
etype (pre__vector A n) -> etype (vector A n).

Thus, the translation as a term of a constructor applied to its arguments will use this guard:

|Vnil A| = vector__constr |A| (nat__constr O) (Vnil |A|)
|Vcons A a n v| = vector__constr |A| (nat__constr S (|n|)) (Vcons |A| |a| |n| |v|).
If a constructor is only partially applied, we use η-expand it during translation. For the sake
of readability, we now hide __constr guards using italics : O represents nat__constr O, Vnil
A denotes vector constr A O (Vnil A), etc.

To translate pattern matching, we also add a case constant:

vector__case : A : Utype ->
P : (n : eset nat -> vector A n -> Utype) ->
fVnil : etype (P O (Vnil A)) ->
fVcons : ( a : A -> n : eset nat -> v : etype (vector A n) ->

P (S n) (Vcons A a n v) ) ->
n : eset nat ->
m : etype (vector A n) ->
etype (P n m).

together with two rewrite rules, one for each constructor:

[A : Utype, P : ...] vector__case A P fVnil fVcons O (Vnil A) --> fVnil.
[...] vector__case A P fVnil fVcons (S n) (Vcons A a n v) --> fVcons a n v.

We now turn to the general case. Following the notations of Coq’s manual [8], an inductive
definition is given by Ind()[p](ΓI := Γc) where p is the number of inductive parameters (as
opposed to real arguments), ΓI is the context of the definitions of (mutual) inductive types
and ΓC the context of constructors. For each inductive type definition I : t we first add two
declarations

I : ||t||.
pre__I : ||t||.
When the type t of the inductive type is of the form Πx1 : t1. . . .Πxn : tn. s, we also define a
guarding constant:

I__constr : x1:||t1|| -> · · · -> xn:||tn|| -> es (pre__I x1 · · · xn) -> es (I x1 · · · xn).
For each constructor c : Πx1 : t1. . . .Πxp : tp. Πy1 : s1. . . .Πyl : sl. Ix1 . . . xp u1 . . . un−p we

declare a constant:

c : x1 : ||t1|| -> · · · -> xp : ||tp|| -> y1 : ||s1|| -> · · · -> yl : ||sl|| ->
es (pre__I x1 · · · xp |u1| · · · |un−p|).

The translation as a term of a constructor applied to its arguments will therefore be:

|c p1 . . . pp r1 . . . rl| = I constr |p1| . . . |pp| |v1| . . . |vn−p| (c |p1| . . . |pp| |r1| . . . |rl|)
where vi = ui{p1/x1, . . . , pp/xp, r1/y1, . . . , rl/yl}.

To translate pattern matching, we also add a case constant:
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I__case : x1 : ||t1|| -> · · · -> xp : ||t1|| ->
P : (xp+1 : ||tp+1|| -> · · · -> xn : ||tn|| -> I x1 · · · xn -> UType) ->
. . . ->

fc : (y1:||s1|| -> · · · -> yl:||sl|| -> P |u1| · · · |un−p| |c x1 · · · xp y1 · · · yl|) ->
. . . ->

xp+1 : ||tp+1|| -> · · · -> xn : ||tn|| ->
m : I x1 · · · xn ->
etype (P xp+1 · · · xn m).

where P is the return type, and we have fc for each constructor, representing the corresponding
branch of the matching. We then add a rewrite rule for each constructor:

[...] I__case x1 ... xp P ... fc ... |u1| ... |un−p|
(I__constr x1 ... xp |u1| ... |un−p| (c x1 ... xp y1 ... yl)

--> fc y1 ... yl.

2.3 Fixed points

For each fixed point in a term, we add a new constant with an associated rewrite rule. Since
rewrite rules are defined globally, this constant must take as parameters the context of the fixed
point, that is, all bounded varables above the position of the fixed point.

Given a fixed point Fixfi{f1/k1 : A1 := t1 . . . fn/kn : An := tn} in a context x1 : B1,
. . . , xm : Bm, assuming Ai is Πy1

i : A1
i . . . .Πy

ki
i : Aki

i . A
′
i where Aki

i is an inductive type
Iiw

1
i . . . w

li
i of sort s, we obtain the following declarations:

f1 : x1 : ||B1|| -> ... -> xm : ||Bm|| -> ||A1||.
[x1 : ||B1||, ..., xm : ||Bm||, y11 : ||A1

1||, ..., yk1-1 : ||Ak1−1
1 ||,

z1 : es (pre__I1 |w1
1| ... |wl1

1 |)]
f1 x1 ... xm y11 ... y1k1-1 (I1__constr |w1

1| ... |wl1
1 | z1)

--> |t1| y11 ... y1k1-1 (I1__constr |w1
1| ... |wl1

1 | z1).
...

fn : x1 : ||B1|| -> ... -> xm : ||Bm|| -> ||An||.
[x1 : ||B1||, ..., xm : ||Bm||, yn1 : ||A1

n||, ..., ynkn-1 : ||Akn−1
n ||,

zn : es (pre__In |w1
n| ... |wln

n |)]
fn x1 ... xm yn1 ... ynkn-1 (In__constr |w1

n| ... |wln
n | zn)

