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Abstract. What are the ingredients required for vision-based place recog-
nition? Pattern recognition models for localization must fulfill invariance
requirements different from those of object recognition. We propose a
method to evaluate the suitability of existing image processing tech-
niques by testing their outputs against these invariances. The method is
applied to several holistic and one local model. We generalize our find-
ings and identify model properties of locality, spatial configuration and
generalization as key factors for applicability to localization tasks.
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1 Introduction

Although the concept of place is essential to the way humans represent and inter-
act with spatial environments, many of its determinants are not yet completely
understood. One important question is what kind of information and what com-
putations can be used to determine a specific place. Among the different types of
input suitable for this purpose pictorial information has a particularly high po-
tential. In biological terms, the investigation of place cells, for example, indicates
the importance of visual cues for the robust localization of rodents.[1]

However, the exact processing mechanisms that can enable a successful vision-
based localization are still unclear. In particular, it has to be understood how the
classical determinants of pattern recognition systems, invariance and generaliza-
tion properties, relate to the problem of localization. Invariance properties seem
to play a crucial role, since for example the activation of a place cell is primarily
determined by the animal’s location, whereas it is independent of the orientation
and other conditions like illumination. These are typical invariance properties. It
may thus be assumed that the classic invariance principles attributed to human
vision, and the corresponding computer vision approaches, can also be applied
to the problem of localization (or place recognition). In this paper, we will argue
that this is not necessarily the case, and that successful localization requires
specific properties that can be in direct in opposition to those underlying other
basic visual capabilities, like for example object recognition. For this, we will first
introduce a basic framework that enables the description and differentiation of
image processing techniques with respect to their applicability for localization
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as compared to, e.g., object recognition. We will then discuss how some estab-
lished image processing techniques can be described in terms of the suggested
framework. This will then motivate an investigation of the suitability of some
of these techniques for the specific problem of localization, or place recognition.
In particular, we will investigate whether one of the most successful models of
visual object recognition, the HMAX model[2], can also be used for the task of
vision based localization.

1.1 Invariance in Place Recognition

One of the difficulties in place recognition from visual input is that even minor
changes in observer’s orientation or location, as well as unrelated changes such
as variations in illumination, can cause vast changes of retinal input. Successful
models for place identification should provide output that is invariant to such
small changes in the observer’s view. Although this is a requirement which is
shared with object recognition models, there are some fundamental differences
in which kind of invariance is desired.

While changes in scale, position and occlusion of elements in a scene are often
irrelevant in the context of object recognition, they correspond to movement of
the observer and should elicit changes in the output for place recognition models.
On the other hand, spatial shifting of a scene as a whole corresponds to rotation
of the observer. Similarly, rotations within the viewing plane correspond to tilting
of the viewer’s head. A place detector that mimics the behavior of place cells
should be invariant to such rotations.
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Fig. 1. a: Conceptual space for classifying pattern recognition models. b: Position of
analyzed models in two dimension of our conceptual space.

Given these fundamental differences, can models for object recognition be
used for place identification at all? The large amount of existing pattern recog-
nition algorithms makes testing this hypothesis a tedious task. We therefore
suggest to categorize algorithms into a conceptual space with three dimensions
[3] and seek to find a systemic correspondence between the placement of models
within these dimensions and their applicability to place identification.
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The first dimension is locality. A local approach processes image data from
selected image regions, whereas a global approach always takes the whole image
into account. Naturally, local approaches need a detection mechanism to deter-
mine regions of interests (ROI). Such mechanisms may rely on low-level image
data such as curvature[4], local brightness extrema[5] or generalized features[6].
Ideally, the detection mechanism picks out informative image regions containing
objects or landmarks useful to solve the given task.

The second dimension measures the invariance to changes in spatial configu-
ration. Algorithms that are sensitive to spatial layout match templates of stored
objects against the input image, but fail to generalize if object components are
rearranged or scrambled. On the other hand, the largest invariance to spatial
layout is provided by models relying on image statistics [7] or bags-of-features
like [8]. The class of HMAX models by [2] follow an intermediate approach where
invariance to feature locations is increased step-by-step in a multi-layer hierar-
chy.

The third dimension describes how well a model generalizes among several in-
stances of a class. Most local descriptor-based algorithms such as [5, 6] only store
patterns specific to the particular instance and view of an object, so multiple
patterns are required to describe a class. Usually, category-level generalization
can be achieved by clustering specific descriptors into broader categories [9].

These dimensions describe key attributes required for a model to be suitable
for place identification. The first dimension, locality, is certainly useful to deter-
mine place. If each detected feature is attributed to a position, the relation of
these positions provides valuable information in determining the position of an
observer[10]. For the second dimension, spatial configuration, the requirements
are not so clear. On the one hand, changes in spatial configuration result from
changes in position of an observer and invariance to such changes is not de-
sired. On the other hand, invariance to small changes in configuration increase
robustness of the detection of features, and could improve detection when scenes
are presented under slightly different conditions. The third dimension, general-
ization properties, are probably required to some extent to generalize different
views from the same place onto the same class. Too much generalization is not
desirable, because it might project locations that look similar onto the same
place.

