
Optimal Feature Selection for Context-Aware
Recommendation using Differential Relaxation

Yong Zheng, Robin Burke, Bamshad Mobasher
Center for Web Intelligence

School of Computing, DePaul University
Chicago, Illinois, USA

{yzheng8,rburke,mobasher}@cs.depaul.edu

ABSTRACT
Research in context-aware recommender systems (CARS) usual-
ly requires the identification of the influential contextual variables
in advance. In collaborative recommendation, there is a substantial
trade-off between applying context very strictly and achieving good
coverage and accuracy. Our prior work showed that this tradeoff
can be managed by applying the contexts differentially in different
components of the recommendation algorithm. In this paper, we
extend our previous model and show that our differential context
relaxation (DCR) model can also be used to identify demographic
and item features that are linked to the contexts. We also demon-
strate the application of binary particle swarm optimization as a
scalable optimization technique for deriving the optimal relaxation.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval

General Terms
Algorithms, Modeling, Optimization

Keywords
Context-aware recommender systems, collaborative filtering, dif-
ferential context relaxation, particle swarm optimization

1. INTRODUCTION
Context-aware recommender systems (CARS) extends the focus of
recommender systems research beyond users and items to the con-
texts in which items are experienced by users, attempting to model
the interactions that are often influential in making good recom-
mendations. For example, Alice may prefer causal restaurants with
spicy Thai food when dining with friends, but would rather choose
a quiet but upscale Italian place when entertaining work colleagues.
Clearly, the occasion (work vs. personal life) and the companions
(friends vs. co-workers) play a key factor in what a system should
recommend. The recognition of the importance of such contextual
factors is a starting point for much CARS research.

—————————————————————————————–
CARS-2012, September 9, 2012, Dublin, Ireland.
Copyright is held by the author/owner(s).

What we see in this example, however, is that these contextu-
al factors (occasion, companions) are linked to specific features
associated with the restaurant itself: the type of food, the atmo-
sphere, perhaps the price. To the extent that such linkages are
shared among many users, we call these context-linked features.
When contextual information is limited, we may be able to observe
context-linked features more readily, and so discovering influential
context-linked features is an important goal for CARS research.

In our previous research [16], we developed a context-aware col-
laborative recommendation approach based on differential context
relaxation (DCR). The differential aspect of the algorithm is that
we segment the recommendation algorithm into different compo-
nents and apply different aspects of the context to each part. Each
component of the algorithm operates on the same collaborative
user-item-rating data, but only those parts that match its particu-
lar context. The context relaxation part of the algorithm arises be-
cause we treat the context as a set of constraints controlling what
data is available to a given component. Finding the optimum set of
contextual features then becomes a matter of finding a relaxation
of these contextual constraints so that a balance between accuracy
and coverage is achieved.

In this paper, we show that context-linked features are also good
candidates for our relaxation technique. Previously, we used a data
set with only a handful of contextual variables so it was possible to
do an exhaustive search of all possible relaxations in order to find
the optimum. In this work, we show that binary particle swarm
optimization (BPSO) [10] can be applied to find optimal relaxations
with a larger set of context and context-linked variables.

2. RELATED WORK
CARS researchers have sought different means of discovering in-
fluential contextual variables. Baltrunas et al [2] conducted a sur-
vey asking subjects to evaluate the importance of contextual factors
to acquire contextual relevances. Others [15, 7] applied feature se-
lection or reduction techniques to extract influential contexts from
a set of candidate variables. However, each of these techniques
has its drawbacks: the technique in [2] requires a lot of user effort;
the feature reduction techniques are not reliable unless the data set
is dense across contexts – items have been rated multiple times in
different contexts.

