
The Power of Integrated Abstraction for Data-Centric
Human/Machine Computations

Atsuyuki Morishima
University of Tsukuba

mori@slis.tsukuba.ac.jp

Norihide Shinagawa
University of Tsukuba

siena@slis.tsukuba.ac.jp

Shoji Mochizuki
University of Tsukuba

mshoji@slis.tsukuba.ac.jp

ABSTRACT
Humans are recognized as important data sources in
data-centric applications today. This paper discusses
the potential of integrated abstraction of data-centric hu-
man/machine computations, where data provided by people
plays an important role. We show the potential by using a
language named CyLog, our first attempt to develop such
abstractions. In CyLog, the closed world assumption is in-
terpreted in a broader world in which people are included as
rational data sources, that behave rationally in given games.
We argue that such abstractions give us opportunities to ap-
propriately deal with computations not closed in machines.

1. INTRODUCTION
Recently, data-centric applications that exploit hu-

man/social computation have emerged, such as GWAPs [1]
(e.g., the ESP game), Q&A services (e.g., Yahoo Answers),
and many other services that require the power of people.
Even in some traditional applications, the power of people
is essential. For example, data integration and cleaning re-
quire not only the processing of large amounts of data by
computers but also help from people (e.g.,[10]). As the ex-
amples suggest, data from people is essential to attain some
of the difficult goals that computers alone cannot attain.
People serve as important data sources in such applications.

Existing programming languages, including those for
Web/DB domains, have been designed only to describe the
behavior of computers, and do not offer tools for modeling
people as components of computation. Human computation
is out of the scope of the languages; the logic of interaction
with people needs to be implemented from the scratch using
primitive functions (e.g., GUIs) or crowdsourcing APIs (e.g.,
Amazon Mechanical Turk or AMT). More important, it is
difficult to analyze or predict the expected behavior of the
entire system, which includes machine and human activities.

This paper discusses the potential of integrated abstrac-
tion of data-centric human/machine computations. A good
abstraction serves as a powerful tool both in theoretical re-
search and software development; it can be used to describe
and analyze problems without implementation details. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
the workshop Very Large Data Search (VLDS) 2011.
Copyright 2011.

description can be used to derive executable codes written in
state-of-the-art implementation languages and frameworks,
with guaranteed properties. Alternatively, it can be directly
executed by engines along with other codes (Sec. 3).

The significance of abstractions of data-centric hu-
man/machine computations is increasing for the following
reasons. First, as mentioned, it has been found that ag-
gregating the power of machines and humans is a promising
approach for achieving some of the computationally difficult
goals. Second, in many of data-centric systems today, com-
putation is not necessarily closed in machines. In fact, some
of the problems of data-centric systems in practice do not
come from bugs of codes but from human factors [7].

To make the discussion concrete, this paper introduces
CyLog [11], as an example of such abstractions, and uses
it in scenarios of data integration, acquisition, and search.
CyLog is a Datalog-like language that introduces open facts
and borrows concepts from the game theory to model people
as novel rational data sources, in order to provide a prin-
cipled abstraction for describing, analyzing, and executing
such programs. An essential difference from the existing lan-
guages, is that CyLog deals with human computation as a
first class component and allows us to design and analyze
the behavior of users, while others give no hints on whether
users will behave in the expected manner.

2. EXAMPLES AND THE POTENTIAL
A key idea of CyLog is that it does not limit the scope of

the closed world assumption to the stored database so that it
can naturally incorporate the processes of interactions with
people in the language design. CyLog allows some facts to
be open in the sense that, when the fact is not stored (cannot
be derived) in the database, it tries to extend the world by
asking people whether a fact holds in the real world.
Open Facts. Fig. 1 shows a fragment of a CyLog program.
The fragment, except for the last line, can be interpreted as a
Datalog program with the closed world assumption. (Note:
CyLog adopts the named perspective [2]. In the program,
“x:y” represents a renaming similar to “x as y” in SQL.)
That is, the ancestors are computed based on the minimum
Herbrand model. Therefore, Ancestor(pam, pat) holds but
Ancestor(pam, ann) does not, because the later is not de-
rived from the facts in the database.