--> |tn| yn1 ... ynkn-1 (In__constr |w1
n| ... |wln

n | zn).
The Ii__constr prevents the reduction of the fixed point unless a constructor is present

as its kith parameter, which is exactly its semantics. Then, Fixfi{f1/k1 : A1 := t1 . . . fn/kn :
An := tn} is translated as fi x1 . . . xm where the xi are the actual variables of the context of the
fixed point. Because of dependent types, it is not possible to have a rewrite rule for the unfolding
of the fixed point for each constructors of the inductive type. Indeed, the arguments wj

i of the
inductive type Ii can depend on yk

i , and this can be incompatible with the type of the construc-
tors. For instance, if we had a fixed point Fixf{f : ΠA : Set. Πx y : A. Πp : x =A y. P := t},
the following rewrite rule would be ill-typed:

f : A : Uset -> x : eset A -> y : eset A -> p : eprop (eq A x y) -> ||P ||.
[A:Uset, x:eset A, y:eset A] f A x y |eq refl A x|
--> |t| A x y |eq refl A x|.

47



CoqInE: Translating CIC into λΠ-modulo M. Boespflug and G. Burel

because |eq refl A x| has type eprop (eq A x x) and not eprop (eq A x y). This is the
reason why we choose to translate constructors with the guarding constant I__constr.

Another solution would have been to duplicate the argument on which structural induction
is based, one copy serving to match a constructor, the other being used to typecheck the body
of the fixed point. Concretely, on the example above, this would give:

f : A : Uset -> x : eset A -> y : eset A -> p : eprop (eq A x y) -> ||P ||.
[...] f A x y p -> f’ A x y p A x y p.
f’ : A : Uset -> x : eset A -> y : eset A -> p : eprop (eq A x y) ->
A’ : Uset -> x’ : eset A’ -> y’ : eset A’ -> p’ : eprop (eq A’ x’ y’) -> ||P ||.
[...] f’ A x y p A’ x’ x’ (eq_refl A’ x’) --> |t|.
We plan to implement this second solution in a future version of CoqInE, since it avoids
doubling the size of ground terms (i.e. terms build using only constructors).

Note that Dedukti does not check that the rewrite system terminates, in particular the
rules corresponding to the fixed points. Indeed, the philosophy behind Dedukti is to have
different tools for each purpose. The termination of the system corresponding to a fixed point
should, however, be checkable using a tool based on size-based termination [2].

2.4 Modules

Coq features a powerful system of modules, with functors and refined structures. However,
Dedukti understands only a notion of namespaces, lacking anything close to a full fledged
module system.

To be able to translate functors, our choice is to parameterize each definition of a structure
by all the parameters of the argument module. Then, for functor application, we need to apply
all arguments of the applied module in each definitions. Concretely, if we have the following
definitions in Coq:

Module Type T.
Parameter a : Type.
Parameter b : a.
End T.

Module M : T.
Definition a := Prop.
Definition b : Prop := forall p : Prop, p.
End M.

Module N (O : T).
Definition x := O.b.
End N.

Module P := N(M).

we obtain the following modules in Dedukti:

In module M.dk:
a : Utype.
[] a --> dotprop.
b : Uprop.
[] b --> dotpitp dotprop (p : etype dotprop => p).

In module N.dk:
x : fp_a : Utype -> fp_b : etype fp_a -> etype fp_a.
[fp_a : Utype, fp_b : etype fp_a] x fp_a fp_b --> fp_b.

In module P.dk:
x : etype M.a.
[] x --> N.x M.a M.b.
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2.5 Universes

Since in CIC there are in fact an infinity of universes, we cannot declare constants Us, es, etc.
for each of them. A first solution would be to restrict oneself to the universes actually used
in the module we are translating. This number is finite and typically very small 2. However,
this solution is not modular, since there are definitions that are polymorphic with respect to
the universes. Typically, the list type takes as first parameter an argument of type Type for
all universes, so that it can be seen as a family of inductive types. If a module uses list on a
higher universe than those that were used when list was defined, we would have to duplicate
its definition.

A better solution would be to have sorts parameterized by universe levels. Although
technically possible, it should be proved that this provides a sound and conservative encod-
ing of CIC. Currently, we bypass this issue by translating all universes by Type, and having
dottype : Utype. Of course, this is not sound, since Girard’s paradox can be reproduced.

Another issue concerns subtyping of sorts. Indeed, in CIC, if t : Type(i) then t : Type(j) for
all j ≥ i. Rewrite rules could be used to encode subtyping, for instance Utype i --> Utype j,
but only if they are applied at positive positions. Since subtyping is contravariant, at negative
positions, the dual rule Utype j --> Utype i should be used. Nevertheless, such a mechanism
of polarized rewrite rules [5, 6] is currently not present in Dedukti.

3 Implementation details

CoqInE takes a Coq compiled file (.vo) and translates it into a Dedukti input file (.dk).
Concretely speaking, a Coq compiled file contains a copy of the Coq kernel’s in-memory
representation of a module marshalled to disk. Since the marshalling facility is provided by the
OCaml compiler, the format of the content in a .vo file is dependent both on the version of the
compiler that compiled Coq, and also the version of Coq itself. Reading a Coq compiled file
is a simple matter of unmarshalling the data, as implemented in the OCaml standard library.