Comparing with explicit contextual approaches above, there are
also approaches incorporating latent factors: previously we ap-
plied labeled-LDA to infer contexts based on review mining[6]. A.
Karatzoglou et al [8] introduced multiverse recommendation based
on a N-dimensional tensor factorization model, and L. Baltrunas et
al [3] present a novel context-aware recommender based on matrix
factorizations. In this paper, we mainly focus on the existing ex-
plicit contextual features we already know, and we will incorporate



latent factor models in the future.
Rather than seeking to define a set of contextual variables to be

applied to the algorithm as a whole, our previous work [16] sought
to decompose collaborative recommendation into components and
apply different aspects of the context to each. We think of the
context as a constraint governing what data each component con-
siders and seek the strongest constraint consistent with low error
and acceptable coverage. Note that this concept of constraining
the data used by different parts of the recommendation algorithm
is quite different from constraint-based recommendation, in which
constraints are applied to the recommended items themselves [5].

3. METHODOLOGY
We take as our starting point the well-known Resnick’s algorithm

for collaborative recommendation:

Pa,i = r̄a +

∑
u∈N

(ru,i − r̄u)× sim(a, u)∑
u∈N

sim(a, u)
(1)

where a is a user, i is an item, and N is a neighborhood of other
users u similar to a. The algorithm calculates Pa,i, which is the
predicted rating that user a is expected to assign to item i.

The algorithm can be understood as operating over the rating
data in three different ways. r̄a averages over all of the ratings
supplied by user a to establish an overall baseline for the target
user. The formation of the neighborhood N requires selecting all
users for their similarity to a. And, finally, r̄u is computed for each
user u to establish their baseline rating to be subtracted from their
individual rating of item i.

Contextual effects may enter into the algorithm in various ways.
Perhaps a user has a different baseline rating in different contexts.
For example, Alice, our hypothetical diner, may have relatively low
expectations for her casual Thai restaurants and give a lot of high
scores but give out relatively few five star ratings for her work-
oriented experiences. Perhaps good collaborative peer groups are
context-specific – recommendations from expense-account-wielding
business types might be good for her work dinners but not for any-
thing else.

To account for this kind of variance, we start with the target
context C, which is the context for which the recommendation is
sought. Our prediction now is for target user a, item i, and context
C: how will the user respond to this item in this context? For ex-
ample, how will Alice like a fancy regional American restaurant in
the “work” context with Betsy, her boss and Carl, an out-of-town
client? It is unlikely that other users will have dined with exactly
the same individuals before, which is why we want to think of con-
trolling recommendation based on constraints derived from C as
opposed to C itself. For example, we may want to generalize Al-
ice’s dining occasion as a small work event, which would exclude
peer experiences where the meal was a large banquet.

From the target context, we derive three sets of contextual con-
straints: C1, C2, C3 and apply them to these components separate-
ly, yielding the following context-sensitive formulation:

Pa,i,C = r̄a,C3 +

∑
u∈NC1

(ru,i,C2 − r̄u,C2)× sim(a, u)∑
u∈NC1

sim(a, u)
(2)

This version of the equation replaces N with NC1 , meaning that
we only consider neighbors who have rated item i in a context
matching C1. Instead of averaging over all ratings when normaliz-
ing peer ratings, we select only those ratings in contexts matching

C2, and we do a similar thing for the target user by matching a-
gainst C3.

In our previous work, we were able to show significant improve-
ment in accuracy for hotel recommendation in a travel data set
(http://www.tripadvisor.com/) with the following constraints: C1

(neighbor filtering) using “state of origin”, C2 (peer baseline) us-
ing “trip type” (e.g. business, family, etc), and no constraints on
target user baseline, C3 = {}, where trip type is known as a typical
influential context [6], and we found the state of origin was another
one. For more details, see [16]. What is significant here is that each
of the three components of the algorithm worked best with their in-
put data filtered in different context-related ways. We derived this
result by evaluating all possible sets of constraints on all of the data
and finding the optimum combination.

3.1 Optimization of Constraint Search
We model the relaxation as a process of binary selection – we rep-
resent C1, C2 and C3 as binary vectors where a bit value of one
denotes that we filter the data using that feature. In extending
this work to other data sets and adding context-linked features, it
became clear that an optimization approach based on exhaustive
search was not scalable.

