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Abstract—Pervasive service ecosystems are emerging as a new
paradigm for understanding and designing future pervasive
computing systems featuring high degrees of scale, openness,
adaptivity and toleration of long-term evolution. A key issue
in this context is making certain patterns of behaviour emerge
without any supervision or design-time intention, and a primary
example is the fully-spontaneous composition of services, possibly
at multiple levels. We argue that this can be successfully achieved
only by a comprehensive approach exploiting together the main
ingredients proposed so far in literature: (i) existence of intel-
ligent components finding proper (semantic) matches of service
descriptions, (ii) use of distributed evolutionary techniques to
dynamically select appropriate ways of composing services,
and (iii) approaches in which rating quality of composition is
solely based on their successful exploitation. This proposal is
presented through an example of spontaneous composition in
crowd steering services.

I. INTRODUCTION

Services are one of the main actors in pervasive and ubiq-
uitous computing. Composing services is a big issue in these
contexts, providing new applications or high level services.
Self-composition is even more challenging.

In literature some surveys and possible solutions have been
proposed, but only few of them give concrete proposals for the
design, implementation and evaluation of service composition.
Moreover the composition of services is solved in a centralised
way, solution which hardly deal with the large-scale distributed
property of pervasive systems, or the composition is specified
by the application developers, preventing the system to use
new services that appear at runtime.

In this paper we frame/situate the problem of self-
composition in the framework of pervasive ecosystems, defin-
ing what a service is and what composing services means.
We then propose an approach to perform self-composition of
services and demonstrate our ideas showing how gradient - a
crucial service in pervasive system applications, in particular
for those ones used for crowd steering – can be composed
with other services. In particular our discussion focuses on
the composition of gradient with services providing local
levels of crowd, at the purpose of avoiding path crossing
overcrowded areas. This example is modelled in terms of “Live
Semantic Annotations” (LSAs) and eco-laws, that are the basic
components of a pervasive ecosystem [20], and preliminary
simulations, aimed at validating the approach, are run on top
of ALCHEMIST [14].

II. SELF-COMPOSITION APPROACHES

A software service represents a functionality that can be
provided on demand in order to create higher level software
artifartefactsacts, such as applications or higher level services.
The notion of service allows applications to be easily devel-
oped and to adapt by changing the different services, which
the application is composed by, at run-time. Self-composition
of services involves the automatic discovery of new services
by composing available ones, the selection of services, the
plan to execute them (i.e. services execution order), and the
adaptation of the composed service when new requirements
appear or a service disappears from the system.

1) Service Composition in SOA: The static character of
traditional composition approaches such as orchestration and
choreography has been recently challenged by so-called dy-
namic service composition approaches, involving semantic
relations [5], and/or AI planning techniques to generate pro-
cess automatically based on the specification of a problem
[21]. Their basic goal is to analyse a description of the
services to compose and compute a composition satisfying
structural/behaviour/ontological compliance of the result of
composition as can be deduced from information about the
composites. One of the main challenges of these approaches
is their limited scalability and the strong requirements they
pose on the detail of service description.

2) Evolutionary techniques: Evolutionary approaches such
as those based on Genetics Algorithms (GA) have been
proposed as well for service composition, such as in [7],
motivated by the need of determining the services participating
in a composition that satisfies certain QoS constraints, which is
known to be a NP-Hard problem. More generally, evolutionary
approaches have been used in the field of autonomic comput-
ing to establish the set of norms, policies or rules that drive
the system to the desired emergent behaviour [15]. We observe
that this approach has a potential for service composition:
in the same way as the genetic programming determine the
proper execution of functions and their parameters, it could
be used to find which services, their order of execution and
the parameters that its service should receive.

3) Competition-based approaches: In order to tackle the
potentially high number of different compositions that can
arise in an open system, in [18] a mechanism of coordination



reactions for networked tuple spaces is proposed, showing
how it can be applied to support competition and composi-
tion in a fully distributed setting—services opportunistically
compose in those regions of the network where this results
in a more competitive service. While all compositions can
possibly take place, thanks to a positive/negative feedback
only successful ones are meant to “survive” in the system,
the others fading until becoming never actually selected. This
is achieved by matching services with requests through a
self-regulating dynamics inspired by prey-predator model of
population dynamics [6], and by diffusing service tuples using
a computational-field approach similar to the one presented in
[12], [4].

