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Abstract. The performance evaluation of manufacturing systems is a critical and 
difficult task to be addressed throughout the factory life-cycle phases, including 
the early design, detailed design, ramp-up, reconfiguration, and monitoring. An 
efficient and effective performance evaluation may have a relevant impact on the 
profitability of an industrial company. This paper addresses the application of a 
data model for virtual factories to the performance evaluation problem, aiming at 
exploiting the interoperability with other software tools to continuously update the 
virtual representation of a manufacturing system, so that accurate estimations can 
be obtained. A test case is described and then used to check the viability of the 
proposed approach in the case of Discrete Event Simulation (DES) based on a 
commercial software tool like Arena. 
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1. Introduction 

The design of manufacturing systems is a complex task strictly related to 
manufacturing strategy decisions having an impact on a long time horizon (usually 
more than two years) and involving a major commitment of financial resources [1]. For 
instance, strategic decisions may regard the number of plants or facilities to be built, 
their size and their location, the variety of products to be manufactured, the 
manufacturing technology to be used and, within a plant, the number and type of 
production resources, the characteristics of the transportation and handling systems, the 
degree of automation. The complexity of these decisions and their importance from the 
point of view of the profitability of capital investments emphasizes the need to have 
formal and structured approaches to evaluate the performance of a manufacturing 
system. 

Usual performance indicators in a manufacturing context can be the production 
volumes, the quality of the output, the incurred cost, etc. In addition, more detailed 
performance indicators may be calculated, e.g. the utilization of production resources, 
the average flow time of products, the average level of the work in progress. Different 
models can be used to address specific types of analysis and levels of detail while 
modeling a manufacturing system to evaluate its performance. In the field of discrete 
part manufacturing, two main approaches are in common use: 



 Analytical models using mathematical or symbolic relationships to provide a 
formal description of the system [2] [3]. The model is then used to derive an 
explicit expression of a performance measure or, in most of the cases, to 
define an algorithm or a computation procedure able to calculate the 
performance indicators. 

 Simulation models represent the events occurring in a manufacturing system in 
its operation by a sequence of steps that are executed in a computer program 
[4] [5]. This sequence of steps is generated with respect to a set of rules 
modeling the behavior of the system. Therefore the characteristics and 
relationships between the elements in a manufacturing systems can be 
described in detail. However, the higher is the detail level and the higher is 
required computational effort. If a simulation model is run for a sufficiently 
long time, then proper statistics can be collected and performance indicators 
can be estimated. 

Simulation models enable the representation of an higher level of details, thus 
providing more accurate estimates of the manufacturing system behavior compared to 
analytical models. However, to reach this level of details, also a more detailed 
formalization of the manufacturing system is needed. Simulation modeling of 
manufacturing systems usually relies on commercial software tools (e.g. Arena, Simio, 
Plant Simulation, Visual Components, etc.) providing an integrated environment to 
describe the system and its behavior in terms of relationships and rules and, in addition, 
to deal with the generation of random values and the collection of the statistics.  

Performance evaluation tools can be more effective if they are based on a virtual 
representation of the manufacturing system that is continuously updated during both 
the design and operational/execution phase, thus guaranteeing an overall coherence of 
the obtained results. Moreover, the generation of a simulation models and/or analytical 
model can be time-consuming and it would be beneficial if this activity could be as 
much automated as possible. The resulting need of interoperability between 
performance evaluation tools and tools supporting the design and management of real 
industrial systems can be met by an extended framework enabling: 

 the cooperation among different actors with different competences and 
expertise in the design and management of a factory based on common 
definitions and a shared virtual representation of its components linking 
different manufacturing domains while guaranteeing their coherence; 

 the management and update of a huge amount of manufacturing data made 
available through standard and interoperable interfaces. 