The advantage of this scheme is that it avoids having to write a parser to read Coq proofs.
Moreover, this ensures that the translation is performed on exactly the same terms that are
used in Coq: on the contrary, an export of Coq’s terms into another format could be unsound.
And last but not least, it makes it easy to reuse part of Coq’s code, because the data structures
used to represent a Coq module are identical. In fact, CoqInE started as a fork of Chicken,
a stripped down version of the Coq kernel. However, this has to following drawbacks:

• the same version of OCaml as the one used to compile Coq has to be used to compile
CoqInE;

• The close coupling between the data structures of CoqInE and those of the Coq imple-
mentation means that CoqInE is tributary to Coq’s implementation: core data struc-
tures change frequently between Coq releases (as happened between versions 8.2 and 8.3
for instance) and these changes need to be ported to CoqInE’s codebase every time.

A better scheme would be to harness an export facility to a generic and stable format. Coq can
already export proof snippets in XML. Unfortunately, however, this facility does not currently
scale up to all the content of a full module.

2For instance, it is possible to type all of the Coq 8.2 standard library using only 4 levels of universes.
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4 Results and Future Work

CoqInE is able to translate 256 modules of the standard library of Coq out of 304 (84%). The
main features that are missing to translate the whole library are the following: coinductive types
are not supported for the moment. A mechanism for handling lazy terms would be needed to get
them. We cannot rely on abstracting terms to avoid their reduction, because Dedukti reduces
terms under abstractions when it checks their convertibility. Also, translation of modules is not
complete, in particular we do not translate refined structures (S with p := p’).

We could not check all of these translations using Dedukti. Indeed, although the translation
is linear, some of them are too big. For instance, the Coq.Lists.List module, whose .vo file
has length 260KB, is translated into a Dedukti file of length 1.2MB, which is in turn translated
into a Haskell file of size 12MB. Of course, GHC is not able to run or compile this file. A
simple solution to overcome this issue would be to cut big modules into smaller files. A more
stable solution consists in making Dedukti no longer produce Haskell code, but code that
can be compiled just-in-time. Dedukti is currently rewritten to allow this.

Another limitation of Dedukti is the absence of higher-order matching. Higher-order pat-
terns can appear for instance in the rules for I__case when the real arguments of the inductive
type I are higher order. For instance, if we define the inductive type

Inductive I : (Prop -> Prop) -> Prop := c : I (fun t => t).

we obtain the following rewrite rule:

[...] I__case P fc (t : Uprop => t) (I__constr (t : Uprop => t) c) --> fc.

which contains higher-order patterns. However, these higher-order patterns are not useful for
the matching, since the important pattern is the constructor c. Therefore, the possibility to
declare that a pattern should be used for the typing of the rule but not for the matching
has been added recently to Dedukti. Nevertheless, these so-called dot patterns (see [3]) are
currently not used in CoqInE yet.

As noted in Section 2.5, one last remaining point is the encoding of universes.
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Abstract

This paper describes a new feature of the GAPT framework, namely the ability to im-
port refutations obtained from external automated theorem provers. To cope with coarse-
grained, under-specified and non-standard inference rules used by various theorem provers,
the technique of proof replaying is employed. The refutations provided by external theo-
rem provers are replayed using GAPT’s built-in resolution prover (TAP), which generates
refutations that use only three basic fine-grained inference rules (resolution, factoring and
paramodulation) and are therefore more suitable for manipulation by the proof-theoretic
algorithms implemented in GAPT.

1 Introduction

GAPT1 (General Architecture for Proof Theory) is a framework that aims at providing data
structures, algorithms and user interfaces for analyzing and transforming formal proofs. GAPT
was conceived to replace and expand the scope of the CERES system2 beyond the original
focus on cut-elimination by resolution for first-order logic [BL00]. Through a more flexible
implementation based on basic data structures for simply-typed lambda calculus and for sequent
and resolution proofs, in the hybrid functional object-oriented language Scala [OSV10], GAPT
has already allowed the generalization of the cut-elimination by resolution method to proofs
in higher-order logic [HLW11] and to schematic proofs [DLRW12]. Furthermore, methods for
structuring and compressing proofs, such as cut-introduction [HLW12] and Herbrand Sequent
Extraction [HLWWP08] have recently been implemented.

However, due to GAPT’s focus on flexibility and generality, efficiency is only a secondary
concern. Therefore, it is advantageous for GAPT to delegate proof search to specialized external
automated theorem provers (ATPs), such as Prover9 [McC10a], Vampire [RV02] or Otter3. This
poses the technical problem of importing proofs from ATPs into GAPT, which is less trivial
than it might seem, because different ATPs use different inference rules and some inference
rules are too coarse-grained, under-specified, not precisely documented [BW11] and possibly
not so standard from a proof-theoretical point of view. As an example, take the explanation of
the rewrite rule from Prover9’s manual [McC10b]:

rewrite([38(5,R),47(5),59(6,R)]) – rewriting (demodulation) with equa-
tions 38, 47, then 59; the arguments (5), (5), and (6) identify the positions of the
rewritten subterms (in an obscure way), and the argument R indicates that the
demodulator is used backward (right-to-left).

1GAPT: http://code.google.com/p/gapt/
2CERES: http://www.logic.at/ceres/
3Other well-known and very efficient provers such as E and SPASS have not received much of our attention

yet, because their output seemed not as easy to understand and parse.
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The use of coarse-grained, under-specified and non-standard inference rules is especially
problematic for GAPT, because its proof transformation algorithms require that the proofs
adhere to strict and minimalistic calculi, as is usually the case in proof theory. To solve this
problem in a robust manner, the technique of proof replaying was implemented in GAPT.