To some extent, regularities in the data and dependencies be-
tween the variables can shrink the combinatorial space. For exam-
ple, in our travel data set, origin city was fixed for each user, mean-
ing that whether we restricted it or ignored it, the computation was
the same when computing a user’s baseline. So, that variable only
became relevant for neighborhood calculation. There were other
similar simplifications for the other components, and we imagine
that this would be true of most recommendation domains.

Even with such simplifications, we require a more scalable opti-
mization technique than exhaustive search. Furthermore, the opti-
mization space is highly non-linear and standard approaches such
as gradient descent cannot be used. However, we have had success
with the particle swarm optimization technique.

3.2 Particle Swarm Optimization
Particle swarm optimization (PSO) [9] is a kind of swarm intelli-
gence which was originally introduced by Eberhart and Kennedy
in 1995. It is a population-based optimization approach inspired by
social behaviors in swarming and flocking creatures like bees, birds
or fish. It was introduced to the domain of information retrieval [4]
and recommender system [1, 14] recently as a way for feature se-
lection and feature weighting. Binary particle swarm optimization
(BPSO) is a discrete binary version of the technique introduced in
1997, which is used to fit our binary selections for contexts and
feature relaxation in this paper.

The basic idea behind PSO is that optimization is produced by
a number of particles at different points in an optimization space.
Each particle searches independently for the optimum, guided by
the local value and communication with the other particles. In our
case, we use RMSE as the value to be minimized and the posi-
tion in the space corresponds to a set of constraints. Each particle
i records its personal best performance (iBest) and corresponding
best position (Pibest). The algorithm also keeps track of the global
best performance (gBest) and corresponding position (Pgbest).

In each iteration of the algorithm, each particle moves through
the optimization space as a function of its velocity. The velocity is
a function of an inertia term and represented by functions of iBest
and gBest. The inertia is gradually decreased over time so that the
particles will be more influenced by the previously-located minima.

The update formulas for Vij (the velocity of jth bit in particle i)



and the global inertia w are as follows:

Vij,t = wt × Vij,t−1 + α1ϕ1 × (P j
ibest −Xij,t−1)

+α2ϕ2 × (P j
gbest −Xij,t−1)

(3)

where ϕ1 and ϕ2 are positive random numbers drawn from a
uniform distribution between 0.0 and 1.0, α1 and α2 are constan-
t learning factors (set as 2.0 by empirical suggestions [13]) which
control the weight given to the local and the global minima, respec-
tively. Xij,t is the particle’s position (the value of jth bit in particle
i) at the iteration t.

Usually velocity is restricted within range [−Vmax, Vmax]. It
cannot be too fast or too slow – a small velocity will result in mi-
nor changes on the positions, where large velocity will drive the
particle to move too much in the space. Vmax is suggested to be
the maximum value of each bit in the position vector, where in our
case it is 1 because the value switches between 0 and 1. Further
experiments show that 2.0 is a better configuration.

The inertia at a given iteration t is calculated by:

wt = wend +
(Tmax − t)
Tmax

× (wstart − wend) (4)

where Tmax denotes the maximum number of iterations. The de-
signer specifies a starting and ending weight with wstart > wend.
A large inertia weight value facilitates a global search while a s-
mall value facilitates a local search. The linear decreasing value
means that the algorithm begins with the particles being more in-
fluenced by their current direction and ends with them being more
influenced by their neighbors. We followed the empirical parame-
ter configuration: wstart = 0.9 and wend = 0.4, which is suggested
in PSO research [13].

The velocity is used to update the value (position)Xij of each bit
in the binary vector. Basically, the higher the velocity, the greater
probability of switching to 1.

