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ABSTRACT
We propose a formal framework for an unsupervised approach tack-
ing at the same time two problems: the data extraction problem, for
generating the extraction rules needed to gain data from web pages,
and the data integration problem, to integrate the data coming from
several sources. We motivate the approach by discussing its advan-
tages with regard to the traditional “waterfall approach”, in which
data are wholly extracted before the integration starts without any
mutual dependency between the two tasks.

In this paper, we focus on data that are exposed by structured and
redundant web sources. We introduce novel polynomial algorithms
to solve the stated problems and present theoretical results on the
properties of the solution generated by our approach. Finally, a
preliminary experimental evaluation show the applicability of our
model with real-world websites.

1. INTRODUCTION
The development of scalable techniques to extract and integrate

data from fairly structured large corpora available on the web is a
challenging issue, because the web scale imposes the use of un-
supervised and domain independent techniques. To cope with the
complexity and the heterogeneity of web data, state-of-the-art ap-
proaches focus on information organized according to specific pat-
terns that frequently occur on the web. Meaningful examples are
presented in [6], which focuses on data published in HTML tables,
and information extraction systems, such as TextRunner [1], which
exploits lexical-syntactic patterns. As noticed in [6], even if a small
fraction of the web is organized according to these patterns, due to
the web scale the amount of data involved is impressive: in their
case, more than 154 millions tables were extracted from 1.1% of
the considered pages.

In large data-intensive websites, we observe two important char-
acteristics that suggest new opportunities for the automatic extrac-
tion and integration of web data:

• local regularities: in these sites, large amounts of data are
usually offered by thousands of pages, each encoding one
tuple in a local HTML template. For example, each page

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at the workshop Very
Large Data Search (VLDS) 2011.
Copyright 2011.

shown in Figure 1 comes from a different source and pub-
lishes information about a single company stock.

• global information redundancy: at the web scale many sources
provide similar information. The redundancy occurs both a
the schema level (the same attributes are published by more
than one source) and at the instance level (some objects are
published by more than one source). In our example, many
attributes are present in all the sources (e.g., the company
name, last trade price, volume); while others are published
by a subset of the sources (e.g., the “Beta” indicator). At the
extensional level, there is a set of stock quotes that are pub-
lished by more sources. As web information is inherently
imprecise, redundancy also implies inconsistencies; that is,
sources can provide conflicting information for the same ob-
ject (e.g., a different value for the volume of a given stock).

These observations lead us to focus on pages that are published
following the one-tuple-per-page pattern: in each structured page
you can find information about a single tuple. If we abstract this
representation, we may say that a collection of structurally similar
pages provided by the same site corresponds to a relation. Accord-
ing to this abstraction, the websites for pages in Figure 1 expose
their own version of the “StockQuote” relation.1

Starting from the crawled web pages (for instance by using the
specialized crawler introduced in [3]), our goal is: (i) transform the
web pages coming from each source into a relation, and (ii) inte-
grate these relations creating a database containing the information
provided by all the sources. A state-of-the-art solution to this prob-
lem is a two-steps waterfall approach, where a schema matching
algorithm is applied over the relations returned by automatically
generated wrappers. However, when a large number of sources is
involved and a high level of automation is required, important is-
sues may arise:

• Wrapper Inference Issues: since wrappers are automatically
generated by an unsupervised process, they can produce im-
precise extraction rules (e.g., rules that extract irrelevant in-
formation mixed with data of the domain). To obtain correct
rules, the wrappers should be evaluated and refined manually.

• Integration Issues: the relations extracted by automatically
generated wrappers are “opaque”, i.e., their attributes are
not associated with any (reliable) semantic label. Therefore
the matching algorithm must rely on an instance-based ap-
proach, which considers attribute values to match schemas.

1For the sake of simplicity, we consider only the one-tuple-per-
page pattern. Other variations of this pattern can be easily devel-
oped for example by preprocessing the pages with tools that frag-
ment the HTML tables into rows [7].



Figure 1: Two web pages containing data about stock quotes
from Reuters and Google finance websites.

However, due to errors introduced by the publishing process,
instance-based matching is challenging because the sources
may provide conflicting values. Also, imprecise extraction
rules return wrong, and thus inconsistent, data.

