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Abstract. For more than two millennia, Euclid’s Elements set the stan-
dard for rigorous mathematical reasoning. The reasoning practice the
text embodied is essentially diagrammatic, and this aspect of it has been
captured formally in a logical system termed Eu [2, 3]. In this paper, we
review empirical and theoretical works in mathematical cognition and
the psychology of reasoning in the light of Eu. We argue that cognitive
intuitions of Euclidean geometry might play a role in the interpretation
of diagrams, and we show that neither the mental rules nor the mental
models approaches to reasoning constitutes by itself a good candidate
for investigating geometrical reasoning. We conclude that a cognitive
framework for investigating geometrical reasoning empirically will have
to account for both the interpretation of diagrams and the reasoning
with diagrammatic information. The framework developed by Stenning
and van Lambalgen [1] is a good candidate for this purpose.

1 Introduction

A distinctive feature of elementary Euclidean geometry is the natural and in-
tuitive character of its proofs. The prominent place of the subject within the
history and education of mathematics attests to this. It was taken to be the
foundational starting point for mathematics from the time of its birth in ancient
Greece up until the 19th century. And it remains within mathematics education
as a subject that serves to initiate students in the method of deductive proof.
No other species of mathematical reasoning seem as basic and transparent as
that which concerns the properties of figures in Euclidean space.

One may not expect a formal analysis of the reasoning to shed much light
on this distinctive feature of it, as the formal and the intuitive are typically
thought to oppose one another. Recently, however, a formal analysis, termed
Eu, has been developed which challenges this opposition [2, 3]. Eu is a formal
proof system designed to show that a systematic method underlies the use of
diagrams in Euclid’s Elements, the representative text of the classical synthetic
tradition of geometry. As diagrams seem to be closely connected with the way
we call upon our intuition in the proofs of the tradition, Eu holds the promise
of contributing to our understanding of what exactly makes the proofs natural.
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In this paper, we explore the potential Eu has in this respect by confronting
it with empirical and theoretical works in the fields of mathematical cognition
and the psychology of reasoning. Our investigation is organized around the two
following issues:

1. What are the interpretative processes on diagrams involved in the reasoning
practice of Euclidean geometry and what are their possible cognitive roots?

2. What would be an appropriate cognitive framework to represent and inves-
tigate the constructive and deductive aspects of the reasoning practice of
Euclidean geometry?

By providing a formal model of the reasoning practice of Euclidean geometry,
Eu provides us with a tool to address these two issues. We proceed as follows. To
address the first issue, we first state the interpretative capacities that according
to the norms fixed by Eu are necessary to extract, from diagrams, information for
geometrical reasoning. We then present empirical works on the cognitive bases
of Euclidean geometry, and suggest that cognitive intuitions might play a role
in the interpretative aspects of diagrams in geometrical reasoning. To address
the second issue, we compare the construction and inference rules of Eu with
two major frameworks in the psychology of reasoning—the mental rules and the
mental models theories. We argue that both have strengths and weaknesses as a
cognitive account of geometrical reasoning as analyzed by Eu, but that one will
need to go beyond them to provide a framework for investigating geometrical
reasoning empirically.

The two main issues are of course intimately related. In a last section, we
argue that the framework developed by Stenning and van Lambalgen in [1],
which connects interpretative and deductive aspects of reasoning, might provide
the right cognitive framework for investigating the relation between them.

2 A Logical Analysis of the Reasoning Practice in
Euclid’s Elements: The Formal System Eu

Eu is based on the seminal paper [4] by Ken Manders. In [4] Manders challenges
the received view that the Elements is flawed because its proofs sometimes call
upon geometric intuition rather than logic. What is left unexplained by the re-
ceived view is the extraordinary longevity of the Elements as a foundational
text within mathematics. For over two thousand years there were no serious
challenges to its foundational status. Mathematicians through the centuries un-
derstood it to display what the basic propositions of geometry are grounded on.
The deductive gaps that exist according to modern standards of logic story were
simply not seen.