In GAPT’s historical predecessor CERES, a more direct translation of each of Prover9’s in-
ference rules into pre-defined corresponding sequences of resolution and paramodulation steps
had been implemented. Recomputing missing unifiers and figuring out the obscure undocu-
mented ways in which Prover9 assigns numbers to positions made this direct translation par-
ticularly hard. Thanks to the technique of proof replaying, these problems were avoided in
GAPT.

The main purpose of this paper is to document how GAPT’s internal resolution prover
(TAP) was extended to support proof replaying and to report our overall experience with this
technique. TAP outputs resolution proofs containing only fine-grained resolution, factoring and
paramodulation steps, as desired.

Proof replaying is a widely used technique, and the literature on the topic is vast (see
e.g. [Fuc97, Amj08, PB10, ZMSZ04, Mei00]). One thing that distinguishes the work presented
here is that proofs are replayed into a logical system whose main purpose differs substantially
from the typical purposes (e.g. proving theorems, checking proofs) of most logical systems.
GAPT’s ongoing goal of automating the analysis and transformation of proofs can be seen as
complementary and posterior to the goals of most other systems.

The rest of the paper is organized as follows: Section 2 describes the general algorithm for
proof replay in our system and explains in more details how we implemented this algorithm for
Prover9 output. In Section 3 we give a concrete example. The final section concludes our work
and discusses some future improvements.

2 Proof Replaying in GAPT

The aim of this section is to describe how a proof from an external theorem prover is replayed in
GAPT. At our disposal is the interactive prover TAP, which implements Robinson’s resolution
calculus [Rob65] and paramodulation. It is not efficient enough to prove complex theorems, but
provided with an external proof it is often able to derive, for each inference step, the conclusion
clause from its premises. In principle, if the conclusion clause C is not a tautology, a clause will
be derived subsuming C by the forward computation of resolution (see [Lee67]). It works for
any calculus with tautology-deletion. For our purposes, the specialized coarse-grained inference
steps used in proofs output by optimized theorem provers have to be translated into a series of
simple resolution and paramodulation steps. If this series is not too long, TAP will find it and
use it instead of the specialized inference rule used by the external prover.

Prover9 proof TAP commandsParser Pure resolution proofReplayingGAPT TPTP formatExporter ATP (Prover9)Input Output

Figure 1: Flowgraph of the Transformation

The complete transformation process is visualized in Figure 1. The theorem to be proved is
exported into TPTP format [Sut11, Sut09] and passed to the external theorem prover. For the
sake of this paper, we chose to use Prover9 as the external theorem prover. In principle, any
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prover whose proof output can be parsed by GAPT can be used in place of Prover9, and we
plan to add support for more external provers in the future. In the case of a successful result,
the proof output is usually a text file, containing for each inference step its ID, a clause which
was derived and a list of the rules which were applied4. The output file is then parsed into
commands which steer TAP to replay the proof.

The API of TAP has two main modules: the search algorithm and the proof replay. The
search space consists of elements called configurations. Each configuration consists of a state, a
stream of scheduled commands, additional arbitrary data and a result (possibly empty) which
is a resolution proof. The state consists of the persistent data of the configuration and might
be shared between different configurations. A command transforms a configuration to a list of
successor configurations.

The so called “engine function” takes a configuration, executes the first of its scheduled
commands and inserts the newly generated configurations into the search space. By default,
the prover explores the search space using breadth-first search, but this is configurable.

We now describe the commands used for replay in more detail. In principle, we could replay
an input proof purely using the Replay command. However, the actual implementation treats
Prover9’s inference rules assumption, copy and factor specially because they do not create
new proofs and are therefore translated directly into TAP commands. In the first case, a proof
of the assumption without premises is inserted into the list of derived clauses. In the second
case, the guidance map containing the association of proofs to Prover9’s inference identifiers is
updated. Factoring is treated as a copy rule, because it is integrated into the resolution rule
like in Robinson’s original resolution calculus[Rob65]. Therefore we postpone the factoring of
a clause until its next use in a resolution step. All other Prover9 inferences are replayed. The
commands are grouped into different tasks: initialization, data manipulation and configura-
tion manipulation. Guided commands are a subset of data commands. Table 1 provides an
overview over the commands necessary for replay (commands in italics were specifically added
for replaying).

Initialization Commands Replay Commands Data Commands
Prover9Init Replay SetTargetClause

SetClauseWithProof
Configuration Commands Guided Commands Variants
SetStream AddGuidedInitialClause Factor
PrependOnCond AddGuidedClauses DeterministicAnd
RefutationReached GetGuidedClauses Resolve

IsGuidedNotFound Paramodulation
InsertResolvent

Table 1: Selection of TAP Commands

The initialization commands interface TAP with an external prover. At the moment, there
is only one command handling Prover9. It exports the given clause set to TPTP format, hands
it over to Prover9, processes its output with the Prooftrans utility to annotate the inference

4Some provers have scripts translating their proof format to XML or TSTP. Since TSTP does not fix the set
of inference rules, some adjustments to the replaying have to be made for the different provers. In the actual
system, a postprocessing to XML format is used which already separates the inference identifiers from the rule
name and the list of clauses, but which does not apply any proof tranformations.
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identifiers, clauses and rule names with XML tags and uses Scala’s XML library to parse the
resulting proof into the system. Each assumption is registered together with its inference ID
and put into the set of derived clauses (using AddGuidedInitialClause and InsertResolvent).
The copy and the factor rules are treated by adding the proof with the new ID to the guidance
map (using AddGuidedClauses). For all other rules, the replay command is issued.