In [2] we presented a best-effort solution to solve these issues
by taking advantage of the mutual coupling between the wrapper
inference and the data integration tasks. In the present paper, we
investigate the foundations of the problem and propose a princi-
pled solution based on the following contributions: (i) we propose
a formal setting to state the data extraction and the data integra-
tion problems for redundant and structured web sources; (ii) we
formulate a set of hypothesis that capture a few natural constraints
that characterize this kind of web sources; (iii) we propose novel
unsupervised polynomial algorithms to solve the stated problems
whenever these hypotheses hold; (iv) we present an experimental
evaluation of our model with real-world websites.

In the next section we describe a generative model of the web
pages to introduce our formal setting of structured and redundant
sources. Section 3 contains the algorithms to solve the integra-
tion and extraction problems in the case of perfectly overlapping
sources. In Section 4 we show how removing this hypothesis af-
fects our solution, while in Section 5 we discuss preliminary ex-
periments with a set of sources gathered from the Web. Section 6
discusses related works and concludes the paper.

2. THE GENERATIVE MODEL
We are interested in extracting and integrating all the available in-
formation about a target entity, such as the STOCKQUOTE entity
of our running example. As on the Web several sources publish
information about the same entity, we can imagine that there exists
a hidden relation T , which contains all the true information about
the objects that belong to the entity, and that sources generate their
pages by taking data from T .

We call conceptual instances the set of tuples I of the relation T .
Each tuple I ∈ T represents a real-world object of the target entity
of interest. For example, in the case of the STOCKQUOTE entity,
the conceptual instances of T model the data about the Apple stock
quote, the Yahoo! stock quote, and so on. T has a set of attributes
A called conceptual attributes. In our example they represent the
attributes associated with a stock quote, such as the company name,
the current trade price, the volume, and so on.

Given a set of sources S = {S1, . . . , Sm}, each source Si, i =
1 . . .m can be seen as the result of a generative process applied

over the hidden relation T .
The attributes published by a source are called called physical

attributes, as opposed to the conceptual attributes of T , and we
write S(a) to denote that a source S publishes a physical attribute
a, and a ∈ A to state that a physical attribute a contains data from
a conceptual attribute A.

A source publishes information about a subset of the conceptual
instances, and different sources may publish different subsets of its
conceptual attributes.

To model the presence of conflicting data that usually occur among
redundant sources, we assume that sources are noisy: they may in-
troduce errors, imprecise or null values, over the data picked from
the hidden relation. As depicted in Figure 2, for each source Si we
can abstract the page generation process as the application of the
following operators over the hidden relation:

• Selection σi: returns a relation containing a subset of the
conceptual instances, σ(I) ⊆ I.

• Projection πi: returns a relation containing a subset of the
conceptual attributes, π(A) ⊆ A.

• Error ei: is a function that returns a relation, such that each
correct value is kept or replaced with a null value, a synthetic
value, or a value similar to the correct one.

• Encode λi: is an encoding function that produces a web page
for each tuple by embedding its values into a HTML tem-
plate.

The set of pages published by a source Si can be thought as a
view over the hidden relation, obtained by applying the above oper-
ators as follows: Si = λi(ei(πi(σi(T )))). From this perspective,
the extraction and the integration problems can be thought in terms
of these operators. The extraction becomes the inversion of the λ
operator. That is, obtaining for each source Si the associated rela-
tion Vi = ei(πi(σi(T ))). The integration becomes the problem of
reconstructing T from the views associated with the sources.

Notice that both problems are far from being trivial as the state-
of-the-art automatic wrapper inference systems are not able to cre-
ate perfect wrappers, and the integration task is further complicated
by the presence of errors and the absence of reliable semantic la-
bels.

In the following we discuss under which assumptions on the in-
tensional and extensional redundancy exhibited by the sources, our
approach is able to deal with a bounded amount of error.

2.1 Intensional Redundancy
We now discuss two properties of the generative model. The first
property expresses that the data published by each source are lo-
cally consistent. That is, within the physical attributes published by
the same source, there cannot be distinct attributes with the same
semantics. For example, if a website states that the current value
of the stock quote “YHOO” is 17.01 there cannot be another place
in the same site where you can find a different value with the same
semantics. Therefore, we can write:

PROPERTY 1. Local consistency:
∀ai, aj ∈ A : S(ai) = S(aj)⇒ ai = aj
(in a conceptual attribute A there cannot exist two physical at-
tributes coming from the same source).