III. A COMPREHENSIVE APPROACH FOR PERVASIVE
ECOSYSTEMS

As previous section emphasised, the issue of service compo-
sition is becoming wider and wider, and is now encompassing
new research areas. Among them – pervasive computing,
autonomic computing, robotics – we here focus on pervasive
computing, and in particular, on the framework of pervasive
ecosystems [22]. There, we understand and design a very
large and dense pervasive computing system as a sort of
substrate in which humans, institutions, software systems and
devices, inject services of various kinds without an a-priori
knowledge of the structure and behaviour of those already
available and those that will be injected later. Such services
diffuse in the network, and are situated and context-aware in
the sense that they contextualise to (i.e., they will affect and be
affected by) the situation in each niche of it. In turn, while in
standard SOA a service is a centralised point of functionality,
interacting with its clients by stateful protocols of message-
passing actions, a service is here a more generalised concept:
it is any activity, triggered by the intention of some localised
software agent, that flows in the system updating the spatial
and temporal configuration of other services, and generating
a set of events ultimately perceived by the other agents in the
system. Examples of such services include: the materialisation
of data produced by all sensors available around, routing
services able to interconnect devices based on their physic
al, logical or social proximity, local/global advertisers of the
availability of some content, situation recommenders capturing
relevant information about a context, and so on. Typical
application scenarios include pervasive display ecosystems,
augmented social reality, and traffic control—the reader is
deferred to [22] for a more deeper description of them.

A. Abstract architecture

In particular we here focus on the SAPERE framework
[19], an incarnation of the pervasive ecosystems paradigm
based on the bio-chemical inspiration. This is based on the
following abstractions: (LSA) the various software agents
living in the ecosystem (whether they run on smartphones,
sensors, actuators, displays, or any other computational device)
have a uniform representation exposing any information about
the agent (state, interface, goal, knowledge) that is pertinent

Fig. 1. An architectural view of a pervasive ecosystem.

for the ecosystem, which is called (LSA); (LSA-space) the
LSAs of each agent are reified in a distributed space (called
an “LSA-space”) acting as the fabric of the ecosystem, and are
stored in the portion of it that reside in a specific computational
device; (LSA bonding) to make any agent act in a meaningful
way with respect to the context in which it is situated, a
mechanisms based on bonds (i.e., a reference from one LSA
to another) is introduced: it is only via a bond that an agent
can inspect the state/interface of another agent and act accord-
ingly; (eco-law) while agents enact their individual behaviour
by observing their context and updating their LSAs, global
behaviour (i.e., global system coordination) is enacted by self-
organising manipulation rules of the LSA-space, called eco-
laws, executing deletion/update/movement/re-bonding actions
applied to a small set of LSAs in the same locality in a
chemical-resembling style.

Figure 1 shows an architectural view, based on the above
abstractions, of a portion of an ecosystem featuring: two
smartphones (carried by people) and two public displays
forming a network of 4 computational nodes; a local LSA-
space and some agents running in each node (e.g., recommen-
dation agents, advertising agents, visualisation agents in dis-
plays, profile agents and sensor agents in smartphones); LSAs
through which agents manifest (in colour); additional LSAs
representing data, knowledge, and contextual information like
the existence of neighbouring nodes (in white); bonds between
LSAs; and a set of eco-laws executed by an underlying engine
working over the global LSA-space.

In a more general case, one should think at a very large
and mobile set of devices connected to each other based on
proximity creating a distributed “space” – ideally a pervasive
continuum – where LSAs form spatial structures evolved over
time.



B. A language of semantic chemistry

Inspired by the work in [20], we here present a language for
expressing information as semantic annotations, and chemical-
resembling rules as declarative manipulations of those anno-
tations. We fully-ground it on frameworks and technologies
for the Semantic Web, due to their support for openness and
since they provide standard and well-accepted specification
techniques. Namely, we inherit several syntactic and semantic
aspects of RDF (Resource Description Framework [2]) and
the SPARQL (query languages for RDF [16]) for coding
rules: the main advantage of this choice is that off the shelf
query engines (supporting execution of SPARQL queries and
updates over RDF stores) and reasoners [17] can be used
to support scheduling and execution of rules locally—hence
directly leading to an implementation, though we shall not
deepen this aspect in this paper.

