
Composite Ontology Change Operators and

their Customizable Evolution Strategies

Muhammad Javed1, Yalemisew M. Abgaz2, Claus Pahl3

Centre for Next Generation Localization (CNGL),
School of Computing, Dublin City University, Dublin 9, Ireland

{mjaved1, yabgaz
2
, cpahl

3}@computing.dcu.ie

Abstract. Change operators are the building blocks of ontology evo-
lution. Elementary, composite and complex change operators have been
suggested. While lower-level change operators are useful in terms of fine-
granular representation of ontology changes, representing the intent of
change requires higher-level change operators. Here, we focus on higher-
level composite change operators to perform an aggregated task. We
introduce composite-level evolution strategies. The central role of the
evolution strategies is to preserve the intent of the composite change
with respect to the user’s requirements and to reduce the change oper-
ational cost. Composite-level evolution strategies assist in avoiding the
illegal changes or presence of illegal axioms that may generate inconsis-
tencies during application of a composite change. We discuss few com-
posite changes along with the defined evolution strategies as an example
that allow users to control and customize the ontology evolution process.

Keywords: Composite Change, Composite-level Evolution Strategies,
Ontology Change Operator Framework, Semantic Ontology Evolution.

1 Introduction

Ontologies can support tasks ranging from capturing the conceptual knowledge,
architecture and process models/patterns to the organisation and traceabil-
ity of digital content and other information artifacts. Ontologies are essential
for knowledge sharing. In such domains, ontologies can convey useful semantic
information for content managers, ontology engineers, domain experts etc. to
understand and process. However, information systems are always subject to
change and ontology change management can pose challenges. The reason for
such changes can be the changes in the domain, the specification, the conceptu-
alization or any combination of them [1]. A change in an ontology may originate
from a domain knowledge expert, a user of the ontology or a change in the appli-
cation area [2]. Some changes are about the introduction of new classes, removal
of outdated classes and changes in the structures and the description of classes.
These change may affect the semantic or structural validity of the data [3].

Many ontology evolution tasks cannot be done by a single atomic change
operation and require higher-level change operations. Based on different per-
spectives, different combinations of atomic change operations can be utilized to

perform a composite task. While performing an ontology change using atomic
change operations, users can utilize different atomic-level evolution strategies
[4] to resolve any inconsistencies. Such evolution strategies are essential at each
level of granularity. In this paper, we focus on the composite change operators
of our layered change operator framework [5] and present evolution strategies
suitable for composite changes. Central features of our presented work are:

– Elementary, composite and complex change operators have been proposed in
literature [4, 6, 8]. This indicates that the effectiveness of an ontology change
is significantly dependent on the granularity, how the change operators are
combined and the extent of their effect on the ontology. Thus, a coherent
treatment of the change operators and their effect on the consistency at each
level of granularity becomes vital.

– Composite change operators and the composite-level evolution strategies can
reduce the overall operational cost and to achieve a specific intent of change.
Each evolution strategy is most appropriate in one specific situation.

The paper is structured as follows: A description of our empirical study and
the layered change operator framework is given in Section 2. In Section 3, we
discuss higher-level composite change operators. In Section 4, we present higher-
level evolution strategies suitable for the specific composite change operations. A
brief evaluation is given in Section 5. We end with related work and conclusions.

2 Layered Ontology Change Operator Framework

We studied the evolution of domain ontologies empirically in order to investigate
the relationships between generic and domain-specific changes and to determine
common patterns of change. Based on our observation of common changes, we
proposed a layered framework of change operators:

– level one captures atomic changes which are elementary tasks,
– level two captures aggregated changes to represent composite tasks,
– level three captures domain-specific change patterns.

In this paper, we focus on level two composite change operators only. As a case
study [5], the domains University Administration and Database Systems were
taken into consideration. The former is selected as it represents an organisation
involving people, organisational units and processes. The latter is a technical
domain that can be looked at from different viewpoints for instance, being cov-
ered in a course or a textbook on a subject. We observed that the changes in
the database system can be identified by taking different perspectives into ac-
count. In teaching, the course content evolves almost every year introducing new
concepts, theories and languages. In publishing, new database books in the area
appear every couple of years resulting in addition of new chapters, merging or
removal of existing chapters and changing of the structure of the topics within
and among chapters. In industry, new technologies and languages are emerging.
These changes result both in schema and instance-level changes.