The second property formalizes the presence of redundancy at
the intensional level. Namely, we assume that every possible pair
of conceptual attributes is published at least by one source. Let



Figure 2: The publishing process: the web sources are views over the hidden relation generated by four operators.

S(Ai) denotes a predicate that returns true if the source S publishes
the conceptual attribute Ai. Therefore, a set of sources S is called
intensionally redundant if the following property holds:

PROPERTY 2. Intensional redundancy:
∀Ai, Aj : i 6= j ∃ S : S(Ai) ∧ S(Aj)

(every possible pair of conceptual attributes is published at least
by one source)

Notice that given any set of websites, this property may hold
only for appropriately chosen subsets. However, the web scale rep-
resents an opportunity to gain enough redundancy: (i) in each do-
main, usually there is a subset of attributes that is published by
most of the sources;2 (ii) as the number of considered websites
increases, the probability of meeting a new conceptual attribute de-
creases, and the probability of intensionally redundancy increases.

In the following we call core-attributes the attributes for which
the intensional redundancy holds, and we call rare-attributes all the
others.

2.2 Extensional Redundancy
At the extensional level, we assume that sources publish a com-

mon set of instances. For the sake of presentation, in the next sec-
tion we rely on the hypothesis that all the source publish the same
set of instances I. Later, in Section 4 we discuss how to remove
this hypothesis.

3. EXTRACTION AND INTEGRATION AL-
GORITHMS

Our solutions to the extraction and integration problems are dis-
cussed in this section: we propose the problem statements, the defi-
nition of solutions and the algorithms that solve them in polynomial
time.

3.1 Integration Problem
We first discuss the integration problem by ignoring the extraction
issues, then we discuss the main properties of the extraction rules,
and, finally, how the integration and the extraction problems can
be tackled together. Therefore, for the time being we assume we
have a wrapper generator that is capable of perfectly inverting the
encode operator λ. In other words, we do not work on web pages,
but directly on the views of T published by the sources.
2In [11] the authors write “there is a core set of attributes that ap-
pear in a large number of items”.

Given a set of sources S, each Si publishes a view of the hid-
den relation T such that Vi = ei(πi(σi(T ))). The integration
problem can be thought as the creation of sets of physical attributes
m1, . . . ,mn, called mappings, such that each attribute a belongs to
a mapping m and each mapping contains all and only the attributes
with the same semantics. The problem can be defined as follows:

PROBLEM 1. Integration Problem : given a set of source views
V = V1, . . . , Vn, where Vi = ei(πi(σi(T ))), find a set of map-
pingsM such thatM = {m : a1, a2 ∈ m⇔ a1, a2 ∈ A}.

Intuitively, we solve the problem by evaluating the physical at-
tributes of each source and by building aggregations of attributes
with the same semantics from the sources. If at the end of the pro-
cess each mapping contains all and only the physical attributes with
the same semantics, we have a solution for the problem. For exam-
ple, given a1, a3 ∈ V1 and a2 ∈ V2 with a1, a2 having the same
semantics, a solution is m1 = {a1, a2} and m2 = {a3}.

If the sources publish correct data only, then a naive greedy al-
gorithm easily solves the problem above. However, real sources
introduce noise in the values (modeled by the error function e) that
can make the integration difficult or even not possible.

To identify physical attributes with the same semantics, we rely
on a distance function d(ai, aj) among the values of a set of in-
stances corresponding to the same real-world object.3 This func-
tion compares aligned values and returns a score between 0 and 1.
The more similar are the values, the lower is the distance. As the
distance function works by comparing values of aligned instances,
it can be easily extended to work also on conceptual attributes. We
denote d(a,A) the distance between the values of the physical at-
tribute a and the values of the conceptual attribute A.

In the following, we study a class of error functions for which
our algorithm can compute a solution by bounding the amount of
errors that sources are allowed to introduce.