According to Manders, Euclid is not relying on geometric intuition illicitly in
his proofs; he is rather employing a systematic method of diagrammatic proof.
His analysis reveals that diagrams serve a principled, theoretical role in Euclid’s
mathematics. Only a restricted range of a diagram’s spatial properties are per-
mitted to justify inferences for Euclid, and these self-imposed restrictions can be
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explained as serving the purpose of mathematical control. Eu [2, 3] was designed
to build on Manders’ insights, and precisely characterize the mathematical sig-
nificance of Euclid’s diagrams in a formal system of geometric proof.

Eu has two symbol types: diagrammatic symbols∆ and sentential symbols A.
The sentential symbols A are defined as they are in first-order logic. They express
relations between geometric magnitudes in a configuration. The diagrammatic
symbols are defined as n× n arrays for any n. Rules for a well-formed diagram
specify how points, lines and circles can be distinguished within such arrays.
The points, lines and circles of Euclid’s diagrams thus have formal analogues in
Eu diagrams. The positions the elements of Euclid’s diagrams can have to one
another are modeled directly by the position their formal analogues can have
within a Eu diagram.

The content of a diagram within a derivation is fixed via a relation of dia-
gram equivalence. Roughly, two Eu diagrams ∆1 and ∆2 are equivalent if there
is a bijection between its elements which preserves their non-metric positional
relations.3 The equivalence relation is intended to capture what Manders terms
the co-exact properties of a Euclidean diagram. A close examination of the El-
ements shows that Euclid refrains from making any inferences that depend on
a diagram’s metric properties. At the same time, Euclid does rely on diagrams
for the non-metric positional relations they exhibit—or in Manders’ terms, the
co-exact relations they exhibit. Diagrams, it turns out, can serve as adequate
representations of such relations in proofs.

Eu exhibits this by depicting geometric proof as running on two tracks:
a diagrammatic one, and a sentential one. The role of the sentential one is to
record metric information about the figure and provide a means for inferring this
kind of information. The role of the diagrammatic track is to record non-metric
positional information of the figure, and to provide a means for inferring this
kind of information about it. Rules for building and transforming diagrams in
derivations are sensitive only to properties invariant under diagram equivalence.
It is in this way that the relation of diagram equivalence fixes the content of
diagrams in derivations.

What is derived in Eu are expressions of the form

∆1, A1 −→ ∆2, A2

where ∆1 and ∆2 are diagrams, and A1 and A2 are sentences. The geometric
claim this is stipulated to express is the following:

?Given a configuration satisfying the non-metric positional relations de-
picted in ∆1 and the metric relations expressed in A1, then one can
obtain a configuration satisfying the positional relations depicted by ∆2

and metric relations specified by A2.

3 For a more detailed discussion of Eu diagrams and diagram equivalence, we refer
the reader respectively to sections A and B of the appendix.
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3 Interpretative Aspects of Geometrical Reasoning with
Diagrams

Diagrams in Euclid’s Elements are mere pictures on a piece of paper. How can a
visual experience triggered by looking at a picture lead to a cognitive representa-
tion that can play a role in geometrical reasoning? From a cognitive perspective,
taking seriously the use of diagrams in reasoning requires an account of the
way diagrams are interpreted in order to play a role in geometrical reasoning.
The formal system Eu provides a theoretical answer to this question. Here we
compare this theoretical account with recent works in mathematical cognition
probing the existence of cognitive intuitions of Euclidean geometry. We will ar-
gue that the Eu analysis of geometrical reasoning suggests a possible role for
these cognitive intuitions in the interpretation of diagrams.