In CyLog, open facts are allowed. For example, the last
line in Fig. 1 states that if two persons share one parent,
there may be some people who know whether the head fact
(an instance of Parent(P, C) to state that they share an-
other parent) holds. In addition, open facts can have “open”
attributes that do not appear in the rule body (e.g., the



Parent(pam, bob) Parent(bob, pat)
Parent(kate, pat) Parent(kate, ann)
Ancestor(A, D) <- Parent(P:A, C:D)
Ancestor(X:A, D) <- Parent(P:X, C:A), Ancestor(A, D)
Parent(P, C)/open <-Parent(P,C:Y), Parent(P:Z, C:Y), Parent(P:Z, C)

Figure 1: Fragment of a CyLog program
(a) Ideal:
StuMember(x) <- SIGMOD(x), Student(x)
StuMember(x) <- DBSJ(x), Student(x)

(b) Reality (only a fragment):
StuMember(x) <- SIGMOD(x), DBSJ(y), x!=y, Equiv(x,y), IsReallyStu(x)

Figure 2: Data integration example
Data:

MetadataInput(file, keyword)/open <- File(file)
Metadata(file, g(file):keyword)/game:g(file) <- File(file)

Game:
g(file)@time(10): duplicate, {MetadataInput}

Figure 3: ESP game
Data:

Restaurant(x) <- Restaurants([x|y])
Restaurants(y) <- Restaurants([x|y])
Better(a, b)/open <- Restaurant(a), Restaurant(b), a!=b
Sort(l, result)/game:crowdrank(l) <- Restaurants(l)

Game:
crowdrank(l)@deadline(2011/6/7): proportional, {Better}

Figure 4: Crowd ranking

keyword of the first rule in Fig. 3). The open fact is evalu-
ated by a particular person, or a group of people, which is
specified by an optional parameter of /open or by a built-in
predicate. When the key attributes are not open (i.e., bound
in the rule body), the semantics of CyLog accepts only the
input supplied by the person who came first. As shown in
Sec. 3, the system can wait for people to answer with Web
forms or crowdsourcing APIs, or can actively use messaging
services, in order to have people evaluate open facts.
Seamless Description of Human/Machine Compu-
tations. The power of “open” facts comes from the fact
that the data acquisition from people can be uniformly de-
scribed using the same set of language constructs. Let us see
a data integration scenario that is based on a real integra-
tion experienced by one of the authors. He needed to merge
the member-list databases of two academic societies (ACM
SIGMOD Japan Chapter and Database Society of Japan).
Ideally, the integration is straightforward, because it is the
set union of two member databases (Fig. 2 (a)). However,
in reality, the task was difficult, confusing, and error-prone,
because of the conflicts, inconsistency, and incompleteness
of data. We had to deal with many cases that were different
mixtures of db queries and human activities. The number of
lines in the procedure document (excluding comments) was
153, including 51 lines for manual procedures in a natural
language and 39 SQL queries. The manual procedures in-
clude sending emails to members to find out whether they
were still students and using our knowledge for the entity
resolution. In contrast, we can write the entire integration
process in CyLog. Fig. 2 (b) shows only a fragment of the
actual process, which is constructed by applying expansion
rules to the original query in Fig. 2 (a). In that fragment,
we need to perform a manual entity resolution using our
knowledge and send an email asking if he is still a student,
if Equiv(x,y) and IsReallyStu(x) are open facts.