For every conceptual attributeA, let tA denote a minimal thresh-
old such that any physical attribute ai belongs to A if for each
aj ∈ A, d(ai, aj) < tA. For example, in the finance domain,
a low threshold should be associated with the conceptual attribute
Max value of a stock quote. This is required as there are other
conceptual attributes, like the current Price and the Min value, that
have similar values. On the other hand, the mapping for the trading
Volume conceptual attribute can have an higher threshold since it
3We assume that instances can be aligned by applying a standard
record-linkage technique [9].



does not usually assume values close to those of other attributes.
Note that tA is an ideal unknown threshold: it is not given as input
of the integration problem and it is not necessary to know it a priori
to compute the solution.

In order to solve the integration problem, it is required that the
publishing errors cannot introduce enough noise to confuse the se-
mantics of a physical attribute. We call this property as separable
semantics:

PROPERTY 3. Separable semantics:
∀A1, A2, ai ∈ A1, aj ∈ A2 : ai 6= aj ∧ A1 6= A2 ⇒

d(ai, aj) > max(tA1 , tA2)
(it is possible to distinguish the semantics of physical attributes).

In order to solve the integration problem with noisy sources, we
define the greedy clustering Algorithm 1.

Algorithm 1 ABSTRACTINTEGRATION

Input: A set of locally consistent, intensionally redundant sources
with separable physical attributes.
Output: The correct set of mappingM.

Let G = (N,E) be a graph where every attribute ai for every
source Si ∈ S is a node n ∈ N . For every pair of distinct nodes
ai, aj ∈ N such that S(ai) 6= S(aj) add an edge e between them
to E and let d(ai, aj) be the weight of e.
Let m(ai) be the mapping containing the attribute ai.

1. Add toM a mapping m = {ai} for each node ni ∈ N ,

2. insert in a list L the edges E,

3. sort L by the weight of the edges in ascending order,

4. for each edge (a1, a2) ∈ L:

(a) letm be the union of the attributes inm(a1) andm(a2)

(b) if in m there is no pair of ai, aj such that S(ai) =
S(aj)

(c) then add m and remove m(a1), m(a2) fromM
(d) else break.

We are now ready to prove the correctness of the integration al-
gorithm.

LEMMA 3.1. ABSTRACTINTEGRATION is correct.

PROOF. Moved to Appendix A.

ABSTRACTINTEGRATION is O(n2) over the total number of
physical attributes, in fact most of the time is required to create
the edges of the graph G.

In the following we introduce the extraction problem, that is,
how to get the physical attributes we considered as input of the
integration problem.

3.2 Extraction Rules
In our framework, a data source S is a collection of pages S =
p1, . . . , pn from the same website, such that each page publishes
information about one object of a real-world entity of interest.

We distinguish between two different types of values that can
appear in a page: target values, that is, values that are derived from
the hidden relation T , and noise values, that is, values that are not
of interest for our purpose (e.g., advertising, template, layout, etc).

We consider as given an unsupervised wrapper generator sys-
tem W . A wrapper w is an ordered set of extraction rules, w =
{er1, . . . , erk}, that apply over a web page: each rule extracts a
string from the HTML of the page. We denote er(p) the string re-
turned by the application of the rule er over the page p. The appli-
cation of a wrapper w over a page p, denoted w(p), returns a tuple
t = 〈er1(p), . . . , erk(p)〉; therefore, the application of a wrapper
over the set of pages of a source S returns a relation w(S), which
has as many attributes as the number of extraction rules of the wrap-
per. A column of the relation is a vector of values denoted V (eri):
it is the result of the application of an extraction rule eri over the
pages of a source.

We say that an extraction rule er∗ is correct if for every given
page it extracts a value of the same conceptual attribute (i.e., target
values with the same semantics) or a null value if the value for the
attribute is missing in that page. If a correct extraction rule only
extracts noise values, it is considered noisy. We also say that an
extraction rule erw is weak if it mixes either target values with
different semantics or target values with noise values.

Unsupervised wrapper generators are powerful enough to infer
the correct extraction rules needed to cover the data exposed by
what we call regularly structured websites.

PROPERTY 4. Regularly structured sources: The sources S =
{Si} are regularly structured w.r.t. a given unsupervised wrapper
generator systemW , ifW generates for each source Si ∈ S a set
of rules wi containing all the correct rules.