3 Composite Ontology Change Operators

Atomic level operationalisation and representation of ontology changes can only
describe the addition or deletion of an ontology element. The semantics of ap-
plied change(s) are missing from such representation. Level two composite change
operators fill this gap. They can be utilized to perform aggregated generic tasks
and present the intent of the applied changes more explicitly. Composite change
operators are identified by grouping atomic change operations of level one.

Add Class

Add
subclassOf

Delete
Class

Delete
subclassOf

Add Object
Property

Delete
Object

Property

Add
Individual

Delete
Individual

.....

Integrate Class
Context

Integrate
Property Context

Remove Class
Context

.....
Integrate
Individual

Merge MoveCopySplit

LEVEL 1

LEVEL 2

LEVEL 3

Manage Faculty Manage Student
Research Student

Registration
Add New

Department
.....

.....

Layer 1

Layer 2

Fig. 1. Layered Architecture of Ontology Change Operations (University Ontology)

Composite change operations come in two layers (Figure 1). First layer of
composite change operations includes group of those atomic change operations
that in general are executed together. For example, “Remove Class Context”
which not only deletes a class from the hierarchy, but also deletes all its roles1.
To delete a single class “faculty” in a university ontology, deleting the class from
the hierarchy is not sufficient. Before we delete the class, we have to delete all
axioms that contain class “faculty” as a parameter, such as deleting from the
domain and the range of properties like “isSupervisorOf” or “hasPublication”
etc. In addition, we need to either delete its subclasses or link them to the parent
class in order to keep the ontology consistent. If an ontology engineer wants
to merge two or more classes, the operation requires operators higher than the
integrate/remove class context. In such a case, composite change operations from
layer two can be used. “merge classes”, “move classes” and “pull up property”
are the examples of layer two composite change operations. In this paper, we
primarily focus on layer two composite change operators. For simplicity, we refer
them as “composite change operators” here onwards.

1 a role is an ontology axiom by which an entity (Class, Property, Individual) is
attached to another entity of the domain ontology.

While atomic change operators are useful for fine-granular representation of
ontology changes, representing the intent of the changes at the atomic level is not
feasible. If a class x is removed from a parent y and is attached (as a subclass) to
another class s, the semantics behind such change (at atomic level) only refers
to a change of the class hierarchy for class x, i.e. Move class (x, y, s). However,
if we represent that class s is actually a superclass of y, the semantics behind
such a change will refer to a Pull up class (x, y, s) change.

There is no agreed standard set of composite change operations that one could
based on. It is obvious and also mentioned in research [4, 8] that one can combine
different atomic level change operations in order to construct new composite
changes. Thus, providing an exhaustive list of composite change operations is
not feasible. In our current work, we adopted the composite change operations
and their definitions from [4] and are given in Table 1.

Table 1. List of composite change operations and their definitions

Composite Change Description

Split class (x, (x1, x2)) Split a class x into two newly created sibling classes x1

and x2.

Merge class ((x1, x2), x) Merge two existing classes x1 and x2 into one newly
created class x.

Pull up class (x, x1) Pull class x up in its class hierarchy and attach it to all
parents of its previous parent x1.

Pull up class (x) Pull class x up in its class hierarchy and attach it to all
parents of all its previous parents.

Pull down class (x, x1) Pull class x down in its class hierarchy and attach it as
a child to its previous sibling class x1.

Pull down class (x) Pull class x down in its class hierarchy and attach it as
a child to all its previous sibling classes.

Move class (x, x1) Detach class x from its previous superclass and attach
it as a subclass to a class x1 (which previously was not
a direct/indirect super/sub-class of class x).

Group classes (x, (x1, x2)) Create a common parent class x for sibling classes x1

and x2 and transfer the common properties to it.

Add generalisation class (x, x1) Add a new class x between x1 and all its super classes.

Add specialization class (x, x1) Add a new class x between x1 and all its subclasses.

Pull up property (p, x1, x2) Pull a property p up in the class hierarchy and attach it
to the superclass x2 of its previous domain/range class
x1.

Pull down property (p, x1, x2) Pull a property p down in the class hierarchy and attach
it to subclass x2 of its previous domain/range class x1.

4 Evolution Strategies for Composite Change Operators

For higher-level ontology change representation, we introduce composite-level
evolution strategies that support ontology engineers by suggesting the evolution
strategies that may be most appropriate in a specific situation.