The seamless description has a set of benefits. First, Cy-
Log allows us to execute the same program in flexible ways
with different mixtures of human/machine computations. In
the example scenario, if the definition of student members
allowed us to know, based on the stored data, whether a
member is still a student, the IsReallyStu could be com-
puted by machines with other rule definitions or user-defined
functions. They are equivalent (except for who evaluates the
part). The feature is interesting in various scenarios. For ex-

Player A/Player B Term A Term B

Term A (1,1), Term A (0,0), NULL
Term B (0,0), NULL (1,1), Term B

Figure 5: Payoff matrix for duplicate game

Order Date Player Rel Action

1 10:10am Kate MetadataInput tennis
2 10:11am Ann MetadataInput tennis
3 10:12am Pam MetadataInput ball

Figure 6: Path Table
Game A player is rewarded when she gives:

Majority the same value as the others.
First a value given faster than others.
Unique a unique value.
BestAnswer a value that received the highest evaluations.

Figure 7: Some predefined games
ample, some of the recent applications use tools like Twitter
as “human sensors;” [16] utilizes tweets to identify the center
of the earthquake. CyLog would help us to write programs
independent of what the data sources are. Another example
that often occurs in many areas is when a huge system (like
a reservation system) is down due to the failure of some of
its modules, human workers need to substitute for the sys-
tem until the system becomes operational. CyLog gives us
a chance to avoid such all-or-nothing situations. If we could
continue to partially execute the program on alive parts of
the system, while allowing people to join the execution of
the program, the obtained data would be compatible with
the program. And it would be easier to restore and merge
the data in order to go back to the normal status when the
machines became fully operational.

Second, open predicates allow us the separation of con-
cerns. We use the term data aspect to denote a quadruple
〈〈I,D,M〉,R〉 in which I is a set of data sources including
not only machinery data sources but also people, D is the
data stored in I, M is the mapping to represent how D is
stored in I, and R is a set of rules connecting data in D.
Open facts allow data aspects to be written in one module
and separated from the other code. This makes it easier to
understand and maintain the data aspect. In contrast, with
the current db languages, data aspects are written by scat-
tered queries combined with the code in other languages. As
shown in Sec. 3, a data aspect support system (DASS) is
designed to execute the data aspect written in CyLog and
programs in general-purpose languages in a combined way.

Finally, the integrated abstraction helps us check if some
of the apparently different programs are equivalent, while
it is difficult to confirm that different (and mixed) sets of
db queries and procedures written in natural/programming
languages are equivalent. Therefore, it provides us with a
chance of optimizing and transforming data aspects, not in-
dividual queries. For example, the data integration scenario
used a set of domain-specific expansion rules to safely con-
struct complex data integration procedures.
Reward System. How can we define the semantics of such
data aspects? The problem is that human factors are incor-
porated in the executions. Since people might lie and they
need motivation to participate in the computation, it is diffi-
cult to predict the execution results. One possible approach
is to consider each human as a rational data source. By “ra-
tional,” we mean that people are assumed to provide data in
a way consistent with the expected rewards. Therefore, Cy-
Log is required to have a reward system built-in at the lan-
guage design level. Games are abstract concepts that have
been well studied in the literature from both theoretical and
practical aspects, and the game theory is known to be useful



when discussing not just real “games” but any system that
involves incentive structures [3, 9]. In fact, the game theory
has been applied to particular classes of problems [15], such
as the design of networks, auctions, and GWAPs. CyLog
adopts terms and concepts from the game theory to design
and implement the appropriate behavior of rational data
sources. Then, the semantics of open facts are defined by
the equilibrium of the game [17]. This is achieved by payoff
matrices with outputs (Fig. 5), which we explain below.

We show two example programs. The first one is a simple
version of ESP game [1], in which people (players) provide
keywords for given image files. If they match, the players
are rewarded. Fig. 3 is a CyLog program for the ESP game,
where Data: defines rules, and Game: defines games. The
“/game:g(file)” specifies that the head is computed after
the game identified by g(file) is over. The g(file) is a
Skolem function to identify game instances. In the program,
a game instance is created for each file. In the Game: part,
g(file)@time(10) specifies that each game is invoked for a
given file and ends in ten seconds.