3.1 Interpretation of Diagrams in Eu

As described in section 2, the key insight behind the Eu analysis of the diagram-
matic reasoning practice of Euclid’s Elements is the observation that appeals to
diagrams in proofs are highly controlled: proofs in Euclid’s Elements only make
use of the co-exact properties of diagrams. From a cognitive perspective, the
practice of extracting the co-exact properties from a visual diagram is far from a
trivial one. According to Eu, the use of diagrams presupposes the two following
cognitive abilities:

1. The capacity to categorize elements of the diagram using normative concepts:
points, linear elements and circles.

2. The capacity to abstract away irrelevant information from the visual-perceptual
experience of the diagram.

The formal syntax of Eu, combined with the equivalence relation between
Eu diagrams, can be interpreted as specifying these capacities precisely. More
specifically:

– The first capacity amounts to the ability to see in the diagram the elements
p, l, c of a particular Eu diagram 〈n, p, l, c〉, which respectively denote the
sets of points, lines and circles.

– The second capacity amounts to the ability to see in the particular diagram
positional relations that are invariant under diagram equivalence.

Thus, the interpretation of a visual diagram according to Eu results in a for-
mal object which consists in an equivalence class of Eu diagrams. It is precisely
on these formal objects, the interpreted diagrams, that inference rules operate
in the Eu formalization of reasoning in elementary geometry.

3.2 Intuitions of Euclidean Geometry in Human Cognition

Recently, several empirical studies in mathematical cognition [5–7] have directly
addressed the issue of the cognitive roots of Euclidean geometry. These studies
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might be classified in two categories: one approach consists in providing empirical
evidence for the existence of abstract geometric concepts [5, 7], the other approach
consists in providing empirical evidence for the perception of abstract geometric
features [6]. Here we successively report some of the empirical findings provided
by these two approaches.

The two studies [5] and [7] have been conducted on an Amazonian Indi-
gene Group called the Mundurucu, with no previous education in formal Eu-
clidean geometry. In the first study [5], the experiment consisted in identifying
the presence, or the absence, of several topological and geometric concepts in
Mundurucu participants. To this end, the experimenter proposed, for each con-
cept under investigation, six slides in which five of the images displayed the
given geometric concept (e.g., parallelism), while the last one lacked the consid-
ered property (non-parallel lines). The test shows that several basic geometrical
concepts are present in Mundurucu conceptual systems, such as the concepts of
straight line, parallel line, right angle, parallelogram, equilateral triangle, circle,
center of circle. Nevertheless, the study [5] does not address geometric concepts
that go beyond perceptual experience. Such concepts are the topic of another
study [7]. In [7], empirical evidence is provided for the capacity of Mundurucu
to reason about the properties of dots and infinite lines. In particular, most of
the Mundurucu participants consider that, given a straight line and a dot, we
can always position another straight line on the dot which will never cross the
initial line.

The second approach for detecting the presence of intuitions of Euclidean
geometry is based on the framework of transformational geometry [8]. Accord-
ing to this framework, a geometric theory is identified with respect to the
transformations that preserve its theorems. Euclidean geometry is then iden-
tified by its four types of transformations—translation, rotation, symmetry and
homothecy—leaving then angle and length proportions as the main defining fea-
tures of figures in Euclidean geometry. The experimental approach based on this
framework consists in investigating the capacity of participants to perceive ab-
stract geometric features in configurations where irrelevant features are varied.
The experiments reported in [6] adopt such an approach. The empirical results
show that both children and adults are able to use angle and size to classify
shapes, but only adults are able to discriminate shapes with respect to sense,
i.e., the property distinguishing two figures that are mirror images of each other.

The two approaches reported here to investigate cognitive intuitions of Eu-
clidean geometry bring out cognitive abilities which seem related to the abilities
for the interpretation of diagrams postulated by Eu. This observation suggests a
possible role for the cognitive intuitions of Euclidean geometry in the reasoning
practice of elementary geometry, as we will now see.