The configuration commands allow control over the proof search process. It is possible to
schedule insertion of additional commands into certain configurations and to stop the prover
when a (desired) resolution deduction is found.

All the data commands transform a configuration to a (finite) list of successor configura-
tions. A simple example is SetTargetClause which configures with which derived clause to
stop the prover. Also the commands for the usual operations of variant generation, factoring,
paramodulation and resolution are in this group. It also contains commands to insert a found
proof into the set of already found derivations and a command for executing two commands
after each other on the same state.

The purpose of the guided commands is the bookkeeping of derived proofs. It allows storage
of the proof of a clause in a guidance map which is part of the state. When a guided inference
is retrieved, the proof is put into the list of derived clauses within that state. There is also
a special command looking for the result of a guided inference and inserting it into the set of
derived clauses.

Replaying a rule first needs to retrieve the proofs of the parent clauses from the guidance
map. Then it creates a new TAP instance, which it initializes with these proofs as already
derived clauses and the reflexivity axiom for equality. The conclusion clause of the inference
step to be replayed is set as target clause and the prover is configured to use a strategy which
tries alternating applications of the resolution and paramodulation rule on variants of the input
clauses. Also forward and backward subsumption are applied after each inference step. In
this local instance neither applications of the replay rule nor access to the guidance map is
necessary. If the local TAP instance terminates with a resolution derivation, it is put into the
global guidance map and returned as part of the configuration. In case TAP can not prove
the inference, the list of successor states is empty. Since the scheduled replay commands are
consecutive transformations on the same configuration, this also means the global TAP instance
will stop without result.

3 An Example

In this section we explain with a simple example how our algorithm works for a concrete proof.
Consider the clause set from Figure 2, which was obtained from an analysis of a mathematical
proof [BHL+06].

cnf( sequent0,axiom,’f’(’+’(X1, X0)) = ’0’ | ’f’(’+’(X0, X1)) = ’1’).
cnf( sequent1,axiom,~’f’(’+’(X2, X1)) = ’0’ | ~’f’(’+’(’+’(’+’(X2, X1), ’1’), X0)) = ’0’).
cnf( sequent2,axiom,~’f’(’+’(X2, X1)) = ’1’ | ~’f’(’+’(’+’(’+’(X2, X1), ’1’), X0)) = ’1’).

Figure 2: Example of a clause set in TPTP format

We give this clause set to Prover9, which outputs the refutation given on Figure 3. We
see that the information contained in a rule description is incomplete – the unifier is nor-
mally left out and the variable names in the resulting clause are normalized. In many cases
(such as in the last step) more than one step is applied at once. Clause 22 is rewritten twice
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into clause 3 (back rewrite(3),rewrite([22(2),22(8)])), yielding two equational tautolo-
gies (xx(a),xx(b)) which are deleted, resulting in the empty clause.

1 f(plus(A,B)) = zero | f(plus(B,A)) = one # label(sequent0) # label(axiom).
[assumption].
2 f(plus(A,B)) != zero | f(plus(plus(plus(A,B),one),C)) != zero # label(sequent1) #
label(axiom). [assumption].
3 f(plus(A,B)) != one | f(plus(plus(plus(A,B),one),C)) != one # label(sequent2) #
label(axiom). [assumption].
5 f(plus(A,B)) != zero | f(plus(C,plus(plus(A,B),one))) = one. [resolve(2,b,1,a)].
11 f(plus(A,plus(plus(B,C),one))) = one | f(plus(C,B)) = one. [resolve(5,a,1,a)].
16 f(plus(A,B)) = one | f(plus(C,D)) != one. [resolve(11,a,3,b)].
20 f(plus(A,B)) = one | f(plus(C,D)) = one. [resolve(16,b,11,a)].
22 f(plus(A,B)) = one. [factor(20,a,b)].
24 $F. [back rewrite(3),rewrite([22(2),22(8)]),xx(a),xx(b)].

Figure 3: Example of a Prover9 refutation of the clause set

In our approach each (nontrivial) step is translated into a series of commands to the inter-
nal prover. The series of commands starts by initializing the prover with only those clauses
contributing to the current inference and then schedules the resolution derivation. The last com-
mand of the series inserts the proof of the resolution step into the already replayed derivation
tree.

In the example above, all steps except the last one are trivial steps and TAP returns exactly
the same inferences. For the last step the following command is created:

List(ReplayCommand(List(0, 3, 22, 22), 24, ([], [])), InsertResolvent())

which says that from the reflexivity predicate 0, clauses 3 and variants of 22 it should derive
clause 24, i.e. the empty clause.

A full output of TAP for this example is too big to fit nicely on a page.5 Since the only inter-
esting case is the last step, Figure 4 displays the corresponding generated resolution derivation
– in this case of the empty clause.

4 Conclusion

In this paper we described GAPT’s new feature of replaying refutations output by ATPs. Our
approach is based on interpreting coarse-grained, under-specified and non-standard inference
rules as streams of commands for GAPT’s built-in prover TAP. By executing these commands,
TAP generates resolution refutations containing only inference rules that are fine-grained and
standard enough for GAPT’s purposes. This approach is simpler to implement and more
robust. The drawback is that its reliance on proof search by a non-optimized prover (TAP)
makes replaying less efficient than a direct translation.