At the end of the execution of each game instance (iden-
tified by g(file)), a special table, called a path table, is
constructed. The table maintains the provenance (corre-
sponding to a path in the game theory) to show how the
game reached the last state. In other words, a path table
records how players have behaved in the game instance. The
table is constructed with the schema P(order, date, player,
rel, action) (Fig. 6). Each tuple in the table records when
and who gave values for the open attributes of the relations
specified in { ... } (i.e., MetadataInput in Fig. 3).

The payoffs to players and the output values to be con-
sumed by other rules are computed by game aggregations of
each path table. For example, Fig. 5 shows a part of the
payoff marix of duplicate game aggregation (Fig. 3) where
each cell shows not only the payoffs, but the output value
(only two players and two terms are shown in the figure).
Given the path table in Fig. 6, payoffs (1 for Kate and Ann,
and 0 for Pam) are given to players and the output value is
tennis given by Kate and Ann. Then, the value is consumed
by the second rule in Fig 3, in which the Skolem function is
also used to denote the value. Assuming that people behave
rationally, it is expected that the value is computed by the
state of equilibrium with the aggregations. We call such a
game with output values a data game. Applying game ag-
gregations to path tables give us a simple and flexible way
to implement both extensive- and normal-form games [17].

The second example is a crowd ranking service (Fig. 4)
where a set of restaurants in a city is sorted by subjective
preferences of the crowd. The user can execute the pro-
gram to find must-go restaurants before visiting the city.
The Better(a, b)/open asks each person if she prefers a

to b. It can be evaluated, for example, through the AMT.
The Sort(l, result) simply sorts the list l by the num-
ber of votes given by the game (the code omitted). Here,
proportional is a payoff function that pays points accord-
ing to the proportion of the votes for restaurants. Therefore,
there is an incentive for the crowd to vote for the restaurants
the others prefer too.

As a final note, even in the integration scenario, data
games can be incorporated in the program to improve the
quality of the results if more than one person is involved.
Diving into Cybernetic Dataspaces. The integrated
abstraction allows us to discuss dataspaces involving ma-

Open FactLogic Game

Execution ControllerCyLog
Program

Default
Functions/Open Fact

API
Logic

Processor
Game

Manager

Payoff Notification
(optional)Data

Other
Programs

Data

Program Execution in the Cybernetic Dataspace

Figure 8: Chimera prototype system architecture

chines and humans. First, we can discuss the semantics of
such dataspaces. As mentioned, let a data aspect d writ-
ten in CyLog be 〈〈I,D,M〉,R〉. Let T ∗

R,S(〈I,D,M〉) be an
operator to compute the (possibly infinite in CyLog) set of
consequences [2] for the data aspect with strategies S, where
strategies describe how the people behave in the given games
[17]. Since people in I are involved in the evaluation, there
are many strategies and corresponding sets of consequences
of a data aspect. When S is a set of best strategies, we call
T ∗
R,S(〈I,D,M〉) be a set of rational consequences of d. We

can define the semantics of d, denoted by sem(d), as the
collection of all the sets of rational consequences of d.

Second, such an abstraction gives us a chance to discuss
some properties that we would not discuss when dealing with
traditional programs. Although the following theorem seems
trivial for CyLog programs, it is clear that such abstractions
would promote theoretical developments. A theorem on the
efficiency of programs is also discussed in [12].

Theorem 1. Given a data aspect 〈〈I,D,M〉,R〉 written
in CyLog, there is an algorithm to statically check whether
an open fact is not involved in any game definition in R. �

The theorem is important for the following reason: if an
open fact is never involved in any game, it is guaranteed that
there is no feedback given to users. Therefore, the program
may not be able to continue its execution as intended, or the
data given by people may not be appropriate. This is exactly
what happened in the Japanese pension system problem [7].