3.3 Cognitive Intuitions and the Interpretation of Diagrams

How might the cognitive intuitions of Euclidean geometry relate to the deductive
aspects of Euclid’s theory of geometry? In a correspondence in Science [9] on
the study reported in [5], Karl Wulff has challenged the claim that Dehaene et
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al. address Euclidean geometry by denying a role for these cognitive intuitions in
the demonstrative aspects of Euclid’s theory of geometry. An opposing position
can be found in [10]:

The axioms of geometry introduced by Euclid [. . . ] define concepts with
spatial content, such that any theorem or demonstration of Euclidean ge-
ometry can be realized in the construction of a figure. Just as intuitions
about numerosity may have inspired the early mathematicians to de-
velop mathematical theories of number and arithmetic, Euclid may have
appealed to universal intuitions of space when constructing his theory of
geometry. [10, p. 320]

Interestingly, stating precisely the postulated cognitive abilities involved in
the interpretation of diagrams according to Eu might suggest a role for the
cognitive intuitions of Euclidean geometry in the reasoning practice of Euclid’s
Elements.

Firstly, we have noticed that one of the key abilities in the interpretation
of diagrams, according to Eu, is the capacity to categorize or type the different
figures of the visual diagram using the normative concepts of geometry. This
ability seems to be universal, according to the empirical data that we reported
in the previous section, as the Mundurucu people, without previous formal ed-
ucation in Euclidean geometry, seem to possess an abstract conceptual systems
which contains the key normative concepts of elementary geometry, and are able
to use it to categorize elements of visual diagrams.

Secondly, interpretation of diagrams in Eu requires an important capacity
of abstraction which is formally represented by an equivalence relation between
diagrams. This equivalence relation aims to capture the idea that some features
of the diagram are not relevant for reasoning: for instance, the same diagram
rotated, translated or widened, would play exactly the same role in a geometrical
proof of the Elements. This capacity of abstraction seems to connect with the
cognitive ability of perceiving abstract geometric features, such as angle and
length proportions, while abstracting away irrelevant information from the point
of view of Euclidean geometry.

We now turn to the deductive and constructive aspects of geometrical reason-
ing. In section 5, we argue that a plausible cognitive framework for an empirical
investigation of geometrical reasoning will have to bring together the interpreta-
tive, deductive and constructive aspects of geometrical reasoning to be faithful
to the mathematical practice of Euclidean geometry.

4 Deductive and Constructive Aspects of Geometrical
Reasoning with Diagrams

In this section, we begin by presenting the Eu formalization of constructive
and deductive steps in Elementary geometry, and then discuss the capacity of
the mental rules and the mental models theories to represent these reasoning
steps. We conclude that an adequate framework for an empirical investigation
of geometrical reasoning will have to go beyond these two theories.
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4.1 Eu Construction and Inference Rules

The Eu proof rules specify how to derive ∆1, A1 −→ ∆2, A2 expressions. They
specify, in particular, the operations that can be performed on the pair ∆1, A1

to produce a new pair ∆2, A2. Given the intended interpretation of ∆1, A1 −→
∆2, A2 given by ?, the fundamental restriction on these rules is that they be
geometrically sound. In other words, if ∆2, A2 is derivable from ∆,A1, then with
any configuration satisfying the geometric conditions represented by ∆1A1 one
must either have a configuration satisfying the conditions represented by ∆2, A2

(if ∆1 = ∆2), or be able to construct a configuration satisfying the conditions
represented by ∆2, A2 (if ∆2 contains objects not in ∆1).

The formal process whereby ∆2, A2 is derived has two stages: a construction
and demonstration. Hence Eu has two kinds of proof rules: construction rules
and inference rules. The construction stage models the application of a proof’s
construction on a given diagram. The demonstration stage models the inferences
made from the assumed metric relations and the particular diagram produced
by the construction. The soundness restriction thus applies only to the inference
rules. The construction rules together codify a method for producing a represen-
tation that can serve as a vehicle of inference. The demonstration rules codify
the inferences that can be made from such a vehicle.4

4.2 Mental Rules Theory

The mental rules theory [11, 12] represents reasoning as the application of formal
rules, rules which are akin to those of natural deduction. According to this theory,
reasoning is conceived as a syntactic process whereby sentences are transformed.
These transformations are made according to specific rules defined precisely in
terms of the syntactic structures of sentences. Deduction of one sentence from
a set of other sentences (premisses) is seen as the search for a mental proof,
which consists precisely in the production of the conclusion from the premisses
by application of the rules a finite number of times. Consequently, the mental
rules theory represents reasoning as consisting in syntactic operations on the
logical forms of sentences.

