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Abstract. We discuss semantics of superlative quantifiers at most n and
at least n. We argue that the meaning of a quantifier is a pair specifying a
verification and a falsification condition for sentences with this quantifier.
We further propose that the verification condition of superlative quanti-
fiers should be interpreted in an epistemic way, that is as a conjunctive
list of possibilities. We also present results of a reasoning experiment in
which we analyze the acceptance rate of inferences with superlative and
comparative quantifiers in German. We discuss the results in the light of
our proposal.

1 Introduction

There is an ongoing debate (Look inter alia: (Geurts & Nouwen, 2007), (Koster-
Moeller et al, 2008), (Geurts et al., 2010), (Cummins & Katsos, 2010), (Nouwen,
2010), (Cohen & Krifka, 2011)) concerning the right semantical interpretation
of so-called superlative quantifiers, such as at most n and at least n, where
n represents a bare numeral, e.g two. Generalized Quantifier Theory (referred
here as a “standard account”) defines superlative quantifiers as equivalent to
respective comparative quantifiers: fewer than n and more than n, that is:

atmost n (A,B) ⇐⇒ fewer thann+ 1(A,B)1 (1)

at least n (A,B) ⇐⇒ more thann− 1(A,B) (2)

It has been observed that in natural languages those equivalences (1) and (2)
might not hold, or at least they might not be accepted by language users based
on pragmatical grounds. There are numerous differences between comparative
and superlative quantifiers involving their linguistic use, acquisition, processing
and the inference patterns in which they occur. First of all, it seems that superla-
tive and comparative quantifiers are not freely exchangeable in same linguistic
contexts. Geurts & Nouwen (2007) provide, among many others, such examples:

(a) I will invite at most two people, namely Jack and Jill.
(b) I will invite fewer than three people, namely Jack and Jill.

1 Q(A,B) means Q A’s are B, where Q is a 〈1, 1〉 generalized quantifier
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where (a) is considered a good sentence, while (b) is less felicitous. The con-
trast between (a) and (b) suggest that while embedding an indefinite expression
(two) in a superlative quantifier licenses a specific construal (namely Jack and
Jill), the same is not licensed in the case of a comparative modifier.

Secondly, it has been demonstrated that superlative quantifiers are mastered
later than the comparative ones during language development (Musolino, 2004),
(Geurts et al., 2010). Furthermore, there is ample data concerning processing of
those quantifiers. It has been for instance shown that verification of sentences
with superlative quantifiers requires a longer time than verification of sentences
with respective comparative quantifiers (Koster-Moeller et al, 2008),(Geurts et
al., 2010). Moreover, the processing of quantifiers is influenced by their mono-
tonicity. A quantifier Q(A,B) is upward monotone in its first argument A if it
licences inferences from subsets to supersets, that is if Q(A,B) and A ⊆ A′, then
Q(A′, B). A quantifier Q(A,B) is downward monotone in its first argument A if
it licences inferences from supersets to subsets, that is if Q(A,B) and A′ ⊆ A,
then Q(A′, B). Understood as 〈1, 1〉 generalized quantifiers, at least n and more
than n are upward monotone in both their arguments, while at most n and fewer
than n are downward monotone. It has been shown that although the downward
monotone at most n and fewer than n take a longer time to be verified than the
upward monotone at least n and more than n, they are actually falsified faster
(Koster-Moeller et al, 2008).

Finally, important arguments against the semantical equivalence between the
comparative and superlative quantifiers come from the analysis of people’s accep-
tance of inferences with those quantifiers. Empirical data show that a majority
of responders usually reject inferences from at most n to at most n+, (where n+
denotes any natural number greater than n), although they accept presumably
equivalent inferences with comparative quantifiers (Geurts et al., 2010), (Cum-
mins & Katsos, 2010). To illustrate it with an example: while people are unlikely
to accept that if at most 5 kids are playing in this room, then at most 6 kids are
playing in this room (2-14% in Cummins’ and Geurts’ experiments for this infer-
ence scheme) they are more likely to accept that if fewer than 5 kids are playing
in this room, then fewer than 6 kids are playing in this room (between 60-70%
in Cummins’and Geurts’). Such data seem to directly contradict the standard
account.

2 Modal semantics or clausal implicature?

Several theories have been developed to explain why seemingly logically equiv-
alent quantifiers show such big differences in the way people use them in the
language. Geurts (2007), (2010) proposes modal semantics for superlative quan-
tifiers and rejects the assumption that equivalences (1) and (2) hold in natural
languages. According to this proposal (referred here as a “modal account”), while
more than n and less than n have a conventional meaning defined in terms of
inequality relation, at least n and at most n have a modal component, namely:
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at least n A’s are B means that: a speaker is certain that there are n elements
which are both A and B, and considers it possible that there are more than n.

at most n A’s are B means that: a speaker is certain that there is no more
than n elements that are both A and B, and considers it possible that there
are n elements.

According to this proposal, as semantically richer, superlative quantifiers are
expected to be harder to process than the respective comparative quantifiers.
Finally, defined as above, at most n A are B does not imply at most n+ A are
B : The latter implies that it is possible that there are (exactly) n+ A that are
B, which is contradicted by the semantics of at most n in the premise.