If open facts are involved in games, tools from the game
theory can be used to predict behavior. For example, the
payoff matrix in Fig. 5 is a typical coordination game [17], in
which rational players choose the same strategy. Likewise, a
simple analysis let us know that the crowd ranking program
helps us find popular restaurants, and we can change the
game structure to find little known hot spots.
Other Issues. Due to space limitations, we describe other
issues briefly. First, CyLog provides programmers with
means to implement data games with various settings, e.g.,
who (among the players) and when the program should ask
whether each open fact holds. Second, some game aggre-
gations are predefined in our library (Fig. 7) but users can
provide user-defined game aggregations in the data part.
Finally, to explain to people their semantics, predicates can
have text descriptions, which can be accessed through APIs
provided by the system (as explained next).

3. DATA ASPECT SUPPORT SYSTEMS
DASS should support the execution of the data aspect

descriptions (e.g., CyLog programs) by machines and peo-
ple, communicating with programs in general-purpose lan-
guages. We discuss one possible set of components and ar-
chitecture for DASSs by showing those of Chimera, a proto-
type we developed for CyLog programs (Fig. 8). Chimera
adopts a semi-naive evaluation strategy in which the rules
are evaluated in a bottom up way [2]. To communicate
with other programs, Chimera takes a simple API-based ap-
proach; the programs call the open fact API to receive the



data necessary to have people evaluate open facts, and to
invoke an event to indicate that a new fact holds.

DASS should support the execution of data aspects alone,
too, for rapid prototyping. Chimera provides functions to
generate Web sites with HTML forms where active evalua-
tion can be realized by messaging services such as emails or
Twitter, and plans to provide functions to call the AMT.

4. CHALLENGES AND RELATED WORK
This section identifies some of the new challenges and the

related work.
Establishing Theories of Cybernetic Dataspaces.
This is definitely one of the most exciting challenges, which
can lead to significant contributions. An important is-
sue is how to design dataspaces involving human activities,
with guaranteed properties. We showed only a first step,
and there are many interesting questions. For example,
given a program and different mixtures of human/machinery
computers (〈〈I,D,M〉,R〉 and 〈〈I′,D,M′〉,R〉), how dif-
ferent the efficient optimizations are? Given two differ-
ent programs involving human activities to achieve the
same goal (two data aspects d1 : 〈〈I,D,M〉,R〉 and d2 :
〈〈I,D,M〉,R′〉 s.t. sem(d1) = sem(d2)), which one reaches
the goal faster? How much payoffs are needed to reach the
goal of a program in general? Are there design criteria or
normal forms for cybernetic dataspaces? We believe that
data-centric abstraction is promising to establish theories.

Of course, games are not a magic wand; in some appli-
cations, it may be difficult to provide real benefits (e.g.,
points, money, and evaluation scores) to be modeled by pay-
off values. Humans are not necessarily rational. However,
we believe that modeling humans as rational data sources
to apply the game theory is a good starting point. An in-
teresting open question is whether we can apply the results
from other fields such as cognitive and behavioral sciences.
Assignment of Computations to Appropriate Ma-
chines and Humans. Humans are not homogeneous in
their abilities. In CyLog, it is programmers that give decide
who provides the required data (by specifying 〈I,D,M〉),
but finding appropriate humans to evaluate open facts is an
important open problem.
Data Aspect Issues. Since open facts allow us to describe
not only individual queries but also data-oriented human
activities as a data aspect, we now have an abstraction for
wider data-centric issues. Although an event-based interface
is fine to connect the data aspect with other programs, it is
still an open problem to identify the best interface.
Language Design. CyLog adopts Datalog as a basis for
the following reasons. First, as recent studies suggest [8],
languages based on Datalog allow us to concisely describe
data-centric applications. Second, the rule syntax has good
compatibility with user inputs (e.g., [4]). Finally, logic-
based programming has an affinity toward event-driven ex-
ecutions, which data games often require. Although open
predicates and data games are key components of CyLog
since the beginning [11], other important constructs and the
good overall design of the language are still open problems.
Related Work. Qurk [13], hQuery [14] and CrowdDB [6]
are independently conducted research projects but closely
related to ours. Their focus is to achieve database functions
on the crowd, and one of the interesting points is to attain
data independence in the presence of human data sources,
on the assumption that a crowd of people are supplied by
crowdsourcing services. Currently, they take the crowd-as-

a-data-source approach, in the sense that their focus is on
how to provide programmers with the view of a reliable data
source over the underlying set of people as a whole.