In our framework, an annotation is a semantic tuple with
a unique, system-wide identifier, and a content (description).
This is realised as an RDF-like set of multi-valued properties,
or equivalently, a set of triples “s p o” that consist of a
subject (a tuple-id), a predicate (the property name, a Uniform
Resource Identifier – URI) and an object (the assigned value, a
literal or a URI). URIs are qualified by universally-accessible
namespaces (using syntax namespace:term), typically con-
taining ontologies defining certain aspects of a domain. By
adopting notation N3 [1], an annotation is e.g.

id p v; q w1, w2, w3; r z1, z2 .

where id is the annotation-id, property p is assigned only
to value v, property q is assigned to values w1, w2, and w3,
and finally property r is assigned to values z1 and z2—we
will often omit the trailing dot in an annotation. The main
advantage of this structuring of annotations with respect to
syntactic tuples (sequences of values) is that it better scales
with complexity of descriptions – as will be clearer below,
e.g., we will not need to remember the meaning of ith value
in a tuple, or mention variables for all tuple arguments when
defining templates.

Following [8], rules are structured as chemical-resembling
reactions, using a language of patterns specifically in-
troduced to tackle semantic annotations (and using con-
structs inspired to SPARQL [16]). A rule is of the kind
“P+..+P --r--> Q+..+Q”. Elements P and Q are patterns of
annotations, namely, annotations decorated with the following
extensions:

• In place of each element of a triple one can use a
variable ?V (matching any value) or an annotated variable
?V(filter) where filter is a predicate expression
over ?V: an annotated variable can match any value that
makes the filter true. As an example, ?V(?V>5) is such
that ?V can be substituted by any number greater than 5.
Concerning filters, one can rely on any filter expression
as defined in SPARQL. We sometimes also use as special
filter for a subject ?T an expression of the kind “?T
clones ?R”, meaning that annotation ?T should have the

same content of ?R plus additional constraints specified
by any following triples.

• In place of each element of a triple one can use an
expression inside parenthesis, which the underlying en-
gine should evaluate to a standard value. As an example,
(?V+5) has a meaning when variable ?V is bound to a
value n, in which case the whole expression yields the
result of adding 5 to n. Also for expressions we rely on
SPARQL syntax.

• The object o of a triple “s p o” can be prepended by a
symbol “+”, “-”, or “=”. The former (which is assumed
by default when no symbol is prepended) means that the
triple should exist, the second that it should not exist, and
the latter that it should be the only one that exists for that
subject and predicate (s and p).

• When in a triple “s p o” we use a variable enclosed
in square brackets [?V] in place of o, it means that
?V will be bound to a list of objects o′. Then as usual,
symbols “+”, “-”, or “=” can be prepended to mean that
the corresponding triples “s p o′” exist, should not exist,
should be exactly the list of triples for s and p.

• For syntactic convenience, we also allow a pattern to
consist solely of the source, meaning no further constraint
on its triples is imposed.

The semantics of a rule is then simply understood as a
pre/post-condition application. It consumes a set of reac-
tant annotations matching left-hand side patterns and corre-
spondingly produces a set of product annotations obtained
by applying the post-conditions expressed in the right-hand
side patterns. As in [8] transition rules also obey a numeric
transformation rate r. Here it represents a Markovian rate in
a continuous-time Markov chain (CTMC) system. Such a rate
can be omitted, in which case it is assumed to be infinite, that
is, the transition rule is executed with “as soon as possible”
semantics. Execution of a transition rule amounts to atomically
removing reactant annotations from the space and inserting
product annotations back. The formal semantics of this rule
language can be given by translation into SPARQL queries
and updates, which we do not present here for the sake of
space.

Our framework handles topological aspects as follows.
First of all, each annotation carries a special property named
mid:#loc, associated to the id of the location where the
annotation is currently stored. Secondly, as in [8], the se-
mantics of rules dictate that all reactant annotations should
reside in the same location l, whereas product annotations can
reside in l or in any neighbour of it. Since it is stored in a
property, the location of an annotation (and hence, annotation
movement and diffusion) can be handled symbolically like
any other property. Finally, we shall also assume that in each
location there are some annotations (of type mid:#neigh,
called neighbour annotations) specifically maintained by the
underlying infrastructure to keep track of neighbours. For
instance, the following annotation

:id314 mid:type mid:#neigh; mid:#loc :loc117;



mid:remote :loc118; mid:distance "11.4";
mid:orientation "north-east"

expresses that in node :loc117 there is the perception of
neighbour node :loc118, in north-east direction and at es-
timated distance 11.4 (e.g., meters).