In the future, we plan to add support for the TSTP proof format, in order to benefit not
only from Prover9 but from any prover using this format. As GAPT’s algorithms for proof
analysis and proof compression mature, we expect them to be of value in post-processing the
proofs obtained by ATPs.

5The full output can be found here: http://code.google.com/p/gapt/wiki/PxTP2012
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Figure 4: Replayed resolution tree of the last step of the example
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Abstract

The quantifier-free logic of Equality with Uninterpreted Function symbols (EUF) is at
the core of Satisfiability Modulo Theory (SMT) solvers. There exist several competing
proof formats for EUF proofs. We propose original proof formats obtained from proof
forests that are the artifacts proposed by Nieuwenhuis and Oliveras to extract efficiently
EUF unsatisfiable cores. Our proof formats can be generated by SMT solvers for almost
free. Moreover, our preliminary experiments show that our novel verifiers outperform other
existing EUF verifiers and that our proof formats appear to be more concise than existing
EUF proofs.

1 Introduction

SMT solvers (e.g., Z3 [15], Yices [16], CVC3 [4], veriT [10]) are the cornerstone of software ver-
ification tools (e.g., Dafny [18], Why/Krakatoa/Caduceus [17], VCC [11]). They are capable of
discharging proof obligations of impressive size and make possible verification tasks that would
otherwise be unfeasible. Scalability matters, but when it comes to verifying critical software,
soundness is mandatory. SMT solvers are based on highly optimised decision procedures and
proving the correctness of their implementation is probably not a viable option. To sidestep this
difficulty, several SMT solvers are generating proof witnesses that can be validated by external
verifiers. In order to minimise the Trusted Computing Base (TCB), an ambitious approach
consists in validating SMT proofs using a general purpose proof verifier i.e., a proof-assistant
such as Isabelle/HOL or Coq. Recent works [9, 2] show that SMT proofs are big objects and
that the bottleneck is usually the proof-assistant. Ideally, SMT proofs should be i) generated
by SMT solvers with little overhead; ii) verified quickly by proof assistants.

Even for the simplest logic such as the quantifier-free logic of equality with uninterpreted
function symbols (EUF) there exist competing proof formats generated by SMT solvers. Several
of those formats have been validated by proof-assistants: Z3 proofs can be reconstructed in
Isabelle/HOL and HOL4 [9]; veriT proofs can be reconstructed in Coq [2]. Even though the
results are impressive, certain SMT proofs cannot be verified because they are too big.

We propose novel proof formats for EUF and compare their efficiency in terms of i) gen-
eration time; ii) checking time; iii) and proof size. Our comparisons are empirical and do not
compare the formats in terms of proof-complexity. Instead, we have implemented the verifiers
using the functional language of Coq and compared their asymptotic behaviours experimen-
tally over families of handcrafted benchmarks. The contributions of the paper are efficient Coq
verifiers for two novel EUF proof formats and their comparison with existing verifiers. The
code of the verifiers is available [21]. Our first proof format is made of proof forests that are
the artifact proposed by Nieuwenhuis and Oliveras to extract efficiently unsatisfiable cores [20].
Our second proof format is a trimmed down version of the proof forest reduced only to the edges
responsible for triggering a congruence. For the sake of comparison, we have also implemented
a Coq verifier for the EUF proof format of Z3 [14] and compared with the existing Coq verifier
for the EUF proof format of veriT [2]. The main result of our preliminary experiments is that
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the running time of all the verifiers is negligible w.r.t. the type-checking of the EUF proofs.
Another result of our experiments is that proof forests verifiers are very fast and that (trimmed
down) proof forests appear to be more concise than existing EUF proofs. Another advantage
is that proof forests can be generated for almost free by SMT solvers based on proof forests.

The rest of the paper is organised as follows. Section 2 provides basic definitions and known
facts about the EUF logic. Section 3 recalls the nature of proof forests and explains the workings
of our novel EUF proof verifiers. Section 4 is devoted to experiments. Section 5 concludes.

2 Background

We write T (Σ,V) the smallest set of terms built upon a set of variables V and a ranked alphabet
Σ of uninterpreted function symbols. For EUF, an atomic formula is of the form t = t′ for t,
t′ ∈ T (Σ, ∅) and a literal is an atomic formula or its negation. Equality (=) is reflexive,
symmetric, transitive and closed under congruence:

x = x

x = y

y = x

x = y, y = z

x = z

x1 = y1, . . . , xn = yn

f(x1, . . . , xn) = f(y1, . . . , yn)

Ackermann has proved using a reduction approach that the EUF logic is decidable [1]. The
reduction consists in introducing for each term f(~x) a boolean variable f~x and encoding the
congruence rule by adding the boolean formula x1 = y1 ∧ . . . ∧ xn = yn ⇒ f~x = f~y for each
pair of terms f(~x), f(~y). This encoding is responsible for a quadratic blow up of the formula.
Nelson has proposed an efficient decision procedure for deciding the satisfiability of a set of EUF
literals using a congruence closure algorithm [19]. Nieuwenhuis and Oliveras have shown how to
efficiently generate unsatisfiable cores by instrumenting the congruence closure algorithm with a
proof forest [20] gathering all the necessary information for generating proofs (see Section 3.1).