However, wrapper generators cannot automatically identify, among
the generated rules, which are the correct ones. They also produce
weak rules, since, at wrapper generation time there is not enough
information to automatically establish if a rule is either correct or
weak. The integration algorithm has been presented considering
only the correct rules (i.e., physical attributes). However, noisy
rules, if considered along with the correct ones, are harmless as
they can be identified and deleted during the integration step. They
will eventually generate singleton mappings of size one since the
distance between a noisy rule and a correct rule prevent them from
grouping. Similar arguments apply for distances amongst noisy
rules.

Weak rules require a more detailed discussion, and unfortunately
they cannot be identified and disregarded at wrapper generation
step. In the following we show that, if we keep the same assump-
tions introduced for the integration problem, we can always identify
weak rules during the integration step.

3.3 Extraction Problem
The extraction problem is defined as follows:

PROBLEM 2. Extraction Problem: given a set of sources S =
{Si}, produce a set of wrappers W ∗ = {wi}, such that wi con-
tains all and only the correct rules for Si.

We now describe how we leverage the redundant information
among different sources to identify and filter out the weak rules.
Let eri and erj be two extraction rules. We say that two extraction
rules “overlap” if they extract from a page the same occurrence of
the same string. In this case, one of them must be a weak rule. In
other terms, if many rules are extracting the same value occurrence
from at least a page, only one of them is a correct rule and all the
others are weak ones. With an abuse of notation, we will say that
er ∈ A to state when an extraction rule extracts at least a correct
value of the conceptual attribute A. Notice that, as a weak rule
erw can extract values from n conceptual attributes, we can say
erw ∈ A1, . . . , An.



Figure 3: The Extraction algorithm in action.

These intuitions are applied in the following greedy algorithm
which solves the extraction problem:

Algorithm 2 ABSTRACTEXTRACTION

Input: A set of locally consistent, intensionally redundant sources
with separable physical attributes; the set of wrappersW produced
by a wrapper generator systemW w.r.t. which the sources are reg-
ularly structured.
Output: A set of wrappers W ∗ that do not contain weak rules.

1. while there is a er ∈W which is not marked as correct:

(a) let d(V (eri), V (erj)) be the minimal distance between
the values of two extraction rules in W and at least one
of them is not marked as correct

(b) mark eri and erj as correct, (they are correct rules)

(c) remove from W all the rules that overlaps with eri
(they are weak rules)

(d) remove from W all the rules that overlaps with erj
(they are weak rules)

2. now W is W ∗.

The algorithm ABSTRACTEXTRACTION takes as input a set of
wrappersW and computesW ∗ which does not contain weak rules.
To explain the algorithm, we rely on the example in Figure 3. Con-
sider two websites and two objects (say, two stock quotes) that are
published by both sites. In the figure, a circle represents the values
extracted by an extraction rule and its number represents the web-
site is has been executed on. For example, in the diagram on the
left, the dark circle marked with 1 extracts from the first website the
values 10 for the first object and 11 for the second object. Notice
that the input of the algorithm are the circles annotated with the ex-
tracted values and the website of provenience. Let say now that in
step (a) the algorithm identifies the dark circles as the closest ones,
and mark them as correct in step (b). At this point both the circles
with horizontal stripes overlap with correct rules and can therefore
be removed in steps (c) and (d). In the diagram on the right we
show the resulting scenario: the dark circles are now the closest
rules and are marked as correct. The remaining dashed circles do
not match at all (i.e., they are noisy rules) and raise the creation
of two singleton mappings. To prove that the above algorithm is
correct we introduce the following lemma:

LEMMA 3.2. ABSTRACTEXTRACTION is correct.

PROOF. Moved to Appendix A.

ABSTRACTEXTRACTION is O(n2) over the total number of ex-
traction rules generated by the automatic wrapper generation sys-
tem. Like in the case of ABSTRACTINTEGRATION, most of the
time is spent computing distances between the extracted values.

4. NON-OVERLAPPING SOURCES
So far we have simplified the discussion by hypothesizing that

every source publishes data about every object in I. In this section
we remove this simplification and use IAi to denote the subset of I
for which Si provides values of the conceptual attribute A.