There are strong arguments against the modal account. For instance this ac-
count seems unsatisfactory with regard to superlative quantifiers embedded in
conditional and various other contexts. Authors (Geurts & Nouwen, 2007),(Geurts
et al., 2010) realize themselves this problem and illustrate it with the following
example:

If Berta had at most three drinks, she is fit to drive. Berta had at most two
drinks. Conclusion: Berta is fit to drive.

Such inferences, which are indeed licensed by the inference from at most n
(2) to at most n+ (3), are commonly accepted by speakers (over 96% in Geurts’s
experiment).

Furthermore, while inferences from at most n to at most n+(1) are rejected
by majority of people (ca 84% in Geurts’ experiment) there are subjects who
do accept them (14% in Geurts’ and even more in our experiment — ca. 23%).
If at most n logically implies possible that n and not possible that more than
n, then the inference from at most n to at most n+ should be inaccessible
(except for cases of random mistakes) for any language users, due to the apparent
contradiction between the premise and the conclusion. Last but not least, to say
that possible that n is a part of the semantics of at most n, implies that at most
n cannot be paraphrased by not more than n. However such a paraphrase seems
totally eligible.

A slightly different account was proposed by Cummins & Katsos (2010), who
observe that the considered linguistical phenomena could be better explained on
pragmatical grounds. The authors show that people do not evaluate at most n
and exactly n-1 as equally semantically incoherent as cases of obvious logical
incoherence, e.g. at most n and exactly n+1 or more than n and exactly n-1.
While sentence pairs, such as:

Jean has at most n houses. Specifically she has exactly n+1 houses.

get average coherence judgments very low, i.e. −4, in the scale from −5
(incoherent) to +5 (coherent), sentence pairs:

Jean has at most n houses. Specifically she has n-1 houses
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get already +1.9. This result speaks against the “modal account”, whose
direct consequence is semantical incompatibility of at most n and exactly n-.

Consequently, Cummins et al. agree with Geurts that at most n and at least
n both imply possible that n, but they claim that this is a pragmatical rather
than a logical inference, namely a co-called clausal implicature (Levinson, 1983).
Clausal implicature is a quantity implicature inferred due to use of epistemically
weak statement. Since the expressed statement with a superlative quantifier e.g.
at most n A are B, as equivalent to a disjunctive statement there are exactly n
or fewer than n elements that are both A and B, does not imply the truth of its
subordinate proposition p = there are exactly n elements that are A and B, the
possibility that p might or might not be true is inferred.

Although we agree with the intuitions concerning a modal component in the
reasoning with superlative quantifiers, we reject the assumption by Geurts et al.
that this component is a part of their meaning. Furthermore, although we agree
with Cummins et al. that the mechanism that results with the observed inference
patterns is more of a pragmatical nature, we are not satisfied with the “causal
implicature” account. What we lack is a deeper insight into the source of this
kind of a pragmatical inference and how it interacts with the logical meaning of
those quantifiers in different reasoning contexts.

Our motivation to further experimentally investigate reasoning with superla-
tive quantifiers is based inter alia on: (i) the lack of data concerning whether
people accept inferences: at least n → at least n -, (ii) the lack of satisfactory data
about how people accept inference with logically equivalent forms of superlative
quantifiers: such as not more than n/not fewer than n or n or fewer than n/n
or more than n, as well as how they accept mutual equivalences between these
forms, (iii) finally, the lack of data concerning people’s acceptance of logically
incorrect inferences with the quantifiers considered here.

3 Two semantic conditions for at most n

Krifka (1999) points out that semantic interpretation of a sentence is usually a
pair that specifies when the sentence is true and when it is false. Following Krifka,
we propose to define meaning of a quantifier as a pair 〈CF , CV 〉, where CV is a
verification condition (specifies how to verify sentences with this quantifier) and
CF is a falsification condition (specifies how to falsify sentences with this quanti-
fier). Furthermore, we propose that the interpretation of a quantifier depends on
a semantic context in which this quantifier is used, namely whether the context
requires the use of the verification condition or the falsification condition. Ver-
ification and falsification conditions are to be understood algorithmically, with
the “else” part of the conditional instruction being empty - thus, they verify (or
falsify) the formulas only if their conditional test is satisfied. From a perspective
of classical logic, these conditions should be dual, namely if C is a CV condition
for sentence φ, then C is a CF condition for sentence ¬φ, and vice versa. We
further, however, observe that in the case of superlative quantifiers, there is a
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split between these two conditions. We suggest, that this split is a result of a
pragmatic focus on the expressed borderline n.

One can think of the meaning of logical operators, thus also quantifiers, in
terms of algorithms, that have to be performed in order to verify (or falsify)
sentences with those operators. (See also (Szymanik, 2009), (Szymanik & Za-
jenowski, 2010), (Szymanik & Zajenowski, 2009)) Krifka (1999) observes, that
a sentence at most n x: φ(x)2 says only that more than n x: φ(x) is false, and
leaves a truth condition underspecified. In other words, the meaning of at most
n provides an algorithm for falsifying sentences with this quantifier, but not
(immediately) for verifying them. This corresponds with the experimental data
showing that it is easier to falsify sentences with at most than to verify them
(Koster-Moeller et al, 2008). Consequently, the primal semantical condition of at
most n x: φ(x) could be understood as an algorithm: “falsify when the number
of x that are φ exceeds n”, and would constitute what we understand by the
falsification condition.