The development of a framework for the interoperability between software tools  
supporting factory processes is currently carried out by the European project “Virtual 
Factory Framework” [6]. The Virtual Factory Framework (VFF) can be defined as “An 
integrated collaborative virtual environment aimed at facilitating the sharing of 
resources, manufacturing information and knowledge, while supporting the design and 
management of all the factory entities, from a single product to networks of companies, 
along all the phases of the their lifecycles” [7]. The VFF architecture is based on three 
main pillars:  

 Virtual Factory Data Model (VFDM), i.e. a coherent, standard, extensible, and 
common data model for the representation of factory objects related to 
production systems, resources, processes and products [8]. 



 Virtual Factory Manager (VFM), i.e. the manager of a shared data repository 
containing factory data that can be accessed and modified by all the software 
tools integrated in the framework [9] [10]. 

 decoupled Virtual Factory modules, i.e. the software tools that are able to 
communicate with the VFM to retrieve and send shared data formalized 
according to the VFDM (e.g. [11]). 

This paper focuses on development and enhancement of the VFDM for modeling a 
generic manufacturing system and then evaluating its performance. Section 2 gives an 
overview of the current state of the art on data models for manufacturing systems and  
presents the VFDM solution. Section 3 describes a test case representing a production 
line. Section 4 delves into the problem of evaluating the performance of a 
manufacturing system formalized according to the VFDM; in particular Discrete Event 
Simulation by means of the commercial software tool Arena is addressed. Finally, 
conclusions are drawn in Section 5. 

2.  Modeling Manufacturing Systems 

2.1 State of the Art 

Several scientific contributions and proposed technical standards have faced the 
problem of developing a holistic and complete data model for representing 
manufacturing systems, both considering tangible (e.g. machine tools, part types to be 
produced, etc.) and intangible (e.g. process plans, production logics, etc.) aspects. 

Among the available technical standard, ANSI/ISA-95 [12] is an international 
standard for developing an automated interface between enterprise and control systems. 
This standard has been developed for applications in all industries and in all sorts of 
processes, like batch processes, continuous and repetitive processes. ISA-95 aims at 
providing both consistent terminology and information models as well consistent 
operations models. B2MML (Business To Manufacturing Markup Language) [13] is an 
XML implementation of the ANSI/ISA-95 and consists of a set of XML schemas [14] 
that implement the data models in the ISA-95 standard. 

According to ANSI/ISA-95 standard, a manufacturing process can be modeled 
using the ProcessSegment class. The ProcessSegment class can represent a single step 
in a manufacturing process or a whole process through composition. The 
ProcessSegment class is linked to further classes to characterize the process, e.g. the 
needed equipment (EquipmentSegmentSpecification class), the personnel 
(PersonnelSegmentSpecification class) and the material (MaterialSegmentSpecification 
class). Furthermore, precedence relations between different process steps can be 
defined thanks to the ProcessSegmentDependency class. The 
EquipmentSegmentSpecification class allows the user to specify the pieces of 
equipment needed for the execution of a process step and how the equipment. 
ANSI/ISA-95 standard enables the user to freely define customized properties that can 
be attached to most of the classes representing processes and production resources. 
However, such flexibility can be a major drawback from the interoperability point of 
view. Indeed, if two users adopt ANSI/ISA-95, they still have to agree on the definition 
of the object properties before being able to exchange data characterized by a proper 
semantic. Furthermore, ANSI/ISA-95 does not provide a complete support for 



modeling physical data such as the placement and shape representation of objects in the 
manufacturing system (e.g. a machine tool). 