The formalization of geometrical reasoning provided by Eu shares one impor-
tant feature with the mental rules theory: Eu represents geometrical reasoning
in terms of syntactic rules of inference. This is made possible by considering di-
agrams as a kind of syntax, and then by stipulating rules that control inferences
that are drawn from diagrams. Thus, Eu diagrams might be seen as representing
something like the logical form of concrete visual diagrams. One could perhaps
say that Eu diagrams represent their geometric form, and that Eu inference
rules operate on these forms. From this point of view, the formalization of ge-
ometrical reasoning provided by Eu appears to be in direct line with the the
mental rules theory of reasoning.

4 For the formal details, see sections 1.4.1 and 1.4.2 of [2], available online at
www.johnmumma.org.
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Nevertheless, the mental rules theory seems to run into troubles when we
consider the construction operations on diagrams, which are central to the rea-
soning practice of Euclidean geometry, and which are formalized by Eu’s con-
struction rules. One might still argue that Eu construction rules are syntactic
operations on Eu diagrams, since diagrams are included its syntax, and so Eu
construction rules fit the framework of mental rules theory. However, this does
not seem correct as the mental rules are considered to be deduction rules; the
soundness restriction applies to them. They are thereby of a very different nature
than Eu’s construction rules. Consequently, even though the mental rules theory
could suitably represent inferential steps in geometrical reasoning, it seems that
the theory lacks the necessary resources to account for the construction opera-
tions on diagrams, an aspect fundamental to the reasoning practice in Euclidean
geometry.

4.3 Mental Models Theory

The mental models theory [13, 14] postulates that reasoning depends on envisag-
ing possibilities. When given a set of premisses, an individual constructs mental
models which correspond to the possibilities elicited by the premisses. Different
reasoning strategies are then available to extract information from the mental
models: one may represent several possibilities in a diagram and draw a conclu-
sion from the diagram, one may make an inferential step from a single possibility,
or one can use a possibility as a counter-example for falsifying a conclusion. One
interesting feature of the theory is that mental models are supposed to be iconic:
the structure of a mental model is supposed to reflect the structure of the possi-
bility that it represents. This feature is nicely illustrated when the mental models
theory is applied to account for reasoning with visual-spatial information [15].

Contrary to the mental rules theory, the mental models theory seems suited
to provide an account of the representation of the different construction opera-
tions on diagrams: visual diagrams used in geometrical proofs can be conceived
as mental models entertained by the reasoner. Mental models associated to di-
agrams would then be of a visual-spatial nature, reflecting the spatial relations
between the different elements of the diagram. This just seems to be a descrip-
tion of Eu diagrams, which encode the information that can be legitimately used
in geometrical reasoning.

Accordingly, if Eu diagrams are conceived as mental models, the construction
operations on diagrams would be explained in terms of the ways mental models
are constructed. Nevertheless, one might worry about the capacity of the mental
models theory to account for the specific use of diagrams in geometrical rea-
soning. One of the main points of Eu is to exhibit precisely that diagrammatic
information enters legitimate mathematical inferences in a very controlled way.
In order to account for the use of diagrams in geometrical reasoning, the mental
models theory would have to be supplemented with a regimentation of the in-
formation that can be legitimately extracted from diagrams conceived as mental
models. The formal system Eu shows that this can be done using syntactic rules
that operate on diagrams represented as syntactic objects.
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4.4 Beyond the Mental Rules vs Mental Models Debate