Definition 1 ( falsification condition for at most)

CF (atmost x : φ(x)) := If ∃>nx(φ(x)), then falsify

But how can we know when a sentence with at most n is true? From the point
of view of an algorithm it is a so-called “otherwise” condition that defines in
this case the truth-condition. However a negation of a falsification condition is
in sense informationally empty : it does not describe any concrete situation in
which the given sentence can be verified. As a result, in those contexts that
require to directly verify a sentence, we refer to a verification condition, which
is specified independently. As expressing a positive condition, at most n may be
understood as a disjunction n or fewer than n (“disjunctive at most”).

Definition 2 (verification condition for at most)

CV (atmost n : xφ(x)) := If (∃=nxφ(x) ∨ ∃<nxφ(x)), then verify

The disjunction in 2 could be further broken down to:
∨n
i=1 ∃=ixφ(x) ∨

¬∃xφ(x), in short:
∨n
i=0 ∃=ixφ(x), where the disjunct ∃=oxφ(x) means that

¬∃xφ(x).3

And ∃=nxφ(x) means precisely n x are φ, that is:

∃=nxφ(x) ⇐⇒ ∃x1...∃xn[
n∧
i=1

φ(xi)∧
∧

1≤i<j≤n

(xi 6= xj)∧∀y(
n∧
i=1

y 6= xi → ¬φ(y))]

(3)
2 at most n x are φ
3 Let us observe that ∃<nxφ(x) is a short notation that can be misleading, since it is

not an existential sentence. As existential, fewer than n would imply that there has
to be at least one (though less than n) such x that is φ. However we would like a
sentence less than n x: φ(x) to be also true if no x’s are φ. Therefore, in fact, such a
downward entailing sentence is a disguised universal sentence: ∀x1..xn(

Vn
i=1 φ(xi)→W

1≤i<j≤n(xi = xj))
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3.1 Epistemic interpretation of disjunction

Following Zimmermann (2000) we adopt the view that disjunctive sentences
in natural language are likely to get so-called epistemic reading, that is they
are interpreted as conjunctive lists of epistemic possibilities. According to the
proposed solution a disjunction P1 or...or Pn is interpreted as an answer to a
question: Q: What might be the case? and, thus, is paraphrased as a (closed) list
L:

L: P1 (might be the case) [and]... Pn (might be the case) [and (closure) nothing

else might be the case].

This results in the following reading of a disjunctive sentence:

Definition 3 (Zimmermann, 2000)

P1 ∨ ... ∨ Pn ⇐⇒ �P1 ∧ ... ∧ �Pn

and (closure):

∀P [�P → [P ∩ P1 = ∅ ∨ ... ∨ P ∩ Pn = ∅]]

The character of the closure requires a bit of our attention. Zimmermann
(2000) observes, that disjunctive sentences in natural languages could be under-
stood as closed (exhaustive lists of possibilities) or open (when other possibilities
are not excluded), which in the spoken language is usually marked by intona-
tion. Closure in Definition 3 indicates that the list is exhaustive. There are good
reasons to treat NL disjunctions as generally closed, and it would make sense
obviously also in the case of superlative quantifiers. In classical logic the truth
of ∃=nxφ(x) ∨ ∃<nxφ(x) semantically excludes the option that ∃>nxφ(x), as
contradictory. In our analysis, however, we want to treat closure as a merely
optional condition. This results from regarding the verification and falsification
conditions as independent from each other.

3.2 Verification condition for at most

If we assume that disjunctions in natural language are likely to be interpreted
as conjunctions of epistemic possibilities, then we get the following verification
condition for at most :

Definition 4 ( epistemic interpretation of the verification condition for at most)
4

4 A detailed description of the modal predicate logic needed for providing semantics
of this kind of sentences is beyond the scope of this paper. For our present purposes
it is just enough to assume that, for each possible world, we have a different domain
of objects over which we quantify. We assume also standard semantics for modal
operators, and we restrict to reflexive and transitive Kripke models.
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CW (atmost n x : φ(x)) := If (�∃=nxφ(x) ∧ �∃<nxφ(x)), then verify

and (closure)

If � ∃>nxφ(x), then falsify

Where:

(�∃=nxφ(x) ∧ �∃<nxφ(x)) ⇐⇒
n∧
i=o

�∃=ixφ(x) (4)

Now we can see the asymmetry between the falsification and verification con-
dition of at most n. While the falsification condition specifies precisely when the
sentence has to be rejected as false, the verification condition (in the epistemic
reading) provides a conjunctive list of epistemic possibilities that should all be
the case in order to verify it.