In the following study, we investigated the invariance properties of models
that vary within the second and third dimension. In particular, we varied the
two parameters of location and orientation. We judged algorithms based on how
well they stayed invariant to changes in orientation compared to their variation
induced by changes in location. We tested two holistic models, wavelet-like his-
tograms[7] and texture descriptors called ‘textons’[11]. In comparison, we chose
the HMAX model as a hierarchical model of which we analyzed each model
step separately. Finally, performance on raw pixel values has been checked as a
baseline.
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2 Methods

We developed a test setup to evaluate the applicability of pattern recognition
methods for place identification. We recorded input images xLα at nL = 10 differ-
ent locations L, and nα = 181 different observer rotation angles α spanning 180
degrees of rotation. If a model S is applied to two input images, the dissimilarity
of output vectors can be written as their euclidean distance dS .

dS(xL1
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, xL2
α2
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We measure the invariance to rotation ĨSrot(α) of a model by averaging the dis-
similarity to a midpoint rotation over all locations.

ĨSrot(α) :=
1

nL

∑
L

dS(xLα, x
L
0 ) (2)

A low value of ĨSrot(α) means the output of the model is highly invariant to
the given rotation α. In order to measure usability for place identification, we
need to put this value in relation to variations of model outputs achieved by
changing the place. We define a relative orientation invariance measure ISrot(α)
as:
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Values larger than 1 for ĨSrot for a given angle mean that the model produces
more dissimilar outputs under rotation by that angle than it would by switching
the place. We therefore define the maximum angle of invariance αSI as the largest
value under which this condition is met:

αSI := max
{
|α|
∣∣ ISrot(α) < 1

}
(4)

Large values of αSI stand for good invariance to rotation compared to changes
in place, which attributes the model as suitable for place recognition.

We applied this method to the raw input pixels, as well as outputs from the
texton algorithm, wavelet descriptors and the HMAX model at various stages.
For the HMAX model, we were particularly interested in how the rotational
invariance properties vary with increasing layers. We extracted values at the
gabor filter layer (S1), as well as the fist and second local invariance layers (C1,
C2) and the final, global invariance layer (C3) At each layer, a maximum of
500 features was extracted. For non-global layers, a random sub sampling over
features and locations was done. The same features at the same locations were
subtracted for all images.

3 Results

We find that, in accordance with our predictions, pattern recognition models
display vastly different performances when investigated for their applicability in
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Fig. 2. Relative orientation invariance measures ISrot(α) for (a) raw pixels, textons and
wavelets and (b) different layers of the HMAX model.

place identification. Relative orientation invariance measures ISrot(α) for holistic
models (textons and wavelets) as well as raw pixels are shown in fig. 2a. The
maximum angle of invariance for texton outputs (αTexton

I = 7◦) is actually lower
than for raw pixels (αPix

I = 44◦), which shows that these models are more
invariant to changes in location than to changes in rotation compared to raw
pixels. Invariance to wavelet transformation is only slightly lower than pixels
(αWavelets
I = 38◦).

For HMAX, performance for each layer is shown in figure fig. 2b. Again, αI
sinks below performance on raw pixel down to (αWavelets

I = 24◦) for the successive
layers C1 and C2 and further down to (αWavelets

I = 14◦) for the final layer C3.
This decay of performance in higher stages of the model show that invariance to
place increases faster than invariance to orientation.

4 Discussion

We have investigated the question of how a place can be characterized in terms
of visual properties. In particular, we have investigated which invariances are
required to uniquely determine a place and how these are related to the invari-
ance properties commonly attributed to visual processing. We have evaluated
different models asking how they are able to generalize across all possible views
of a place while still being selective enough to guarantee a unique localization.

We have shown that the invariance requirements for place recognition are
not necessarily met by models popular for object recognition, such as texton
outputs or HMAX. Further, we found that higher layers in the hierarchy of the
model, which correspond to more complex features and higher levels of invariance
to spatial configuration, lead to a reduced level of invariance to rotation. This
yields the hypothesis that invariance to spatial layout, i.e. the second dimension
of our conceptual space in fig. 1a, is a detrimental ingredient for invariant place
recognition in general. However, since we have explored only a small part of the
space of approaches, a more comprehensive study needs to be done.

How much generalization is needed to perform localization? Being able to
generalize across different views of the same location is certainly helpful. How-
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ever, if generalization leads to higher invariance across different locations, as
happens in the higher stages of the HMAX model in our case, reliable place
identification performance decreases.

Interestingly, [12] proposes a hierarchical model architecture for place cells
very similar to that of the HMAX model. In his model, cells are repeated across
locations and pooled over increasingly receptive fields in higher stages. The main
difference to HMAX lies in that features are trained explicitly to be invariant to
rotations using slow feature analysis. This shows that the invariance properties
wired into a model greatly affect its suitability for localization, as long as the
learning stage is tuned generalize across views, but not across places.

These results suggest that a universal vision system for both object recogni-
tion and localization methods is unfeasible. While some of the processing mecha-
nisms may be shared between architectures for the two tasks, specific mechanisms
are required to uniquely determine a place.
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