Xij,t =

{
1, if(randt < S(Vij,t))
0, otherwise

}
(5)

where S(Vij,t) = 1
1+exp(−Vij,t)

, which is a sigmoidal function
squashes the range of velocity to a range of [0,1]. randt is a uni-
form random number in the range [0,1].

In our application, we use from 1 to 5 particles initialized with
a random velocity and random bit vectors representing the possible
constraints. For each iteration, every particle runs our algorithm
across the training set, compares the RMSE it acquires in current
iteration with the best so far (pBest and gBest), and updates them as
well as the corresponding positions. Then the new position for next
iteration is generated based on the equations above. The ability of
the particles to communicate within the swarm reduces the total
number of iterations required to reach an optimum.

3.2.1 Improved BPSO
Whether each bit value in the binary vector for each particle is 1
or 0 actually depends on the value of velocity – if the velocity is
larger, it is more like it is to switch to 1. Thus the weakness of
classical BPSO is that it only considers the possibility of change
to 1, and does not take the possibility of change to 0 into accoun-
t. Mojtaba et al [11] improved BPSO by taking the possibility of
change to 0 into the consideration. Consider the best position visit-
ed so far for a particle is Pibest and the global best position for the
particle is Pgbest. Assume the jth bit of ith best particle is 1. So to
guide the bit jth of ith particle to its best position, the velocity of
change to one for that particle should be increased and the velocity

of change to zero should be decreased. Then the improvement can
be described as follows:

If P j
ibest = 1 Then d1ij,1 = α1r1 and d0ij,1 = −α1r1

If P j
ibest = 0 Then d0ij,1 = α1r1 and d1ij,1 = −α1r1

If P j
gbest = 1 Then d1ij,2 = α2r2 and d0ij,2 = −α2r2

If P j
gbest = 0 Then d0ij,2 = α2r2 and d1ij,2 = −α2r2

where d1ij and d0ij are two temporary values and r1 and r2 are two
random variable in range of (0,1). α1 and α2 are the same learning
factors. With this in mind, we define two separate velocities, one
in the “1” direction V 1 and one in “0” direction V 0.

V 1
ij = wV 1

ij + d1ij,1 + d1ij,2 (6)

V 0
ij = wV 0

ij + d0ij,1 + d0ij,2 (7)

We choose V 1
ij or V 0

ij as the velocity, depending on the current
position of the particle for that bit.

Vij,t =

{
V 1
ij , if(Xij,t−1 = 0)
V 0
ij , if(Xij,t−1 = 1)

}
(8)

Finally the bit value can be updated as follows:

Xij,t =

{
Xij,t−1, if(randt < S(Vij,t))
Xij,t−1, otherwise

}
(9)

where Xij,t−1 denotes the 2’s complement of Xij,t−1; that is,
if Xij,t−1 = 0, then Xij,t−1 =1; otherwise, Xij,t−1 =0. Our ex-
periments show this improved version can find optimum more effi-
ciently than classical BPSO.

4. EXPERIMENTAL SETUP
For this paper, we use a rating data set in the area of food, the
"AIST context-aware food preference dataset" which was used and
distributed by the author Hideki Asoh [12]. The data set was gen-
erated using a survey of 212 users asking them to rate items on a
menu. There were two different conditions in the survey. In one
condition, “real hunger”, users were asked to rate the items based
on their current degree of hunger. In the “virtual hunger” situation,
they were asked to imagine a degree of hunger different from the
current state and asked what their preferences would be in that state.
Asoh and his colleagues collected 6,360 ratings for 20 food menus,
and also included demographic and item features in the data. Each
user supplied 30 ratings.

For our exploration of contextual recommendation, we use 6
variables. The key contextual variable is degree of hunger (real
or virtual), but we also wanted to explore context-linked features
including gender and various item features related to the food that
were available in the data. Food genre indicates the food is Chinese,
Japanese or Western food; food stuff denotes the food category is
vegetable, pork, beef, or fish, and the food style contains values that
represent the style of food preparation.