The epistemic reading of the verification condition is also what differentiates
superlative quantifiers from the comparative ones. We propose that the disjunc-
tive form of the verification condition in the case of superlative quantifiers is a
result of the focus on the borderline n. The n mentioned in the superlative quan-
tifier constitutes the borderline of the truth-conditions, however the numeral n
that occurs in a comparative quantifier is not a part of the truth-conditions. The
borderline of truth-conditions (that is n-1 for fewer than n, and n+1 for more
than n) remains silent. Consequently, the disjunctive form of comparative quan-
tifiers (and hence also the epistemic reading), though logically possible, is not
pragmatically justified. In principle, a comparative quantifier can be as well in-
terpreted in the epistemic way (as a conjunction of epistemic possibilities). Such
a reading is, however, not equally likely to occur as in the case of a superlative
quantifier, since the borderline is not explicitly expressed.

Let us observe that closure of the verification condition is stronger than
the falsification condition. Intuitively, if ¬ � ψ (equivalently �¬ψ), then as well
¬ψ (here: ψ = ∃>nxφ(x)), i.e. �ξ  ξ, however the theorem holds only in
reflexive Kripke frames. Furthermore, the optional character of the closure bases
on our assumption that the falsification and verification conditions are in a sense
independent and only as a pair constitute the full semantic interpretation. Since
the falsification condition, as defined in 2, is sufficient to account for the right
semantical criterion of when the sentence with at most n is false, the closure
of the verification condition is redundant and might or might not be considered
in the reasoning process. The optional character of closure turns out crucial in
evaluating validity of inferences with at most n.

When at most n is interpreted as in Definition 4, then the inference from at
most n to at most n+1 is not valid. Namely, from �∃=nφ(x) ∧ �∃<nxφ(x) one
cannot infer �∃=n+1xφ(x)∧�∃<n+1xφ(x). It is easy to observe that the conjunct
�∃=n+1xφ(x) cannot be proven based on the premise, though it can be excluded
only if the closure of the premise is applied.
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On the other hand, the inference: at most n → at most n-1, which is invalid
in the standard account, in the epistemic interpretation is blocked only due
to closure of the conclusion. That is the �∃=nxφ(x) implied by the premise is
contradicted by the closure of the conclusion, i.e. ¬�∃>n−1xφ(x). It is important
to notice that without the closure the implication holds (if the epistemic reading
of the verification condition is applied).

In some aspects our proposal might seem similar to Geurts’ “modal” ap-
proach, namely we define the verification condition of at most n and at least
n (see below) in modal terms. The main difference is that, in our account, it
is only the verification condition that is defined modally, while the falsification
condition remains standard. This results in a specific split or ambiguity in the
meaning of superlative quantifiers.

4 At least and bare numerals

The quantifier at least n might seem perhaps less interesting than at most n, as
it seems, as is also evident from our results (see Section (5)), less problematic
from the point of view of reasoning. As an upward monotone quantifier, at least
n appears to provide a clear verification algorithm: “verify when n x (that are
φ) are found”. Such a semantical interpretation would not, however, account for
the linguistical differences between at least n and more than n-1.

Let us start with defining a falsification condition for at least n as follows:

Definition 5 ( falsification condition for at least)

CF (at least n : xφ(x)) := If ∃<nxφ(x), then falsify

What we expect from the verification condition is that it express the whole
range of epistemic possibilities in which the sentence with at least n can be true.
Understood as in formula (2), thus as equivalent to more than n-1, a sentence
with at least n can be expressed as an existential sentence that merely says that
there are n (x that are φ), but does not exclude the possibility that there are
more:

∃≥nxφ(x) ⇐⇒ ∃>n−1xφ(x) ⇐⇒ ∃x1...∃xn[
n∧
i=1

φ(xi) ∧
∧

1≤i<j≤n

(xi 6= xj)] (5)

This formula however, which would be a right verification condition for the
comparative more than n-1, does not outline the borderline n, which is empha-
sized in the superlative at least n. Therefore we further break down formula (5)
into a disjunctive formula: (exactly) n or more than n x are φ, which constitutes
our verification condition for at least n.

Definition 6 (verification condition for at least n)

CV (at least n : xφ(x)) := If (∃=nxφ(x) ∨ ∃>nxφ(x)), then verify
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The latter can be handled as a conjunctive list of possibilities.

Definition 7 ( epistemic interpretation of the verification condition for at least n)

CF (at least n : xφ(x)) := If (�∃=nxφ(x) ∧ �∃>nxφ(x)), then verify

and (closure)

If (
n−1∨
i=0

�∃=ixφ(x)), then falsify

Having introduced the semantical conditions for at least n, we further ana-
lyze how they affect inferences with this quantifier, in particular we mean here
the inference (at least n→ at least n-1 ), as well as its presumably equivalent
disjunctive form: (n or more than n → n-1 or more than n-1 ). We propose
that the way people handle these inferences depends on how they interpret bare
numerals, such as n.

From a logical perspective, a bare numeral n (e.g. “two”) can be interpreted
as denoting any set of at least n elements, or a set of exactly n elements.5 Thus
ψ = nx : φ(x) can simply mean that there are n x that are φ, without any further
constraints on whether there are more. Then, ψ gets the reading as in formula
(5). On the other hand, ψ could be understood with a kind of closure, that is
that there are exactly n x’s are φ, thus as in formula (3).