As, a composite change is a combination of different atomic level change op-
erations, inconsistent states may emerge during the application of a composite

change operation. In such cases, different sets of atomic change operations can
be additionally utilized, along with the change request, to achieve the consis-
tent state of the domain ontology. However, each solution may lead to a dis-
tinct consistent ontology version. Here, the term consistent state not only refers
to a structural consistency but also a semantic consistency [3]. For example,
if a class ResearchStudent is split into two sibling classes PhDStudent and
MSByReseachStudent, the change will have a direct impact on associated indi-
viduals, subclasses and properties (Figure 2). As soon as ResearchStudent is

ResearchStudent

Student

studentIdFName DoB

hasSupervisorenrolledIn

Robert Zubair

Student

studentIdFName DoB

hasSupervisorenrolledIn

Robert Zubair

FullTimeRS PartTimeRS

PhDStudent MSByResearcgStudent

FullTimeRS PartTimeRS

- Delete subclassOf (Student, ReserachStudent)

- Delete class (ResearchStiudent)

- Add class (PhDStudent)

- Add subclassOf (Student, PhDStudent)

- Add class (MSByResearchStudent)

- Add subclassOf (Student, MSByResearchStudent)

? ?

? ?

??

Change Request:

Split class (ResearchStudent, (PhDStudent,

MSByReasearchStudent))

Fig. 2. Split class - Resolution Point

deleted from the class hierarchy,

– the individuals of class ResearchStudent will lose their type (rdf:type),
– the subclasses of ResearchStudent will become direct subclasses of owl:Thing
– properties will lose their domain/range.

Leaving the individuals without a type and properties without a domain/range
has a semantic impact [3] and the purpose of the split change is not achieved.
These issues must be resolved in such a way that the intent of the composite
change is acquired. One possibility here is to utilize the (atomic level) evolution
strategies proposed in [4]. However, the proposed evolution strategies deal with
the structural inconsistencies only and do not consider semantic inconsistencies.
Based on the given evolution strategies, the orphaned individuals will either be
i) deleted, ii) unique individuals will be deleted or iii) reconnected to the parent
of the deleted class (i.e., Student). The subclasses will either be i) deleted, ii)
attached to the parent class Student or iii) reconnected to the owl:Thing and the
properties will either be i) deleted or ii) left without any domain/range [4]. Ac-
cording to the semantics of the split change request, the individuals, subclasses

and properties of the deleted class ResearchStudent must be preserved and at-
tached to the replacement classes (i.e., PhDStudent and MSByReseachStudent).
There are many ways to resolve this resolution point2.

Different sets of change operations can be utilized to resolve the composite
change resolution point. Each set of change operations will lead to a distinct
ontology version. It would be too restrictive if we enforce one single solution
for a resolution point. Such solution may fulfill requirements of one ontology
engineer but not of others. A flexible mechanism is required here that allows
ontology engineers to resolve the resolution points based on their requirements
and needs. This can be achieved by using composite-level evolution strategies.
The evolution strategies are to preserve the semantics of a composite change in
such a way that domain ontology stays consistent.

To identify different sets of evolution strategies, we started by exploring the
set of composite changes that can be applied to a domain ontology. Later, we in-
spected what structural and semantic impact each composite change may have on
ontology entities and in which circumstances the domain ontology may become
inconsistent. Here, we examined the involved ontology entities of the composite
change and their inter- and intra-dependencies to other neighborhood ontology
entities. We scrutinized the changes that may lead to the subsequent changes.
Next step was to identify the resolution points. For each resolution point, we
defined evolution strategies and each evolution strategy represents one possible
way to resolve the (structural/semantic) consistency issue.

Split class: In the example for composite change Split class, the newly added
sibling classes PhDStudent and MSByResearchStudent adopt roles from class
ResearchStudent. Thus, deleted relationships (axioms) of ResearchStudent

must be preserved and re-attached to the newly added classes. The question
arise here how to re-attach the deleted roles? Different users may adopt different
approaches to resolve this resolution point. A user can either

– distribute the deleted roles of class ResearchStudent among the replacement
classes, OR

– re-attach the roles to one of the replacement class, OR
– re-attach roles to both the replacement classes, OR
– do nothing.

Here, a role can be re-attached to two or more classes using the “or” or
“and” property. For example, we can re-attach the property hasPublication as
domainOf(hasPublication) = PhDStudent or MSByReseachStudent, i.e. if an
individual instantiate the property hasPublication, the individual is either a
PhD student or a MS by research student.

Now, we present five different defined composite changes, their structural and
semantic impacts, resolution points and proposed evolution strategies to resolve
such resolution points. The list below is not exhaustive.

2 Resolution points are the branch points where application of different sets of change
operations may lead to different sets of consistent ontology versions [12].