The data set is split into five folds where each user has at least
one rating in each fold. For each fold, we used DCR to come up
with the optimal combinations of context and context-linked fea-
tures. We compare this technique to collaborative filtering without
contexts and with contextual pre-filtering which is the similar to
the Equation 2 where C2 and C3 are null are we only constrain the
neighbor selection.

In order to determine the value of context-linked features, we
created two additional test conditions looking at the contextual fea-
ture alone (degree of hunger) and using the contextual feature to-
gether with context-linked features (demographic and item features
discussed above).



In order to assess the effectiveness of our particle swarm tech-
nique, we performed exhaustive search of the constraint space (8,192
iterations) and compared this result with that found by the opti-
mization technique.

5. EXPERIMENTAL RESULTS
Recall that we want to discover influential contexts and context-
linked features, and our method for doing so is to find the optimal
set of constraints and see what features are contained therein. Our
results show that on this data set appropriate relaxation of contexts
and features can help improve predictive performance, and incor-
porating context-linked features outperforms using contexts only.

5.1 Predictive Performance
The experimental results are shown in Figure 1 and Table 1. We

use CO to denote contextual features (degree of hunger) and CL
to denote the other demographic and item features that we suspect
may be context-linked. These are the results achieved by exhaustive
search; the optimization results are as below.

97.0%

97.3%

97.6%

97.9%

98.2%

98.5%

98.8%

99.1%

99.4%

99.7%

100.0%

1.080

1.095

1.110

1.125

1.140

1.155

1.170

1.185

1.200

1.215

Standard CF Pre!filtering

(CL)

Pre!filtering

(CO)

Pre!filtering

(CO+CL)

DCR (CL) DCR (CO) DCR (CO+CL)

Coverage

(Line)

RMSE

(Bar)

RMSE Coverage

Figure 1: Comparison of Predictive Performance

As the figure shows, the contextual pre-filtering and our DCR
model can make improvements comparing with the standard CF
without incorporating contexts, and the DCR model achieved the
best RMSE among these algorithms. Besides, DCR shows better
accuracy improvement when context-linked features are added, but
it does not work for contextual pre-filtering. We believe the ef-
fects shown by adding context-linked features are domain-specific.
And those features should be applied to appropriate components
in the model, where DCR using CL only and DCR using CO and
CL together provide significant improvements in terms of RMSE.
But pre-filtering restricts the application of context-linked features
for neighborhood filtering only. – it may not provide accuracy im-
provements; instead, more restrict constraints may bring lower cov-
erage as shown in the figure above.

We also examined coverage. When the dataset is sparse, intro-
ducing contextual constraints can greatly limit coverage, an effect
that we found in our previous research. With this dataset, there was
little cost in coverage – the best coverage is 99.7% by standard CF
model, while the best DCR model shows a 99.3% coverage. Notice
that when contexts are introduced into the 1st algorithm component
(neighbor filtering), the coverage may depend on which variables
are selected as the relaxed ones for this component, as well as the
density of contextual information in the data set. From Figure 1 and
Table 1, we can see the coverage of pre-filtering using both context
and context-linked features is the lowest, because real hunger and
gender together as more strict constraints are selected and applied
in this component.

5.2 Analysis of the Optimal Constraints
Table 1 shows how the different conditions yield different optimal
constraints. For pre-filtering and DCR using contextual features
only, the real hunger is influential. When context-linked features
are added, real hunger is still influential, but it is applied to dif-
ferent components in the DCR model. Context-linked features can
provide accuracy improvements but it has to be applied to appropri-
ate components – the best DCR model is using all of the algorith-
m components, the pre-filtering part of the algorithm retains only
“gender” and the hunger-related features are applied elsewhere.