A different approach in the modeling of manufacturing process is offered by the 
Process Specification Language (PSL) standard [15]. PSL is an ontology providing a 
way to formally describe a process and its characteristics. The ontology has been 
developed at the National Institute of Standards and Technology (NIST) and has been 
approved as an international standard in the document (ISO 18629). The PSL ontology 
grounds on a set of axioms of first order logic written in CLIF (Common Logic 
Interchange Format) and organized in a core set together with extensions. The core 
provides the definition of an activity and its occurrence related to a time variable. The 
extensions enable the modeling of the execution through states, the definition of logical 
expression constraining the execution of the activities, and the capability of modeling 
resource and their usage by the execution of the activities. Grounding on an ontology, 
the PSL standard provides a robust and reliable framework to formalize the knowledge 
related to a process and guarantee an adequate level of interoperability. However, this 
standard is still scarcely adopted in the industrial domain, probably because of the 
perceived complexity at the enterprise level. 

The Industry Foundation classes (IFC) standard by buildingSMART [16], partially 
based on STEP standard [17], represents an open specification for Building Information 
Modeling (BIM) data that is exchanged and shared among the various participants in a 
building construction or facility management project. The IFC standard is available as 
an EXPRESS schema specification [18] and is structured as a set of schemas that are 
grouped into four layers: Resource layer (i.e. general purpose or low level 
concepts/objects), Core Layer (where the most abstract concepts of the model are 
defined), Interoperability Layer defining concepts or objects common to two or more 
domains, and the Domains/Application Layer. The standard was mainly conceived for 
Architectural Engineering Construction (AEC) industry domains (e.g. Building 
Controls, Structural elements, Structural Analysis, etc.) and therefore provides most of 
the definitions needed to represent tangible elements of a manufacturing systems. 
Furthermore, generic definitions of intangible characteristics (e.g. processes, work 
plans, etc.) are provided, so that its data structures can be specialized for other 
industrial domains, such as the manufacturing domain. 

2.2 Virtual Factory Data Model 

The Virtual Factory Data Model (VFDM) of the VFF project is based on already 
existing technical standards and extends their definitions to represent the characteristics 
of a manufacturing system in terms of the products to be manufactured, the 
manufacturing process they must undergo and the resources entitled to operate the 
different manufacturing operations [8]. The VFDM is mainly based on the IFC 
standard release IFC2x4 RC2 [19] that was translated into a set of ontologies by 
adopting the Semantic Web approach [20]. Indeed, the XSD/XML technology [14] was 
considered at first, but it is not suitable for knowledge representation, explicit 
characterization of data with their relations on a semantic level, and management of 
distributed data, thus endangering referential consistency. On the other hand, the 
Semantic Web approach offers the possibility to represent formal semantics, merge 
ontologies dealing with different domains, efficiently model and manage distributed 
data, and ease the interoperability between different applications. 



The Entities in the IFC standard are mapped to OWL Classes in the VFDM. Most 
of the classes derived from IFC are specializations of two fundamental classes named 
IfcTypeObject and IfcObject, both being subclasses of IfcObjectDefinition. The former 
class is the generalization of any thing or process seen as a type, the latter seen as an 
occurrence. OWL individuals of class IfcObject may be linked with a corresponding 
individual of class IfcTypeObject. 

IfcTypeObject has the following subclasses: IfcTypeProduct, IfcTypeProcess, 
IfcTypeResource. IfcTypeProduct represents a generic object type that can be related to 
a geometric or spatial context (e.g. manufactured products, machine tools, transport 
systems, etc.). IfcTypeProcess defines a generic process type that can be used to 
transform an input into output (e.g. assembly operation, machining operation, etc.). 
IfcTypeResource represents the information related to resource types needed to execute 
a process. A resource represents the “use of thing”. 

IfcObject has the three main subclasses (i.e. IfcProduct, IfcProcess, IfcResource) 
that represent an occurrence of the corresponding type modeled by the subclasses of 
IfcTypeObject. 

The previously described generic classes can be exploited to model a wide range of 
manufacturing systems while taking into consideration both physical and logical 
aspects. The subclasses of IfcTypeObject can be used to specify the designed 
characteristics of a manufacturing system, e.g. the part types to be produced (as 
individuals of IfcTypeProduct), the process plans (as individuals of IfcTypeProcess), 
the required type of production resources (as individuals of IfcTypeResource). On the 
other hand, the subclasses of IfcObject can be used to represent the execution phase of 
a manufacturing system by defining the workpieces in process (as individuals of 
IfcProduct), the actually executed operations (as individuals of IfcProcess), and the 
usage of production resources (as individuals of IfcResource). 