The distances amongst physically attributes from several sources
have been computed using an instance-based metric that relies on
the availability of a set of shared instances between the involved
sources. Therefore, if we want to compute the direct distance be-
tween two attributes d(ai, aj), with S(ai) = Si and S(aj) = Sj ,
we need a non-empty overlap of objects between Si and Sj (Si 6=
Sj), otherwise we consider d(ai, aj) =∞.

To formalize this aspect, and given a positive integer parameter
q, let OVq,A(Si, Sj) be a predicate true iff |IAi ∩ IAj | ≥ q, i.e.
both Si and Sj publish a value of the attribute A for a shared set of
at least q instances.

Intuitively, OVq,A(Si, Sj) is true if we consider Si and Sj to
share enough instances (at least q) to be directly comparable onA’s
values. The value of q has to be chosen according to a trade-off:
the higher the value, the more reliably the instance-based distance
would perform, as it can be computed over a larger set of shared
instances; however, it is possible that a lower number of sources
will be directly comparable.

We are now ready to tackle the main issue: how to the compute
the distance when the direct distance is not defined? i.e., the overlap
is not sufficient or not available at all and OVq,A(Si, Sj) does not
hold.

We introduce the indirect distance d by leveraging the inter-
mediate sources sharing instances with two sources not directly
having enough overlap. Given a third source Sw, such that both
OVq,A(Si, Sw) and OVq,A(Sw, Sj) hold, as for the shortest path
among two points is a straight line, we can easily write: d(ai, aj) ≤
d(ai, aw) + d(aw, aj). In this case, we have an upper bound for
d(ai, aj) that we call indirect distance, based on the availability of
two direct distances between (Si, Sw) and between (Sw, Sj).

In the previous example we used just one intermediate source
(Sw); the same principle can be trivially extended to a generic
number of intermediate sources. However, the more intermedi-
ate sources are involved, the less precise is the bound imposed by
d(ai, aj). In the case that we have multiple possible indirect dis-
tances, the bound chosen is the smallest one.

We call OV ∗q,A the transitive closure of OVq,A: OVq,A(Si, Sj)
is true iff it is possible to compute a distance (direct or indirect)
between Si, Sj for the attribute A. If two attributes ai and aj
are not comparable over the same conceptual attribute A, that is,
OV ∗q,A(Si, Sj) is false, we set d(ai, aj) =∞.

Let S(A) denote the set of websites in S publishing values of
the conceptual attribute A ∈ A : a set of websites S are called
extensionally redundant if the following property holds:

PROPERTY 5. Extensional redundancy:
∀A ∈ A OV ∗q,A = S(A)× S(A)
( the overlap of websites’ objects allows the computation of indirect
distances )

Essentially, it is required that the indirect-distance d can be com-
puted between any pair of physical attributes.

Observe that analogously to rare-attributes, a concept of rare-
instances could be introduced. Anyway, the crawler [3] used during
the experiments gathers up extensionally redundant websites.

All the results previously obtained continue to hold with the
new definition of distance, and can be applied even in presence of
sources that do not contain all the objects I of the hidden relation
T provided that the input sources are extensional redundant. How-



ever, in order to obtain a solution with indirect distances, we in-
crease the complexity of the algorithms from quadratic to cubic, as
we reduce the computation of the distance function to the problem
of finding shortest paths in a graph by modeling physical attributes
as nodes and the distances among them as weighted edges. This
can be solved with the Floyd–Warshall algorithm [14].

5. EXPERIMENTAL EVALUATION
In this section we present a preliminary experimental evaluation
of our model, conducted by using a special-purpose crawler [3] to
collect 100 websites over three application domains: Soccer, Video-
games, and Finance. Each source consists of tens to thousands
of pages, and each page contains detailed data about one object
of the corresponding entity. For each domain, we then selected
the 20 largest sources and manually verified the hypothesis of our
generative process.