It has been a matter of a wide debate in formal semantics and pragmatics
what is the right approach to interpreting bare numerals in natural languages. It
has been proposed that: (i) the literal meaning of n is at least n, while the condi-
tion exactly comes as a scalar implicture (Horn, 1972), (ii) the basic meaning of
n is exactly n, while both at least and at most readings would be context-based
(Breheny, 2008) (iii) n is ambiguous between at least n and exactly n (Geurts,
2006), (iv) n is underspecified and can receive at least, at most or exactly readings
depending on the context (Carston, 1998).

Let us now show how the interpretation of n interacts with the validity of
inferences (n or more than n)→ (n-1 or more than n-1 ), given the epistemic
interpretation of disjunction. Suppose now that n is interpreted with a closure:
exactly n. It is easy to observe that, in such a case, possible that n and possible
that more than n does not imply possible that n-1 or possible that more than n-
1. The premise which is interpreted as in Definition 7 does not imply �∃=n−1 ∧
�∃>n−1 (with closure

∧n−2
i=0 ¬�∃=ixφ(x)) While �∃>n−1 follows from both �∃>n

and �∃=n, the problematic element is �∃=n−1, which is directly contradicted by
the closure of the premise. But suppose that n does not get the “exact” reading,
but it is interpreted barely as there are n, so as (5). Then from possible that n
we can infer possible that n-1, since the latter does not exclude the possibility
that there is a bigger set of elements.

5 or a set of at most n elements, however this interpretation seems to be counterintu-
itive and allowed only in special contexts.
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5 Experiment

We conducted a pilot reasoning experiment (in German) to check how people
reason with superlative quantifiers: at least n (mindestens n)6 and at most n
(höchstens n), as well as with logically equivalent but linguistically different
forms of those quantifiers: a comparative negative form and a disjunctive form.
These were quantifiers: not more than n (nicht mehr als n) and n or fewer than
n (n oder weniger als n) (as logically equivalent to at most n), and not fewer
than n (nicht weniger als n) and n or more than n (n oder mehr als n) (as
equivalent to at least n).

We were particularly interested in comparing subjects’ acceptance of infer-
ences from at most n to at most n+1 (type B: see Table 1) with their acceptance
of logically equivalent forms of this inference: type D and type F. We were also
interested in people’s willingness to infer at most n from not more than n, and
vice versa (type G). Furthermore, we checked the respective inferences with at
least n, that is: at least n → at least n-1 (type A), and its equivalent forms:
type C and type E. Finally, we checked the inferences between not fewer than
n and at least n (type H). Last but not least we tested the respective incorrect
inferences with the considered quantifiers, in all forms (see Table 2).

In the premises of our inferences we used four different quantifiers: at least
three, at most three, at least four, at most four, and their equivalent forms. All
the numbers were throughout spelled out in words according to the requirements
of German grammar. There was only one example for each distinct inference
relation (i.e. two per inference type). Every sentence content was different. Ad-
ditionally, to introduce more variation, sentences which had at most 4/at least
4 (or their equivalent forms) in the premise had a quantifier in the subject po-
sition (e.g. At least four computers are broken in the lab), sentences which had
at least 3 /at most 3 in the premise had a quantifier in the object position (e.g.
Arthur has at least three cars.)

As fillers we used inferences with so-called bare numerals (e.g. four): those
whose correctness depends on the “at least” reading of bare numerals, i.e. n→
n− (e.g. 4 → 3); and those that are logically incorrect independently of the
presumed reading, such as n→ n+ (e.g. 4→ 5).

5.1 Procedure

The experiment was conducted on German native speakers, mainly students
of philosophy, psychology, neuroscience and computer sciences. There were 17
subjects (7 male). Subjects were asked to respond “yes” or “no” to the question
whether the second sentence (below the line) has to be true, assumed that they
know that the first sentence (above the line) is true. For a better understanding
of the task two examples were given: one of a valid inference, that should be
given a “yes” response:

6 We give in brackets the German translation used in the experiment
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Inga has done three exercises.
Inga has done more than two exercises.

and one of an invalid inference, that requires a “no” response:

Eva has done three exercises.
Eva has done fewer than two exercises.

Note that the examples were selected in such a way that their validity did
not depend on the understanding of any of the tested inference relations, that
is the examples served as an instruction of what is an inference in general, but
not how to evaluate the inferences, that were tested in the experiment.

After reading the instruction subjects saw 40 randomly ordered reasoning
tasks: one task at a time, displayed on a computer screen. There was no time
limit in the test.

At the end of the experiment two additional control questions were asked, in
which the inference from at most n to at most n+1 was embedded in a deontic
context. Note that the logically correct response to first question is “yes”, while
to the second is “no”.

(1) Erika promised to drink at most six beers. She drank at most four. Did she
keep her promise?

(2) Thomas is allowed to eat at most three cookies. He ate at most two. Did
he break the rule?

Tables: 1 and 2 summarize the inferences as well as the results.