The relations between the processes and resources can be formalized as shown in 
Figure 1 where the boxes represent classes and the arcs represent property restrictions 
linking classes according to the Manchester OWL Syntax [21]. Moreover, Figure 1 
shows how system design data (upper part of the figure) can be linked with system 
execution data (lower part of the figure). 

 
Figure 1. Relations between process and resource classes in the VFDM. 
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During the manufacturing system design/planning phase, the resource types needed by 
a process type can be specified by means of the objectified relationship class 
IfcRelAssignsToProcess, whereas the resource providers (as individuals of class 
IfcObjectDefinition) can be linked to a resource type thanks to the class 
IfcRelAssignsToResource. 

During the manufacturing system execution phase (both real and simulated), 
occurrences of processes and resources can be created while referring to specific types 
defined during the design phase thanks to the class IfcRelDefinesByType. 

As described by Terkaj et al. [8], the VFDM specializes some classes of the IFC 
standard for the manufacturing domain, paying attention in particular to the type classes 
IfcTypeProduct, IfcTypeProcess, IfcTypeResource and the corresponding occurrence 
classes IfcProduct, IfcProcess, IfcResource. 

VffProcessType and VffProcess are defined as subclass of IfcTypeProcess and 
IfcProcess, respectively, to model generic transformation processes that, provided a 
given input, obtains a certain output according to certain rules and using a specified set 
of resources, i.e. a recipe. A process can be described as a whole or can be decomposed 
into subprocesses thanks to the class IfcRelNests. VffProcessType and VffProcess are 
further specialized to represent manufacturing, assembly, maintenance and handling 
processes. Moreover, precedence constraints between the processes can be defined by 
means of the objectified relationship class IfcRelSequence, whereas input and output 
entities of a process can be linked by using the classes IfcRelAssignsToProcess and 
IfcRelAssignsToProduct, respectively. 

VffProductionResourceType and VffProductionResource are subclasses of 
IfcTypeResource and IfcResource, respectively, modeling a generic resource used in a 
factory (and its production systems). These classes are further specialized to represent 
equipment resources, material resources, and human resources, respectively. 

In the VFDM the classes VffMachineryElementType and VffMachineryElement 
have been defined as subclasses of IfcTypeProduct and IfcProduct, respectively, to 
represent generic pieces of machinery equipment. 

Finally, specific property classes (e.g. VffProcessProperties, 
VffMachineryElementProperties) have been created to properly characterize processes, 
resources and machinery elements. 

3. Test Case on Production Line 

This section presents a test case representing a production line to show how the VFDM 
can be employed to create factory projects and use them with different digital tools. 
The test case consists of four ontologies that instantiate the VFDM classes, thus 
exploiting the data distribution empowered by the Semantic Web approach: three 
factory libraries (i.e. VffLibrary01, VffLibrary02, VffLibrary17) and one main factory 
project (i.e. VfProductionLine04). All these ontologies import the set of VFDM 
ontologies. 

VffLibrary01 ontology defines a production site and a building. 
VffLibrary02 ontology defines five machine types (as individuals of class 

VffMachineryElementType (i.e. MtA, MtB, MtC, MtD, MtE). Each machine type is 
associated with two possible shape representations in VRML and 3DS format. 

VffLibrary17 ontology defines a part type as individual of class VffWorkpieceType 
(i.e. a subclass of IfcTypeProduct) and a possible process plan to obtain a final product 



from a raw piece. The process plan named processPlan01 is defined as an individual of 
class VffManufacturingProcessType (i.e. a subclass of VffProcessType) and 
decomposed into five process segments (as individuals of class 
VffManufacturingProcessType) characterized by a processing time and a predefined 
sequence. Moreover, each process segment requires a specific type of production 
resource and the processing time is modeled as an exponential distribution (see 
Table 1). 