Intensional Redundancy We start evaluating the redundancy at
the schema level. We observe that in the soccer and video-game do-
mains the majority of the conceptual attributes are not rare. In fact,
in the soccer domain, only 25% of the attributes are rare and they
mostly come from websites that are not only about soccer players.
For example, a website containing info about olympic athletes ex-
poses the attribute medals, while a club website exposes the debut
date only for the players coming from its own youth academy. For
the video-games the percentage of rare attributes is slightly over
30% of the total, in this case rare attributes come from distinct in-
formation with very similar semantics, such as difficulty and learn-
ing curve. Finally, in the stock quote scenario the percentage of
rare attributes is over 40% of the total. This is not surprising, as
in financial domain there is a large number of attributes (89 for 20
sources) due to the presence of many indicators used for technical
analysis. For this domain, 20 sites are sufficient only to get a very
rough estimation of the set of attributes published by the sites of
the domain. We expect that the percentage of rare attributes would
significantly drop as the number of web sources increases.

Extensional Redundancy Within the same domain, several ob-
jects are shared by several sources. The overlap is almost total for
the stock quotes, while it is more articulated for soccer players and
video-games as these domains include both large popular sites and
small ones. Over the 100 sources, we computed that each soccer
player object appears on average in 1.6 sources, each video-game
in 24.5 sources, and each stock quote in 92.8 sources. In particular,
OVq,A(Si, Sj) is true with q = 5 for all the non rare attributes for
all the websites.

Errors and Thresholds We manually verified the thresholds for
the conceptual attributes of the three domains. As expected, those
have very different values, depending on the domain and the at-
tribute considered. As an example, in the finance domain a thresh-
old of 0.023 is needed for the Max value of a stock quote (0.029 for
the Min), while for the Volume a threshold of 0.5 is sufficient. In
the soccer and video-games cases, the thresholds are higher, such
as 0.44 for PlayerName (or video-game Title) and 0.36 for his
BirthCountry. More importantly, we were able to verify that the
separable semantics property is always verified.

6. RELATED WORK
Our techniques are related to projects on the integration of web

data, such as PAYASYOUGO [12]. However, the proposed inte-
gration techniques are based on the availability of attribute labels,
while our approach aims at integrating unlabeled data from web
sites. TurboWrapper [8] has similar limits: it relies on syntactic
structure of attributes (e.g. the ISBN number for books) with-

out considering the redundancy of information that occurs at the
instance-level.

The exploitation of structured web data is the primary goal of
WebTables [6] and ListExtract [10], which concentrate on data pub-
lished in HTML tables and lists, respectively. Compared to infor-
mation extraction approaches, WebTables and ListExtract extract
relations with involved relational schemas but it does not address
the issue of integrating the extracted data.

Cafarella et al. have described a system to populate a probabilis-
tic database with data extracted from the web [4]. However, the
data are retrieved by TextRunner [1], an information extraction sys-
tem that is not targeted to data rich web pages as ours. Octopus [5]
and Cimple [13] support users in the creation of data sets from web
data by means of a set of operators to perform search, extraction,
data cleaning and integration. Although such systems have a more
general application scope than ours, they involve users in the pro-
cess, while our approach is completely automatic.
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APPENDIX
A. PROOFS

We start with a preliminary lemma needed to prove the correct-
ness of the presented algorithms.

LEMMA A.1. INTRACLOSERTHANINTER.
∀er∗i , er∗j ∈ A1, erk ∈ A2 d(V (er∗i ), V (er∗j )) < d(V (er∗i ), V (erk))

PROOF. The extraction rule erk can be correct or weak. We
prove the lemma for the two cases:

1. erk is correct (er∗k): consider er∗i , er
∗
j ∈ A1 and er∗k ∈ A2

when the property separable semantics holds.
By definition: ∀er∗i , er∗j ∈ A1 ∃ tA1 : d(V (er∗i ), V (er∗j )) <
tA1

Separable semantics: ∀A1, A2, er
∗
i ∈ A1, er

∗
k ∈ A2 : i 6=

k ∧A1 6= A2 ⇒ d(V (er∗i ), V (er∗k)) > max(tA1 , tA2)

We can derive:

d(V (er∗i ), V (er∗j )) < tA1 ≤ max(tA1 , tA2) <

< d(V (er∗i ), V (er∗k)).

Therefore:

d(V (er∗i ), V (er∗j )) < d(V (er∗i ), V (er∗k)).