3 Walking through the proof forest

In the following, we assume w.l.o.g. that EUF terms are flat and curried [20, Section 3.1] i.e.,
are of the form a or f(a1, a2) where f represents an explicit application symbol and a, a1 and a2

are constants. In the rest, we drop the f and write a1(a2) for f(a1, a2). These transformations
can be performed in linear time and simplify the decision procedure.

3.1 Proof forest

Nieuwenhuis and Oliveras have proposed a proof-producing congruence closure algorithm for
deciding EUF [20]. Their main contribution is an efficient Explain operation that outputs a
(small) set of input equations E needed to deduce an equality, say a = b. If a 6= b is also
part of the input, E ∪ a 6= b is a (small) unsatisfiable core that is used by the SMT solver for
backtracking. As a result, SMT solvers using congruence closure run a variant of the Explain
algorithm – whether or not they are proof producing.

The Explain algorithm is based on a specific data structure: the proof forest. A proof forest
is a collection of trees and each edge a→ b in the proof forest is labelled by a reason justifying
why the equality a = b holds. A reason is either an input equation a = b or a pair of input
equations a1(a2) = a and b1(b2) = b. For the second case, there must be justifications in the
forest for a1 = b1 and a2 = b2.

We give in Figure 1 a modified version of the original Explain algorithm. The NearestAncestor
and Parent functions return (if it exists) respectively the nearest common ancestor of two nodes
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l e t ExplainAlongPath ( a , c ) :=
a:=HighestNode ( a ) ;
c :=HighestNode ( c ) ;
i f a = c then return
e l s e

b:= Parent ( a ) ;

i f edge has form a
a=b−−→ b

then Output ( a = b)

e l s e { /∗ edge has form a
b1(b2)=b−−−−−−→
a1(a2)=a

b∗/
Output a1 ( a2)=a and b1 ( b2)=b ;
Explain ( a1 , b1 ) ; Explain ( a2 , b2 ) } ;

Union ( a , b ) ; ExplainAlongPath (b , c )
(a) ExplainAlongPath

l e t Explain ( a , b ) :=
c := NearestAncestor ( a , b ) ;
ExplainAlongPath ( a , c ) ;
ExplainAlongPath (b , c )

(b) Explain

Figure 1: Recursive Explain algorithm

in the proof forest and the parent of a node in the proof forest. A union-find data structure [23]
is also used: Union(a,b) merges the equivalence classes of a and b and Find(a) returns the
current representive of the class of a. The HighestNode(c) operation returns the highest node
(i.e., the node with minimal depth in the proof forest) belonging to the equivalence class of c.

Contrary to the original version, our algorithm is recursive. The Union operation has also
been moved. As a consequence output equations are ordered differently. This will ease our
futur proof production. Another difference is that the original algorithm always terminates but

does not detect certain ill-formed proof forests e.g., a
b=f(b)−−−−→
a=f(a)

b. In this case, the recursive

algorithm does not terminate (this issue is dealt with in section 4.1).

3.2 Proof forest verifier

The Explain algorithm of Figure 1 can be turned into a EUF proof verifier. The verifier is a
version of Explain augmented with additional checks to ensure that the edges obtained from the
SMT solver correspond to a well-formed proof forest. For instance, the verifier checks that edges

are only labelled by input equations. Moreover, for edges of the form a
b1(b2)=b−−−−−−→
a1(a2)=a

b, the recursive

calls to Explain ensure that a1 = b1 and a2 = b2 have proofs in the proof forest i.e., a1 (resp.
a2) is connected with b1 (resp. b2) by some valid path in the proof forest. For efficiency and
simplicity, the least common ancestors are not computed by the verifier but used as untrusted
hints. The soundness of the verifier does not depend on the validity of this information as the
proposed least common ancestor is just used to guide the proof. If the return node is not a
common ancestor, the verifier will simply fail.

For the verifier, a EUF proof is a pruned proof forest corresponding to the edges walked
through during a preliminary run of Explain. As the SMT solver needs to traverse the proof
forest to extract unsatisfiable core, we argue that the proof forest is a EUF proof that requires
no extra-work from the SMT solver.
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l e t UFchecker input edges (x , y ) :=
f o r ( a = b) ∈ input do Union ( a , b) done

f o r a
b1(b2)=b−−−−−−→
a1(a2)=a

b in edges do

i f ( a1 ( a2)=a ) ∈ input & ( b1 ( b2)=b) ∈ input
& isEqua l ( a1 , b1 ) & isEqua l ( a2 , b2 )

then Union ( a , b) e l s e f a i l
done
return i sEqua l (x , y )

Figure 2: Verifier algorithm for trimmed forests

3.3 A verifier using trimmed forests

To avoid traversing the same edge several times, the Explain algorithm and its verifier are
using a union-find data structure. Therefore, the Explain verifier implicitly embeds a decision
procedure for the theory of equality. Our optimised verifier fully exploits this observation and
starts by feeding all the input equalities of the form a = b into its union-find. For the decision
procedure, new equalities are obtained by applying the congruence rule and efficiency crucially
depends on a clever indexing of the equations. The verifier does not require this costly machinery
and takes as argument a trimmed down proof forest reduced to the list of edges of the forest

of form a
b1(b2)=b−−−−−−→
a1(a2)=a

b. The edge labels indicate the equations that need to be paired to derive

a = b by the congruence rule. The algorithm of the verifier is given in Figure 2 where the
predicate isEqual(a,b) checks whether a and b have the same representative in the union-find
i.e., Find(a) = Find(b). Once again, a preliminary run of Explain is sufficient to generate a
proof for this optimised verifier.