Pull up class (X, C):

– Structural impact: The class X is pulled up in the hierarchy and became a
sibling of its previous parent class C.

– Semantic impact: Individuals of X are not individual of C anymore (infer-
ence).

– Resolution point: Given, a class X is disjoint to class C,
type(I) = X ⇒ ¬ type(I) = C (and vice versa)

Composite change may make ontology inconsistent if a predefined disjoint-
ness exists among the siblings of class C (i.e., X and C become disjoint
classes in version 2). In such case, any instantiation of property P whose
domain/range consists class C, by any individual of class X, is not valid any-
more. If such instantiations of P exist, ontology will become inconsistent.

– Evolution Strategies:
– If the property P does not fit for the class C anymore, user can delete the
instantiation of the property P for the individuals of C, OR
– If the individuals of class X can still be individuals of C, user can delete
the disjointness between the classes C and X, OR
– If individuals of class X cannot be considered as individuals of class C

anymore however the property P is still valid for the individuals of class C,
in such case user can explicitly add class X as domain/range of the property
P i.e., domainOf(P) = C or X.

Pull down class (A, B):

– Structural impact: The class A is pulled down in the class hierarchy and
became a child of its previous sibling class B.

– Semantic impact: Individuals of class A are individuals of class B as well.
– Resolution point: Given two classes A and B,

subclassOf(A,B) ⇒ ¬ disjointClasses(A,B)
Domain ontology will become inconsistent if the classes A and B were disjoint
to each other before the execution of the composite change. In such case,
individuals of class A cannot be referred as individuals of class B.

– Evolution Strategies: In order to resolve the resolution point, user may
– delete the disjointness between class A and B.

Merge classes ((C1, C2), X):

– Structural impact: classes C1 and C2 are replaced by one single class X.
– Semantic impact: classes C1 and C2 are merged into one single class X and
the relationships (axioms) of classes C1 and C2 (that had to be adopted by
the class X) become un-attached.

– Resolution point: The newly added class X adopts relationships from the
classes C1 and C2. Thus, the deleted relationships (axioms) of classes C1 and
C2 must be preserved and re-attached to the newly added class X.

– Evolution Strategies: To resolve the resolution point, user can either
– aggregate all the deleted roles of classes C1 and C2 to the replacement class
X, OR
– aggregate selected roles of classes C1 and C2 to the replacement class X.

Resolution Point:
Given a concepts X split into two concepts C1 and C2,
how to re-attach the roles of deleted concept X ?

A

B

A

B CC

X

X

primitive siblings disjoint (B, C) primitive siblings disjoint (B, C, X)

P P

I

InstanceOf
(Inference)

initiates property P

InstanceOf
(defined) I

InstanceOf
(Inference)

initiates property P

InstanceOf
(defined)

Resolution Point:
Given, a concept X is disjoint with concept C
type(I) = X ¬ type(I) = C (and vice versa)=>

A

Y X

I

P

X

Y

X

Y B B

A

A

primitive siblings disjoint (Y, B, A)primitive siblings disjoint (Y, B, A)

I

InstanceOf
(Inference)

InstanceOf
(defined)

I

InstanceOf
(defined)

Resolution Point:
Given two concepts A and B
if A issubclassOf B ¬ A is disjoint to B=>

A

Y C1

I

C2

P

Split Concept

Pull up Concept

Pull down Concept

Resolution Point:
Given concepts C1 and C2 merged into a single concept X,
how to re-attach the roles of deleted concepts ?

A

Y C1 C2

I

P

J

A

Y X

I

P

J

Merge Concepts

Resolution Point:
Once the property P is pulled up in the concept hierarchy from concept B to A,
the individual (that instantiate P) is no more (inferred) instance of subclass B.
loss of knowledge ?

A

B
P

I

InstanceOf
(Inference)

InstanceOf
(Inference)
initiates property P

A

B

P

I
initiates property P

InstanceOf
(Inference)

Pull up Property

Resolution Point:
Once a property is pulled down in the concept hierarchy,
disjoint sibling concepts may share a common instance.

Y

Z

P

I
initiates property P

InstanceOf
(Inference)

X

primitive siblings disjoint (X, Z)

InstanceOf
(defined)

Y

Z

P

I
initiates property P

InstanceOf
(Inference)

X

primitive siblings disjoint (X, Z)

InstanceOf
(defined)

Pull down Property

Fig. 3. Composite Changes and their Resolution Points

Pull up property (P, A, B):

– Structural impact: The property P is attached to the parent class A of its
earlier domain/range class B.