2. erk is weak (erwk ): in the following we treat single values
as singleton vectors that we denote with V [i, . . . , j] the sub-
vector of values for V from index i (included) to index j (ex-
cluded). We first introduce a monotonicity property of the
distance function. Given two vectors V1 and V2 with n values
and a distance d(V1, V2) between them, let V ′2 be a copy of
V2. If we replace the i-th element V2[i] with a new element
V2[i]

′ such that d(V1[i], V2[i]) < d(V1[i], V2[i]
′) it follows

that d(V1, V2) < d(V1, V
′
2 ).4

In this second case erwk is a weak rule, that is, it can po-
tentially contains values taken from A1, A2, or any other
A. We consider the instance-aligned vectors of values V ′k =
V (erwk ), V

′
i = V (er∗i ) and V ′j = V (er∗j ) and we remove

from the analysis the instances where erwk , er∗i , and er∗j ex-
tract the same value: let Vk, Vi and Vj be the vectors with the
remaining values. As erwr cannot contain only values coming
from A1 (otherwise it would not be a weak rule, but a cor-
rect extraction rule of A1) the length of these vectors must be
greater than zero, and notice also that V ′k now does not con-
tain any value coming from A1 (they have been all removed).
We show now by induction on the length of the vectors that
d(V (er∗i ), V (er∗j )) < d(V (er∗i ), V (erwk )).
Base case: let Vk[0] be the first value for Vk. We know that it
is a correct value for a conceptual attribute different from A1.
Therefore, for the property we just showed in the previous
case:

d(Vi[0], Vj [0]) < d(Vi[0], Vk[0]).

Inductive step: the inductive hypothesis is

d(Vi[0, . . . , n], Vj [0, . . . , n]) < d(Vi[0, . . . , n], Vk[0, . . . , n]).

We show that it is true for n + 1 elements of the vectors.
Again, for the property we just showed d(Vi[n + 1], Vj [n +
1]) < d(Vi[n + 1], Vk[n + 1]) holds. For the monotonicity
property of the distance function, it is true that

d(Vi[0, . . . , n+ 1], Vj [0, . . . , n+ 1]) <

4This is a natural property of the Euclidean distance.

< d(Vi[0, . . . , n+ 1], Vk[0, . . . , n+ 1]).

LEMMA A.2. ABSTRACTINTEGRATION is correct.

PROOF. When the property separable semantics holds, the weights
of the edges among attributes with different semantics are always
higher than the weights of the edges among attributes with the same
semantics. This implies that the edges in L are divided in two sub-
lists. In the first sublist (lower weights) we have pairs of attributes
that have the same semantics. We can therefore add to the solu-
tion all the pairs in the first sublist. In the second sublist (higher
weights) we have pairs of attributes with different semantics and
we need to avoid to add an edge from this sublist to the solution.
The problem here is that it is not know a-priori where the second
sublist starts. But we know that when the algorithm gets to the first
edge of the second sublist, all and only the attributes with same
semantics have been grouped in mappings.

Therefore the partial solution is correct.
We now need to show that the algorithm stops at the first edge of

the second sublist. The first edge in the second sublist is an edge
between two mappings m1,m2 with different semantics. When
the property intensional redundancy holds, there must be a source
which publishes two attributes ai, aj such that they are contained in
m1 and m2, respectively. By the local consistency of sources there
cannot be a mapping that contains ai, aj , and therefore the first
edge of the second sublist is detected and the algorithm ends.

LEMMA A.3. ABSTRACTEXTRACTION is correct.

PROOF. In any iteration of step (a) we select two correct ex-
traction rules er∗1 , er∗2 ∈ A1. This is equivalent to show that if
we list the pairs of extraction rules in ascending order, the first
pair is certainly one with correct extraction rules. Suppose, by ab-
surd, that the first pair contains a weak rule. This contradicts the
INTRACLOSERTHANINTER Lemma.

Every time two correct extraction rules er∗1 or er∗2 are chosen, all
the weak rules containing at least a value in common with er∗1 or
er∗2 are removed (steps (c) and (d)). Therefore, after the algorithm
has chosen all the correct rules, there cannot be a weak rule inW as
weak rules mix values shared with correct rules and they have been
discarded as soon as the correct rules have been identified.