Geometrical reasoning, as practiced in Euclid’s Elements, constitutes an inter-
esting test for current theories in the psychology of reasoning. Our previous
comparison predicts that the mental rules and mental models theories present
both advantages and disadvantages as an account of the reasoning practice of
geometrical reasoning with diagrams. Indeed, it seems that these two theories
are actually complementary in their capacity to account for geometrical reason-
ing as described by Eu: the mental rules theory seems adequate to represent
inferences in geometrical reasoning, while the mental models theory seems ade-
quate to represent the diagrammatic constructions that support such inferences.
Thus, it seems that to provide a framework for an empirical investigation of
geometrical reasoning with diagrams one will need to go beyond these two theo-
ries. Such a move is also suggested, although for different reasons, in [16, 17]. In
this respect, Eu constitutes a possible starting point for developing a cognitive
framework for geometrical reasoning which would be faithful to both deductive
and constructive aspects of the mathematical practice of Euclidean geometry.

5 Interpretation and Reasoning in Elementary Geometry

According to the Eu analysis of geometrical reasoning, interpretation and rea-
soning with diagrams are intimately related. This observation, originating in the
study of the reasoning practice in Euclid’s Elements [4], is directly in line with
a recent approach to the psychology of reasoning developed by Stenning and
van Lambalgen [1] which attributes a central role to interpretative processes in
human reasoning:

We [. . . ] view reasoning as consisting of two stages: first one has to
establish the domain about which one reasons and its formal properties
(what we will call ‘reasoning to an interpretation’) and only after this
initial step has been taken can ones reasoning be guided by formal laws
(what we will call ‘reasoning from an interpretation’). [1, p. 28]

Geometrical reasoning with diagrams, as formalized by Eu, precisely fits
within this framework: reasoning to an interpretation corresponds to the pro-
cess of interpreting a visual diagram along with an associated metric assertion,
resulting in Eu into a pair ∆,A; reasoning from an interpretation is then repre-
sented as the application of the formal rules of Eu to prove geometric claims.

This perspective unifies the two main issues addressed in this paper. Our main
conclusions can then be restated as follows: (i) intuitions of Euclidean geometry
as studied by mathematical cognition are likely to play a role in reasoning to an
interpretation of a diagrams, (ii) the mental rules and mental models theories
of reasoning are inadequate for representing reasoning from an interpretation,
as none of them is able to account for both deductive and constructive aspects
of geometrical reasoning. In the perspective of Stenning and van Lambalgen [1],
Eu appears as a good candidate for representing the process of reasoning from
an interpretation in elementary geometry.



23

6 Conclusion

The empirical investigation of the cognitive bases of Euclidean geometry is a
multi-disciplinary enterprise involving both mathematical cognition and the psy-
chology of reasoning, and which shall benefit from works in formal logic and the
nature of mathematical practice. In this paper, we used the formal system Eu to
review existing empirical and theoretical works in cognitive science with respect
to this enterprise. Our investigation shows: (i) the necessity of dealing jointly
with interpretation and reasoning, (ii) the relevance of works on the cognitive
bases of Euclidean geometry for the interpretation of diagrams and (iii) the ne-
cessity to go beyond the mental rules vs mental models distinction for accounting
for both constructive and deductive aspects of geometrical reasoning.
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Appendix

A Eu diagrams

The syntactic structure of diagrams in Eu has no natural analogue in stan-
dard logic. Their underlying form is a square array of dots of arbitrary finite
dimension.