Context-linked features - gender, food genre, food stuff, food
style are selected and applied in the optimal model. The position
of contextual constraints in the optimal relaxation is also telling.
“Gender” turns out to be the best feature for C1, indicating that
same-sex peer neighborhoods work best in this domain. Also, we
see that a fully restricted constraint – all contexts and food fea-
tures appear in C2, which is where we choose the ratings to be
used in constructing the peer user’s baseline rating. It confirms the
assumption by CARS – users’ preferences differ from contexts to
contexts, thus neighbor’s exactly matched contextual ratings con-
tribute significantly to predict user’s rating on the same item under
the same contexts. The optimal model took real hunger as the on-
ly constraint in 3rd component, which implies the users’ average
rating under the same real hunger situation works the best as the
representative of this component.

5.3 Optimization Performance
It is clear that differential context relaxation is useful both for

improving algorithm performance and discovering crucial features.
However, exhaustive search is not a practical or scalable way to
realize this goal, although it is possible in this data set.

We used this data set as an opportunity to experiment with BPSO
as an alternative method of finding the optimal context relaxation.
We examined particle counts from 1 to 5, using a maximum of
100 iterations. A local minimum occurred in classical BPSO – it
converged an RMSE (1.116) not quite as good as the global min-
imum found by exhaustive search (1.114). The improved BPSO
algorithm does find the global minimum RMSE and the same set
of relaxations as the exhaustive search. Figure 2 shows the learn-
ing curve of the improved version, where N -BPSO denotes we use
number of N particles in the swarm. Improved BPSO finds the

1.100

1.110

1.120

1.130

1.140

1.150

1.160

1.170

1.180

1.190

1.200

1.210

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

R
M
S
E

Number of Iterations

1 BPSO 3 BPSO 5 BPSO

Figure 2: Improved BPSO

optimal solutions on average around the 18th iteration using one
particle, and 12th iteration using five particles. 18 iterations with 1
particles corresponds to 18 evaluations over the training set, a more
than 455× reduction in computational cost. Increasing the number
of particles expands the power of social contributions by other par-
ticles, and can reduce the number of iterations, but also increases



Table 1: Optimal Relaxations
Dataset: Food Menu RMSE Coverage Optimal Relaxation
Standard CF 1.203 99.7% N/A
Pre-filtering (CL) 1.202 99.3% C1 = {gender}
Pre-filtering (CO) 1.198 99.6% C1 = {real hunger}
Pre-filtering (CO+CL) 1.204 98.3% C1 = {real hunger, gender}
DCR (CL) 1.163 99.7% C1 = {}; C2 = {food genre, food stuff, food style}; C3 = {food genre, food stuff, food style}
DCR (CO) 1.119 99.6% C1 = {real hunger}; C2 = {}; C3 = {real hunger}

DCR (CO+CL) 1.114 99.3% C1 = {gender}; C2 = {real hunger, virtual hunger, food genre, food stuff, food style};
C3 = {real hunger}

the amount of computation per iteration. The selection of the num-
ber of particles and the number of iterations depends on the specific
cost and computational complexity of the algorithm.

6. CONCLUSIONS
Differential context relaxation is a technique for context-aware rec-
ommendation that decomposes the recommendation algorithm into
components and filters the data used in each component. The con-
text is considered a set of constraints, which may be relaxed to
achieve the best recommendation performance.

In this work, we examine an optimization technique – binary
particle swarm optimization – to efficiently locate the highest per-
forming set of contextual constraints. We show that BPSO can find
the global optimum constraint set with a fraction of the iterations
required by exhaustive search.

We also show that both contextual features and context-linked
features can be useful in our context relaxation model. Further-
more, our algorithm highlights the different roles that contextual
features play, producing some interesting results, such as the fact
that same-sex neighbor populations work best in our food data set.

Future research will be focused on two parts: 1) exploring the
possibility for real-valued (as opposed to binary) definition of dif-
ferential context relaxation and 2) applying the same technique to
additional algorithms beyond user-based collaborative filtering. 3)
combine with the latent factor models, such as matrix factorization
in order to alleviate the sparsity problem of contextual ratings and
examine our differential model in another way.