– Semantic impact: Earlier, the individuals that instantiate property P, were
inferred as individuals of class B as well as individuals of class A (due to
subclass hierarchy). After replacing the domain/range of the property P (i.e.,
class B) by the parent class A, the individuals will be inferred as individuals
of class A but not of class B.

– Resolution point: Earlier (inferred) individuals of class B (through instanti-
ation of property P) are not valid anymore.

– Evolution Strategies: In cases, where a user want to make sure that there
is no loss of knowledge, i.e., all earlier inferred individuals of child class B

may still be recognized, user can
– assert the individuals explicitly as defined individuals of class B.

Pull down property (P, X, Y):

– Structural impact: The property P is attached to the child class X of its earlier
domain/range class Y.

– Semantic impact: Earlier, individuals that instantiate property P could be
inferred as individuals of class Y only. After replacing the domain/range of
the P (i.e., class Y) by the child class X, the individuals will be inferred as
individuals of class X as well as of class Y (due to subclass hierarchy).

– Resolution point: Given,
type(I) = Z ∧ siblingClasses(X, Z) ∧ disjointClasses (X, Z)
if, I instantiates P ⇒ type(I) = X.

This unsatisfied disjointness rule (i.e., two disjoint classes cannot share a
common individual).

– Evolution Strategies: In order to resolve resolution point, a user can
– remove the disjointness between class X and its sibling classes. In such
case, an (inferred/defined) individual of X’s sibling class, that instantiate
property P, will also be inferred as individual of class X, OR
– where disjointness between class X and its sibling classes is desired, a user
can delete the instantiation of the property P by the individuals of disjoint
sibling classes of class X. In such case, the (inferred/defined) individuals of
X’s sibling classes will no longer be inferred as individuals of class X.

5 Evaluation

We evaluated the composite change operators along with the proposed evolution
strategies based on their change operational cost. The change operational cost
has been evaluated in terms of no. of step to be performed and the time required
performing the specified steps. To do so, we selected split and merge composite
change operations along with evolution strategies (Table 2).

Table 2. List of change operations

No. Change

1 Split class (ResearchStudent, (MSByResearchStudent, PhDResearchStu-
dent)), Strategy: Split the Roles

2 Split class (ResearchStudent, (MSByResearchStudent, PhDResearchStu-
dent)), Strategy: Attach to both classes

3 Split class (ResearchStudent, (MSByResearchStudent, PhDResearchStu-
dent)), Strategy: Attach to one classes

4 Merge classes ((MSByResearchStudent, PhDResearchStudent), Research-
Student), Strategy: Aggregate all roles

5 Merge classes ((MSByResearchStudent, PhDResearchStudent), Research-
Student), Strategy: Aggregate selected roles

Comparison between two levels (i.e., atomic and composite) of change oper-
ations, in terms of number of required steps and the average operational time
(in seconds), is given in Figure 4. The learning affects (of different users) on the
performance of the operational time has been considered and omitted in our con-
trolled experiment. Usage of evolution strategies and pattern-driven data entry

0:19

0:17

0:33

0:08

0:20

0:10

0:19

0:09

0:14

0:14

Fig. 4. Atomic/Composite change operations - steps and avg. operational time (in sec.)

forms (for performing composite change operations) reduce the required evolu-
tion effort. For example, in case of Merge classes - Strategy 1 change opera-
tion, user need to take eight (8) steps in comparison to thirty (30) atomic change
operations. The biggest difference was seen in case of Split class change oper-
ation where the selected strategy was to join the roles to both the newly added
classes (change 2). The result is fairly understandable as in case of atomic change

operators, user need to attach each role one after the other and hence increases
the number of required steps. More the roles (to be attached), more the steps
it requires. On the other hand, in case of composite change operator, user only
need to select the appropriate evolution strategy and all the roles will automat-
ically be attached to the newly added split classes. Hence, increase or decrease
of roles did not have any effect on the number of required steps.

6 Related Work

Representation of ontology changes using higher-level change operations was first
proposed by Stojanovic [4] and Klein [8]. The change operators are classified into
elementary, composite and complex. The identified change operators focus on
generic and structural changes only lacking domain-specificity and abstraction.
Taking into account the different perspectives of the users and domain experts,
our proposed framework defines an additional layer of domain-specific change
patterns - which are neglected by the lower-level compositional change opera-
tors addressed in the literature. Recently, some researchers have also focused on
detection/discovery of higher-level ontology changes [13–15].