Table 1. Process planning. 

Individual of 
VffManufacturing
ProcessType  

Description Required resource type as 
individual of 
VffProductionResourceType 

Stochastic 
Processing time 
distribution 

processPlan01 Process plan N/A N/A 

DR01 Drilling operation drillingRes01 Exponential(0.033) 

ML01 Milling operation millingRes01 Exponential(0.02) 

ML02 Milling operation millingRes02 Exponential(0.02) 

QC01 Quality control qualityControlRes01 Exponential(0.033) 

GR01 Grinding operation grindingRes01 Exponential(0.025) 

 
VfProductionLine04 ontology contains the factory project that imports and enriches the 
data provided by the three libraries. The factory project defines the units of 
measurement, the representation context and world coordinate system where the 
production site and the building imported from VffLibrary01 are placed. One 
production line is designed and placed in the building of the factory. The production 
line consists of seven machines (as individuals of VffMachineryElement) that are typed 
by the machine types defined in VffLibrary02 (see Table 2) and characterized by a 
shape representation and a placement. The production line is designed to process the 
part type defined in VffLibrary17 and is thus organized into five production stages. 
Each needed production resource type can be provided by one or more machinery 
element as shown in Table 2. An example of relations between the individuals defined 
in the test case is shown in Figure 2 where the boxes represent individuals (identified 
by their local URI and class)  and the arcs represent object properties linking the 
individuals. In particular, it is shown that the process segment ML02 requires the 
resource type MillingRes02 that can be provided by the machine type MtC (i.e. MS02 
or MS03) or by the specific machine MS04. 

Table 2. Machinery elements. 

individual of 
VffMachineryElement  

Related individual of 
VffMachineryElementType  

Description Provided resource type as 
individual of 
VffProductionResourceType 

DS01 MtA Drilling machine drillingRes01 

MS01 MtB Milling machine millingRes01 

MS02 MtC Milling machine millingRes02 

MS03 MtC Milling machine millingRes02 

MS04 MtB Milling machine millingRes02 

CS01 MtD Quality control 
machine 

qualityControlRes01 

GS01 MtE Grinding machine grindingRes01 
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Table 3 reports the results for 10 simulation runs of length 10 days with a warm up of 
one day, for both the automatically and the manually generated simulation models. The 
last column in Table 3 reports the 99% confidence intervals for the mean of the 
difference between the results of the two simulation models. All the confidence 
intervals contain the value 0, hence, the difference can be considered equal to 0 and, 
consequently, the two simulation models provides the same results demonstrating the 
validation of the automatically generated simulation model.  

5. Conclusions 

This paper has presented a data model for representing virtual factories, in particular 
aiming at modeling the complex relationships between physical and logical entities of a 
manufacturing system. It was shown how the adoption of a shared data model can 
enhance the interoperability between software tools supporting the design, management 
and performance evaluation of the factories. 

Further developments of the data model are needed to better represent the 
production logics characterizing a manufacturing system so that the generation of a 
simulation model can be automated as much as possible. Moreover, the accuracy of the 
generated simulation models will be improved if the common data model is used to 
formalize the data coming from the shop-floor, thus closing the loop between the real 
factory and its virtual representation.  

In this paper the VFDM has been used mainly to support interoperability, however 
further research can be carried out to exploit the enablers of the Semantic Web 
approach to perform reasoning and enrich the knowledge about specific manufacturing 
contexts. 

Finally, the applicability of the VFF approach needs to be further tested by 
integrating more software tools for performance evaluation into the framework. Such 
integration will be supported by the development of programming libraries helping the 
implementation of customized versions of VF Connector. 
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