The arrays provide the planar background for an Eu diagram. Within them
geometric elements—points, linear elements, and circles— are distinguished. A
point is simply a single array entry. An example of a diagram with a single point
in it is

Linear elements are subsets of array entries defined by linear equations expressed
in terms of the array entries. (The equation can be bounded. If it is bounded
on one side, the geometric element is a ray. If it is bounded on two sides, the
geometric element is a segment.) An example of a diagram with a point and
linear element is
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Finally, a circle is a convex polygon within the array, along with a point inside it
distinguished as its center. An example of a diagram with a point, linear element
and a circle is

The size of a diagram’s underlying array and the geometric elements distin-
guished within it, comprise a diagram’s identity. Accordingly, a diagram in Eu
is a tuple

〈n, p, l, c〉

where n, a natural number, is the length of the underlying array’s sides, and
p, l and c are the sets of points, linear elements and circles of the diagram,
respectively.

Like the relation symbols which comprise metric assertions, the diagrams
have slots for variables. A diagram in which the slots are filled is termed a labeled
diagram. The slots a diagram has depends on the geometric elements constituting
it. In particular, there is a place for a variable beside a point, beside the end of
a linear element (which can be an endpoint or endarrow), and beside a circle.
One possible labeling for the above diagram is thus

A

B C

DE

Having labeled diagrams within Eu is essential, for otherwise it would be im-
possible for diagrams and metric assertions to interact in the course of a proof.
We can notate any labeled diagram as

〈n, p, l, c〉[A, R]

where A denotes a sequence of variables and R a rule matching each variable to
each slot in the diagram.
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B Diagram equivalence

The definition of diagram equivalence is based on the notions of a diagram’s
completion and that of co-exact map. The completion∆′ of a diagram∆ is simply
the diagram obtained by adding to ∆ intersection points to the intersections
present in it. (See page 38-40 of [2]) Two diagrams are then equivalent if there
is a co-exact map between their completions.

The key idea behind the definition of diagram equivalence, then, is that of
of a co-exact map. A necessary condition for their to be such a map between
diagrams ∆1 and ∆2 is that both diagrams contain the same number of points,
linear elements and circles, and these objects are labeled by the same variables
and variable pairs.

Suppose ∆1 and ∆2 are two such diagrams, and φx is the bijection that maps
an element in ∆1 to the element in ∆2 with the same label. In virtue of their
position with respect to the underlying array of ∆1, the elements of ∆1 satisfy
various geometric relations. The bijection φx is a co-exact map if and only if it
preserves a certain sub-set of these relations. Precisely φx is a co-exact map if
and only if it satisfies the following nine conditions, where P and Q are points
of ∆1, N and M are linear elements of ∆1 (i.e. segments, rays, or lines) and C1

and C2 are circles of ∆1.

– P lies on M in ∆1 ←→ φx(P ) lies on φx(M) in ∆2.
– P and Q lie on a given side M in ∆1 ←→ φx(P ) and φx(Q) lie on the same

side of φx(M) in ∆2. (The same side of φx(M) in is determined via the
orientation specified by the two variable label of M and φx(M).)

– P lies inside/on/outside circle C1 in ∆1 ←→ φx(P ) lies inside/on/outside
φx(C1) in ∆2.

– M intersects N at a point/along a segment in ∆1 ←→ φx(M) intersects
φx(N) at a point/along a segment in ∆2.

– M cuts in one point/cuts in two points/is tangent at one point to/is tangent
along a segment to C1 in ∆1 ←→ φx(M) cuts in one point/cuts in two
points/is tangent at one point to/is tangent along a segment to φx(C1) in
∆2.

– C1 has the same intersection signature with respect to C2 in∆1 as φx(C1) has
with respect to φx(C2) in ∆2. (The intersection signature classifies the way
C1 and C2 intersect each other as convex polygons. For its precise definition,
see appendix A in the thesis.)

– Circle C1 lies outside/ is contained by circle C2 in ∆1 ←→ φx(C1) lies
outside/is contained by circle φx(C2) in ∆2.

– Circle C1 lies within a given side of M in ∆1 ←→ φx(C1) lies within the
same side of φx(M) in ∆2.

– End-arrow P is on a given side of M in ∆1 ←→ φx(P ) is on the same side
of φx(M) in ∆2.