5.2 Results

Our first observation is that people accepted the logically correct inferences much
more frequently than the logically incorrect ones. The incorrect inferences (apart
from disjunctive inferences: E’ and F’ which turned out specially problematic)
were mostly rejected and their acceptance rate was low enough (1 − 9%) to
be considered as a result of random mistakes (Table 2). On the other hand all
correct inferences were accepted on the level of at least 20%7, with high variance
depending on the form of an inference, in this: inferences of type B and F seemed
the most problematic.

The important result is that nearly 100% of responders did accept inference
of type G and H, that is (at most n → not more than n) as well as (not more
than n → at most n), and respective inferences between at least n and not
fewer than n, which suggests that they do see those expressions as equivalent.
Furthermore, while inferences from type B, namely the problematic (at most n
→ at most n+1 ) were accepted only by 23% of responders, the inferences of
type D (not more than n → not more than n+1 ), were already accepted by
44%. The difference was statistically significant: z = −2, 333, p = .02, r = −.4 8

Thus, it seems that paraphrasing at most n to the negative form not more than
n facilitates the inference.
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Table 1. Logically correct inferences

Premise Conclusion Correct Responses Percentage
A At least at least 4 at least 3 13 79%

at least 3 at least 2 14
B At most at most 4 at most 5 3 23%

at most 3 at most 4 5
C Not fewer than not fewer than 4 not fewer than 3 8 59%

not fewer than 3 not fewer than 2 12
D Not more than not more than 4 not more than 5 7 44%

not more than 3 not more than 4 8
E N or more than n 4 or more than 4 3 or more than 3 10 67%

3 or more than 3 2 or more than 2 13
F N or fewer than n 4 or fewer than 4 5 or fewer than 5 6 23%

3 or fewer than 3 4 or fewer than 4 2
G “At most” Equivalence not more than 3 at most 3 16 98%

at most 3 not more than 3 17
not more than 4 at most 4 17

at most 4 not more than 4 17
H “At least” Equivalence not fewer than 3 at least 3 17 93%

at least 3 not fewer than 3 17
not fewer than 4 at least 4 16

at least 4 not fewer than 4 13
K Numerical 5 4 9 65%

6 2 11
7 6 13
8 5 11

L
embedded at most 4 at most 6 17 100%

at most 2 at most 3 16 94%

Table 2. Logically incorrect inferences

Premise Conclusion Correct Responses Percentage
A’ At least at least 4 at least 5 1 6%

at least 3 at least 4 1
B’ At most at most 4 at most 3 0 6%

at most 3 at most 2 2
C’ Not fewer than not fewer than 4 not fewer than 5 1 9%

not fewer than 3 not fewer than 4 2
D’ Not more than not more than 4 not more than 3 1 9%

not more than 3 not more than 2 2
E’ N or more than n 4 or more than 4 5 or more than 5 3 20%

3 or more than 3 4 or more than 4 4
F’ N or fewer than n 4 or fewer than 4 3 or fewer than 3 8 50%

3 or fewer than 3 2 or fewer than 2 9
K’ Numerical 4 5 0 1,5%

2 6 1
6 7 0
3 8 0

The inferences of type A, that is at least n→ at least n-1, turned out relatively
unproblematic for subjects, who accepted them in ca. 80% of cases. Interestingly
a paraphrase to the negative comparative form not fewer than n, made the
task more difficult (59% accepted; means comparison: z = −2.07, p = .038, r =
−.355). However, it is worth to note that inferences of type A were still rejected

7 We give an overall result for a given type of an inference
8 In all the cases we used Wilcoxon Signed Ranks test to compare means.
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by ca. 20%, which suggests that there is some, at least pragmatic, mechanism
suppressing this inference.

The results for the disjunctive inferences (E and F) are especially interest-
ing. First of all the response pattern for disjunctive counterpart of at least cor-
responds with the predictions of classical logic: While logically valid inferences
(E) were accepted on a relatively high level of 67% (which is lower, though not
significantly lower, compared to the acceptance of the basic form (type A)), the
invalid inferences (E’) were mostly rejected (only 20% accept). The opposite
effect, however, we got for the disjunctive form of at most. The logically valid in-
ferences (F) were mostly rejected (only 23% accept), whilst invalid inferences (F’)
were accepted in exactly 50% of cases. Interestingly the acceptance rate of (F)
inferences was similar to the acceptance rate of the basic form of inferences with
at most (B). In both cases the differences between acceptance rate of correct and
incorrect forms were statistically significant, and were as follows: The differences
between correct and incorrect inferences with “disjunctive at most” (F and F’):
z = −2.491, p = .013, r = −.43 and correct and incorrect “disjunctive at least”
(E and E’): z = −2.165, p = .030, r = −.37. The differences between disjunctive
at most and at least : incorrect (E’ and F’) z = −2.057, p = .040, r = −.36: and
correct (E and F) :z = −2.697, p = .007, r = −.46.

The “correct” inferences with bare numerals were accepted in ca. 65% of
cases. There was only one mistake in the incorrect inferences with bare numerals.
Finally, both embedded at most inferences got nearly 100% correctness rate (one
mistake only for question 2).