7. REFERENCES
[1] A. Abdelwahab, H. Sekiya, I. Matsuba, Y. Horiuchi, and

S. Kuroiwa. Feature optimization approach for improving the
collaborative filtering performance using particle swarm
optimization. Journal of Computational Information
Systems, 8(1):435–450, 2012.

[2] L. Baltrunas, B. Ludwig, S. Peer, and F. Ricci. Context
relevance assessment and exploitation in mobile
recommender systems. Personal and Ubiquitous Computing,
pages 1–20, 2011.

[3] L. Baltrunas, B. Ludwig, and F. Ricci. Matrix factorization
techniques for context aware recommendation. In
Proceedings of the fifth ACM conference on Recommender
systems, pages 301–304. ACM, 2011.

[4] H. Drias. Web information retrieval using particle swarm
optimization based approaches. In Web Intelligence and
Intelligent Agent Technology (WI-IAT), 2011
IEEE/WIC/ACM International Conference on, volume 1,
pages 36–39. IEEE, 2011.

[5] A. Felfernig and R. Burke. Constraint-based recommender
systems: technologies and research issues. In Proceedings of

the 10th international conference on Electronic commerce,
ICEC ’08, pages 3:1–3:10, New York, USA, 2008. ACM.

[6] N. Hariri, B. Mobasher, R. Burke, and Y. Zheng.
Context-aware recommendation based on review mining. In
Proceedings of the 9th Workshop on Intelligent Techniques
for Web Personalization and Recommender Systems (ITWP
2011), page 30, 2011.

[7] Z. Huang, X. Lu, and H. Duan. Context-aware
recommendation using rough set model and collaborative
filtering. Artificial Intelligence Review, pages 1–15, 2011.

[8] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver.
Multiverse recommendation: n-dimensional tensor
factorization for context-aware collaborative filtering. In
Proceedings of the fourth ACM conference on Recommender
systems, pages 79–86. ACM, 2010.

[9] J. Kennedy and R. Eberhart. Particle swarm optimization. In
Neural Networks, 1995. Proceedings., IEEE International
Conference on, volume 4, pages 1942–1948. IEEE, 1995.

[10] J. Kennedy and R. Eberhart. A discrete binary version of the
particle swarm algorithm. In Systems, Man, and Cybernetics,
1997. Computational Cybernetics and Simulation., 1997
IEEE International Conference on, volume 5, pages
4104–4108. IEEE, 1997.

[11] M. Khanesar, M. Teshnehlab, and M. Shoorehdeli. A novel
binary particle swarm optimization. In Control &
Automation, 2007. MED’07. Mediterranean Conference on,
pages 1–6. Ieee, 2007.

[12] C. Ono, Y. Takishima, Y. Motomura, and H. Asoh.
Context-aware preference model based on a study of
difference between real and supposed situation data. User
Modeling, Adaptation, and Personalization, pages 102–113,
2009.

[13] Y. Shi and R. Eberhart. Empirical study of particle swarm
optimization. In Evolutionary Computation, 1999. CEC 99.
Proceedings of the 1999 Congress on, volume 3. IEEE, 1999.

[14] S. Ujjin and P. Bentley. Particle swarm optimization
recommender system. In IEEE Swarm Intelligence
Symposium, pages 124–131. IEEE, 2003.

[15] B. Vargas-Govea, G. González-Serna, and
R. Ponce-Medellín. Effects of relevant contextual features in
the performance of a restaurant recommender system. In
ACM RecSys’ 11, the 3rd Workshop on Context-Aware
Recommender Systems (CARS-2011), 2011.

[16] Y. Zheng, R. Burke, and B. Mobasher. Differential context
relaxation for context-aware travel recommendation. In 13th
International Conference on Electronic Commerce and Web
Technologies (EC-WEB 2012), volume 123 of Lecture Notes
in Business Information Processing, pages 88–99. Springer
Berlin Heidelberg, 2012.