4 Implementation and experiments

4.1 EUF verifiers in Coq

Our verifiers are implemented using the native version of Coq [8] which features persistent
arrays [13]. Persistent arrays are purely functional data-structures that ensure constant time
accesses and updates of the array as soon as it is used in a monadic way. For maximum
efficiency, all the verifiers make a pervasive use of those arrays that allow for an efficient union-
find implementation: union and find have their logarithmic asymptotic complexity.

Compared to other languages, a constraint imposed by Coq is that all programs must be
terminating. The UFchecker (see Section 3.3) is trivially terminating. Termination of the
proof-forest verifier is more intricate because the Explain algorithm (see Figure 3.2) does not
terminate if the proof forest is ill-formed e.g., has cycles. However, if the proof forest is well-
formed, an edge is only traversed once. As a result, at each recursive call, our verifier decrements
an integer initialised to the size of the proof forest. In Coq, the verifier fails after exhausting
the maximum number of allowed recursive calls.

For the sake of comparison, we have also implemented the EUF proof format of Z3. Z3
refutations are also generated using Explain [14, Section 3.4.2]. Unlike our verifiers, Z3 proofs
use explicit boolean reasoning and modus ponens. As a consequence formulae do not have
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a constant size. As already noticed by others [9, 2], efficient verifiers require a careful han-
dling of sharing. Our terms and formulae are hash-consed ; sharing is therefore maximum and
comparison of terms or formulae is a constant-time operation.

4.2 Benchmarks

We have assessed the efficiency of our EUF verifiers on several families of handcrafted conjunc-
tive EUF benchmarks. The benchmarks are large and all the literals are necessary to prove
unsatisfiability. The formulae are not representative of conflict clauses obtained from SMT-
LIB [3] benchmarks which are usually very small [7] and would not stress the scalability of
the verifiers. For all our benchmarks the running time of the verifiers is negligible especially
compared to the time spent type-checking the EUF proofs and the proof size is linear in the
size of the formulae.
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Figure 3: Comparison of the verifiers

Figure 3 shows our experimental results for a family F of formulae of the general form

Fj =
{

x0 = x1 x0 6= x(j+1)·j
f(xi·j , xi·j) = xi·j+1 = ... = xi·j+j for i ∈ {0 . . . j}

The benchmarks are indexed by the number of EUF variables and the results are obtained
using a Linux laptop with a processor Intel Core 2 Duo T9600 (2.80GHz) and 4GB of Ram.
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Figure 3a shows the time needed to construct and compile Coq proof terms. Figure 3b shows
the size of the compiled proof terms. Figure 3c is focusing on the running time of the verifiers
excluding the time needed to construct and dump proof terms.

For all our benchmarks, the UFchecker shows a noticeable advantage over the other verifiers.
We can also remark that its behaviour is more predicable. The veriT verifier [2] is using proofs
almost as small as proof forests but the traces generated by veriT are sometimes two orders of
magnitude bigger. In the timings, the pre-processing needed to perform this impressive proof
reduction is accounted for and might explain why the veriT verifier gets slower as the benchmark
size grows. Remark also that for the biggest benchmarks, veriT fails to generate proofs.

Our Z3 verifier scales well despite being slightly but constantly outrun by the verifiers based
on proof-forests. The running time of the different verifiers is given Figure 3c using a logarithmic
scale. This emphases the fact that, except for the veriT verifier, the running time of the all
the verifiers is below the second and is therefore not the limiting factor of the verification. Not
surprisingly, the UFchecker requires smaller proofs and therefore its global checking time is also
smaller. For big benchmarks, its running time also tends to be smaller than the running time
of other verifiers.

5 Conclusion

Proof generating SMT solvers such as Z3 [15], CVC3 [4] or veriT [10] routinely generate EUF
proofs in various formats. Those formats have in common that proof-checking is essentially
linear in the size of the proof. In theory, our EUF proofs cannot be checked in linear time
and the verifiers need to embed a union-find algorithm. In practice, our experiments conclude
that our UFchecker verifier outperforms existing verifiers for EUF proofs and that succinct
EUF proofs are the key for scalability. Embedding union-find in EUF proofs was previously
proposed by Conchon et al., [12]. However, in their approach, union-find computations are
interleaved with logic inferences that are responsible for an overhead that is absent from our
verifiers. The importance of succinct proofs has been recognised by Stump [22] and its Logical
Framework with Side Conditions (LFSC). Unlike LFSC proofs, our proofs are less flexible but
purely computational and use the principle of proof by reflection [5, Chapter 16]. As future
work, we intend to integrate the UFchecker into the SMT proof verifier developed by several of
the current authors [6] and extend its scope to the logic of constructors.
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[13] S. Conchon and J-C. Filliâtre. Semi-persistent Data Structures. In ESOP, volume 4960 of LNCS,
pages 322–336. Springer, 2008.

[14] L. M. de Moura and N. Bjørner. Proofs and Refutations, and Z3. In Proc. of the LPAR 2008
Workshops, Knowledge Exchange: Automated Provers and Proof Assistants, volume 418. CEUR-
WS.org, 2008.

[15] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of TACAS 2008, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[16] B. Dutertre and L. de Moura. The Yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-
paper.pdf, 2006.
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