6 Discussion

Although our results cannot be treated as a final evidence of our theory, our
experiment certainly provides various important observations that support the
plausibility of our proposal.

First of all, all the implications between the negative comparative and su-
perlative forms of considered quantifiers were almost without exceptions ac-
cepted by our subjects. This result supports the assumption that those are se-
mantically equivalent forms in natural language.

Secondly, the inferences (at least n → at least n-), although accepted by a
majority of responders, were not as obvious as the standard theory would pre-
dict, and 20% of subjects rejected them (A, Table 1). This suggests existence of
some, at least pragmatic, mechanism interfering in subject’s reasoning with at
least. What is also worth reminding, valid inferences with “disjunctive at least”
were rejected even more often (F, Table 1). We consider that this effect can be
explained in terms of the epistemic interpretation of at least n and its interaction
with the reading of bare numerals. Let us notice that our results provide a weak
evidence for the interplay between the reading of bare numerals and the treat-
ment of “disjunctive at least” inferences. In our experiment inferences of type
K: n → n−, which base on the “at least” reading of numerals were accepted
in ca. 65% of cases, thus our responders in 35% cases integrated the “exact”
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reading of bare numerals, which resulted in their rejection of considered infer-
ences. However, “disjunctive at least” inferences (type E) ware rejected also in
ca. 33%. We suggest that rejection of type E inferences was as well a result of
an exact reading of a bare numeral n, as we have explained above. Although a
correlation between subject’s acceptance of type E and type K inferences failed
to reach significance, it was close to significant (Spearman’s rho= .426, p = .08)
and we expect that with a bigger sample it could reach the significance level.

A similar effect is presumably the reason why 20% of subjects rejected type
A inferences: (at least n→ at least n-1 ). Namely, the application of the epis-
temic verification condition of at least n together with an exact reading of bare
numerals results in rejection of such inferences. This effect might be however
weaker and less likely to occur than in the case when the disjunctive form is
given explicitly.

Thirdly, the surprising result that subjects accepted the invalid inferences
with “disjunctive at most” more frequently than the valid ones can be explained
by our proposal. As we have proposed above, closure in the verification condition
is optional, since the falsification condition is sufficient to account for the right
semantics. However, if context enforces applying one of the semantical conditions
(verification or falsification), then the other one tends to be ignored. While,
from the perspective of classical logic it should be enough to use only one of
the conditions (since the other can be defined via the first one), in the case of
superlative quantifiers the epistemic reading of the verification condition creates
the bifurcation in the meaning. This results in different inferential patterns in
which those quantifiers occur, depending on what the context primarily enforced:
the verification or falsification condition.

In what follows, and as we have explained above, when the verification con-
dition is used, then n or fewer then n does not imply n+ or fewer then n+
due to the epistemic interpretation. Though, it also does not exclude it if no
closure is applied. However, n or fewer then n does imply n- or fewer then n- if
the verification condition is used but no closure is applied. Now we can explain
why inferences (F’, Table 2): (n or fewer than n) → (n-1 to fewer than n-1 )
got a 50% rate of acceptance, although they are invalid both in the standard ac-
count and in the epistemic account. Based on Definition 4, ∃=nxφ(x)∨∃<nxφ(x)
is interpreted as �∃=nxφ(x) ∧ �∃<nxφ(x) (with closure: ¬ � ∃>nxφ(x)). But
�∃<nxφ(x) can be broken down to: γ = �(�∃n−1xφ(x) ∧ �∃<n−1xφ(x)) Now
γ implies �∃=n−1xφ(x) ∧ �∃<n−1xφ(x) (here we use the assumption that the
world accessibility relation is transitive). In such a case it might happen that
the closure of the conclusion, that is: ¬ � ∃>n−1xφ(x) which contradicts the as-
sumption that �∃=nxφ(x) is ignored by subjects, which results in the high logical
mistake ratio.

7 Conclusions

We have argued that the meaning of a quantifier can be defined as a pair
〈CF , CV 〉, in which the verification (CV ) and the falsification (CF ) condition
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for sentences with this quantifier are specified separately. Though from the log-
ical point of view those conditions should be dual, in the case of superlative
quantifiers they are not. Namely, pragmatic focus on the borderline n in both
at least n and at most n enforces a disjunctive verification condition, which is
further interpreted as a conjunctive list of epistemic possibilities.

Finally, we would like to say few words about why we want to understand the
verification and falsification conditions in terms of algorithms. Let us make an
observation that semantical equivalence and procedural identity of algorithms
are different things. Let us consider algorithms A1 and A2:

A1 : Count all x that are φ. If the number m of x that are φ is smaller than n − 1, then
verify.

A2 : Count all x that are φ. If the number m of x that are φ equals n or is smaller than
n, then verify.

A2 and A3 are semantically equivalent, namely they verify logically equiv-
alent formulas, e.g. ψ1, ψ2 and ψ3, however in a sense of procedures that are
executed they are not identical.