Evolution strategies were first proposed by Stojanovic [12] where she con-
sidered them as solutions for keeping the ontology consistent at each resolution
point. In order to automate the process, Stojanovic also introduced advanced
evolution strategies that automatically combine available elementary evolution
strategies. Such evolution strategies includes structure-driven, process-driven,
instance-driven and frequency-driven evolution strategies. The proposed evolu-
tion strategies resolve structural consistency issues only and thus, are useful and
applicable to atomic level change operations only. In order to evolve the domain
ontology according to the needs of the user using composite change operators,
composite-level evolution strategies are necessary.

7 Conclusion

Ontologies are dynamic entities and will continue to evolve. Scalability beyond
manual evolution and change support is required for both stand-alone ontologies
that live over very long periods of time and also ontologies used in conjunction
with other information systems that themselves can trigger change. Supporting
this process by automated management of change and its analysis is a solution.

Most of the ontology evolution tasks cannot be done using a single atomic
change operation and thus requires combination of them. We focused on the op-
erationalisation of ontology changes using higher-level change operators and pro-
posed composite-level evolution strategies. These higher-level evolution strate-
gies can deal with the semantic inconsistent states that may emerge during or
after the applied composite change. As different users may construct their own
composite changes, evolution strategies can be customized to resolve any reso-
lution point. Such higher-level evolution strategies were missing in the past and
need to be incorporated in any ontology editing framework.

Acknowledgement

This research is supported by the Science Foundation Ireland (Grant 07/CE/I1142)
as part of the Centre for Next Generation Localisation (www.cngl.ie) at Dublin
City University.

References

1. Noy, N.F., Klein, M.: Ontology evolution: Not the same as schema evolution. In:
Journal of Knowledge and Information Systems. Volume 6(4). (2004) 328–440

2. Liang, Y., Alani, H., Shadbolt, N.: Ontology change management in protégé. In:
Proceedings of AKT DTA Colloquium, Milton Keynes, UK. (2005)

3. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology
evolution over the semantic web. Information and Software Technology. 51(1)
(2009) 83–97

4. Stojanovic, L.: Methods and tools for ontology evolution. PhD thesis, University
of Karlsruhe (2004)

5. Javed, M., Abgaz, Y.M., Pahl, C.: A pattern-based framework of change operators
for ontology evolution. In: On the Move to Meaningful Internet Systems: OTM
Workshops. Volume 5872 of LNCS., Springer (2009) 544–553.

6. Palma, R., Haase, P., Corcho, O., Gomez-Perez, A.: Change representation for
owl 2 ontologies. In: Proceedings of the sixth international workshop on OWL:
Experiences and Directions (OWLED). (2009)

7. Gruhn, V., Pahl, C., Wever, M.: Data Model Evolution as Basis of Business Process
Management. In: 14th International Conference on Object-Oriented and Entity
Relationship Modelling O-O ER95. Springer-Verlag (LNCS Series). (1995)

8. Klein, M.: Change Management for Distributed Ontologies. PhD thesis, Vrije
University Amsterdam (2004)

9. Boyce, S., Pahl, C.: The development of subject domain ontologies for educational
technology systems. Educational Technology and Society 10(3) (2007) 275–288

10. Holohan, E., Melia, M., McMullen, D., Pahl, C.: The generation of e-learning exer-
cise problems from subject ontologies. Sixth International Conference on Advanced
Learning Technologies. (2006) 967–969.

11. Pahl, C., Giesecke, S., Hasselbring, W.: An ontology-based approach for modelling
architectural styles In: European Conference on Software Architecture ECSA’2007.
Springer-Verlag (LNCS Series) (2007) 60–75

12. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-driven ontology evo-
lution management. Volume 6 of LNCS., springer (2002) 285–300

13. Papavassiliou, V., Flouris, G., Fundulaki, I., Kotzinos, D., Christophides, V.: On
detecting high-level changes in RDF/S KBs. In: 8th International Semantic Web
Conference. Volume 5823 of LNCS., Springer (2009) 473–488

14. Groner, G., Staab, S.: Categorization and recognition of ontology refactoring pat-
tern. Technical Report 09/2010, Institut WeST, Univ. Koblenz-Landau (2010)

15. Javed, M., Abgaz, Y.M., Pahl, C.: Graph-based discovery of ontology change
patterns. In: Joint Workshop on Knowledge Evolution and Ontology Dynamics
(EvoDyn): ISWC Workshops. (2011)