We believe that CyLog is unique in that we take the
human-as-a-data-source approach, in which each human
(player) is modeled as a visible data source, and we try to
design data-centric abstractions to deal with the “new” type
of data source for building cybernetic dataspaces in flexible
ways. We introduce the concept of rational data sources
and give new components, such as data games, to interact
with rational data sources. We believe that data-centric hu-
man/machine computations are important in many scenar-
ios [5] beyond the AMT-style crowdsourcing setting which
provides only limited forms of game situations. Dealing with
dataspaces with other styles of human involvements are not
out of the scope of CyLog. It is interesting, however, that
those projects including CyLog employ many overlapped
concepts. For example, hQuery is discussed with a Datalog
style notation. CNULL [6] and our open attribute values
are similar to each other. The “majority votes” principle,
discussed in most of the crowd-as-a-data-source researches,
is related to coordination games in CyLog. Some of the
challenges discussed here are also addressed in the projects.

Acknowledgement. The authors are grateful to Prof.
Sugimoto, Prof. Sakaguchi, Prof. Nagamori, and Prof. Wu-
wongse for the discussion in seminars, and Prof. Tajima
and Prof. Kitagawa for giving us valuable comments on
earlier versions of the paper. This research is supported by
PRESTO from the Japan Science and Technology Agency.

5. REFERENCES
[1] L. von Ahn, L. Dabbish: Designing games with a purpose.

CACM 51(8): 58-67 (2008)
[2] S. Abiteboul, R. Hull, V. Vianu. Foundations of Databases,

Addition-Wesley, 1995.
[3] G. Anthes: Mechanism design meets computer science. CACM

53(8): 11-13 (2010)
[4] X. Chai, B. Vuong, A. Doan, J. F. Naughton: Efficiently

incorporating user feedback into information extraction and
integration programs. SIGMOD Conference 2009: 87-100

[5] A. Doan, R. Ramakrishnan, A. Y. Halevy: Crowdsourcing
systems on the World-Wide Web. CACM 54(4): 86-96 (2011)

[6] M J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, R. Xin:
CrowdDB: answering queries with crowdsourcing. SIGMOD
2011: 61-72

[7] Ministry of Internal Affairs and Communications, Japan. The
report on the pention system problem. http://www.soumu.go
.jp/menu news/s-news/2007/071031 3.html.

[8] J. M. Hellerstein. The declarative imperative: experiences and
conjectures in distributed logic SIGMOD Record , 39(1), 2010.

[9] S. Jain, D. C. Parkes: The role of game theory in human
computation systems. KDD Workshop on Human Computation
2009: 58-61

[10] M. Keulen, A. Keijzer: Qualitative effects of knowledge rules
and user feedback in probabilistic data integration. VLDB J.
18(5): 1191-1217 (2009)

[11] A. Morishima: A Database Abstraction for Data-intensive
Social Applications. The 5th Korea-Japan Database Workshop
2010 (KJDB2010), May 28-29, 2010. (slides available)

[12] A. Morishima, N. Shinagawa: The Power of Integrated
Abstraction for Data-Centric Human/Machine Computations.
Technical Report, 2011.

[13] A. Marcus, E. Wu, S. Madden, R. C. Miller: Crowdsourced
Databases: Query Processing with People. CIDR 2011:
211-214

[14] A. G. Parameswaran, N. Polyzotis: Answering Queries using
Humans, Algorithms and Databases. CIDR 2011: 160-166

[15] Y. Shoham: Computer science and game theory. Commun.
ACM 51(8): 74-79 (2008)

[16] T. Sakaki, M. Okazaki, and Y Matsuo: Earthquake Shakes
Twitter Users: Real-time Event Detection by Social Sensors,
WWW2010.

[17] F. Vega-Redondo. Economics and Theory of Games,
Cambridge University Press, 2003.