ψ1 ⇐⇒ ¬∃>nxφ(x)
ψ2 ⇐⇒ ∃<n+1φ(x)
ψ3 ⇐⇒ ∃=nxφ(x) ∨ ∃<nxφ(x)
ψ1 ⇐⇒ ψ2 ⇐⇒ ψ3

Furthermore, A3

A3 : When the number m of x that are φ is bigger then n, then falsify.

is dual to both A1 and A2, namely adding an otherwise verify condition to
A3 and otherwise falsify condition to A1 and A2 would make A3 semantically
equivalent to both A1 and A2. However, without the “otherwise” condition, A3

does not allow to verify any of the given sentences, while A2 or A1 do not allow
to falsify them. Then, 〈A1, A3〉, or 〈A2, A3〉 could be considered pairs of partial
algorithms. Each pair could constitute a full semantical interpretation of each of
the sentences ψ1, ψ2, ψ3.

We consider that logically equivalent, but linguistically different, natural lan-
guage sentences may trigger different kinds of such partial algorithms, or pairs of
partial algorithms. First of all two equivalent sentences that differ in the linguis-
tical form can trigger as primary only one of the algorithmic conditions: verifi-
cation or falsification, while the complement condition is ignored. Secondly, they
might trigger non-identical verification/falsification procedures. Consequently, it
might happen that the executed procedures differ in complexity. Additionally,
if we take into account that some extra mechanisms, e.g. the above-discussed
epistemic interpretation of disjunctive conditions, might play a role, we not
only obtain different algorithms in the procedural sense but also semantically
non-equivalent algorithms for logically equivalent or even same sentences. For
instance, A2 would be replaced by:
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A′
2: if [it is possible that there are exactly n x that are φ AND it is possible that there are

fewer than n x that are φ], then verify.

While A2 is dual to A3, A′2 is not anymore. However a pair 〈A3, A
′
2〉 could

constitute a semantical interpretation of a natural language sentence at most n :
xφ(x), which would explain the non-semantically coherent (from the point of
view of classical semantics) inference patterns in which this quantifier occurs.
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Appendix: The complete list of pairs of sentences used in the
experiment (premise, conclusion), translated from German.

At least four Anna’s dress are red. At least three Anna’s dresses are red.
Arthur has at least three cars. Arthur has at least two cars.
At most four books were stolen from the library. At most five books were stolen from the library.
Markus ate at most three pieces of cake. Markus ate at most four pieces of cake.
Not fewer than four cards are missing in the deck. Not fewer than three cards are missing in the
deck.
A child has painted not fewer than three pictures. A chid has painted not fewer than two pictures.
Not more than four students came today to the philosophy seminar. Not more than five students
came today to the philosophy seminar.
Sabine got not more than three presents. Sabine got not more than four presents.
Four or more than four students were sick this week. Three or more than three students were sick
this week.
Christopher speaks three or more than three languages. Christopher speaks two or more than two
languages.
Four or fewer than four students have passed the course. Five or fewer than five students have passed
the course.
Beate has three or fewer than three children. Beate has four or fewer than four children.
Five people came to the party. Four person came to the party.
Monika invited six guests to her birthday party. Monika invited two guests to her birthday party.
Seven fruits in the basket have spoilt. Six fruits in the basket have spoilt.
Alicia bought eight bottles of beer. Alicia bought five bottles of beer.
At least four of Carolina’s scarfs are blue. At least five of Carolina’s scarfs are blue.
Thomas has read at least three books. Thomas has read at least four books.
At most four computers in the lab are broken. At most three computers in the lab are broken.
Andrea baked at most three pizzas. Andrea baked at most two pizzas.
Not fewer than four professors attended the meeting. Not fewer than five professors attended the
meeting.
Hans had not fewer than three glasses of wine. Hans had not fewer than four glasses of wine.
Not more than four people have applied for this job. Not more than three people have applied for
this job.
Natalie wrote not more than three exercises. Natalie wrote not more than two exercises.
Four or more than four girls in the class are good in arts. Five or more than five girls in the class
are good in arts.
Christina’s cat gave birth to three or more than three kittens. Christina’s cat gave birth to four or
more than four kittens.
Four or fewer than four students failed in the exam. Three or more than three students failed in the
exam.
Tanja trains three or fewer than three times a week. Tanja trains two or fewer than two times a
week.
Four new students joined the chess club this week. Five new students joined the chess club this week.
Stephanie baked two cakes for her birthday. Stephanie baked six cakes for her birthday.
Six members of the library club came to the meeting. Seven member of the library club came to the
meeting.
Frank gave his mother three roses. Frank gave his mother eight roses.
Not more than three children have done their homework for today. At most three children have done
their homework for today.
At most three girls took part in the maths competition. Not more than three girls took part in the
maths competition.
Erika has not more than four necklaces. Erika has at most four necklaces.
Lena takes at most four courses at the university. Lena takes not more than four courses at the
university.
Not fewer than three new animals were born in the city zoo. At least three new animals were born
in the city zoo.
At least three exotic three have died in our botanic garden. Not fewer than three exotic threes have
died in our botanic garden.
Daniel plays not fewer than four times a week football. Daniel plays at least four times a week
football.
Albert has at least four exams this semester. Albert has not fewer than four exams this semester.
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