IV. THE SELF-COMPOSITION ISSUE IN PERVASIVE SERVICE
ECOSYSTEMS

Pervasive ecosystems naturally call for a radical shift in the
way software is architected and developed. The concept of
“software system” per se loses there its standard meaning of
a monolithically designed/implemented/deployed artifact. It is
rather a mash-up of services, and the development of a “new
software system” simply translates into the development of
additional services to be immersed in a scenario of existing
ones, with the goal of composing with them and evolving their
functionalities, thus making software live in a sort of “eternal
beta” state [11].

The natural questions we have to answer in order to support
this vision are hence: what can make services compose if
they were not explicitly designed to do so? how can we
decide “whether” and “how” two or more services should
compose? how can such decisions be continuously recon-
sidered depending on the actual (spatial/temporal context) in
which the composition is deployed? can we make multi-level
composition seemingly work as well?

We refer to this problem as the self-composition problem
for service ecosystems, where by “self-” we mean that the un-
derlying middleware makes sure that services tend to compose
in order to form meaningful new services, in a way that users
of the ecosystems simply perceive only atomic and composite
services that are actually useful in practice.

We argue that this vision cannot be fulfilled by the above-
mentioned approaches taken in isolation, but instead require
them to work altogether. Advanced (semantic) matching of
services is key to decide whether two services deployed by
third parties can be composed together. Evolutionary ap-
proaches seem the only solution to the problem of finely
tuning the parameters used in the composition, preselecting,
for instance, a subset of more promising compositions. And
finally, competition of different compositions based on their
actual exploitation appears instead as the only viable approach
to measure the quality of a composition, hence promoting
successful ones. On the other hand, understanding how they
can work together in a comprehensive framework is very
difficult, and generally depends on the specific platform and
service model one adopts.

A. Self-Composition with Gradient service

To ground our discussion of requirements and possible solu-
tions, we here outline a paradigmatic example of composition
in service ecosystems. We consider a crowd steering scenario,
based on the idea of guiding people towards locations hosting
events of interest in a complex and dynamic environment
(using semantic matching with people’s interests) without any
supervision, namely, in a self-organised way. In particular,
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Fig. 2. Self-organising patterns and their relationships.

we consider a museum with a set of rooms connected by
corridors, whose floor is covered with a network of computa-
tional devices (called sensor nodes). These devices exchange
information with each other based on proximity, have sensors
of various kinds, and hold information as LSAs (e.g., about
exhibits currently active in the museum). Visitors exploring
the museum are equipped with a smartphone device that
holds their preferences. By interaction with sensor nodes, a
visitor can be guided towards rooms with a target matching
his/her interest, thanks to signs dynamically appearing on the
smartphone or on public displays. This system is based on a
gradient service, a key brick of self-organisation mechanisms
(see Figure 2) that is typically designed to provide optimal
paths to roam a distributed system even in the context of very
articulated environments (a building with rooms and corridors,
or a traffic scenario) and by dynamically adapting (namely,
self-healing) to unpredicted situations such as sudden road
interruption [8], [9]. Gradient starts from a source LSA located
at an exhibition and spreads clones of it to all the nodes of
the network by eco-laws of spreading and aggregation, basic
building patterns as shown in Figure 2. In turn, as the gradient
is stabilised, in each node the minimum distance value is kept,
so that the shortest path to the source is automatically (and
dynamically) defined [14]. In this way, a person willing to
reach a point of interest simply “binds” to a gradient LSA, and
public/private displays show signs to guide her to the source.

However, other services exist in the system, such as those
provided by the many sensors available around. Among them
we have the crowd detection service, enacted by the injection
in each node on the floor of a crowd LSA reporting the crowd
level sensed there (0 is no crowd, 1 is maximum crowd).
Another service is the one that, given visitor preferences and
profile, defines a set of other possible points (exhibitions,
toilets, refresh points) the user can found interesting or useful.
This service can be an external agent that is able to process
visitor information, for instance defining related exhibitions,
so as to provide, in the form of an LSA, a list of best points the
user can pass by. Then we can have sensors for temperature,
weather forecast, accelerometers etc. More generally, being a
pervasive system an open system, new services may appear
in the system, and autonomously be composed with existing
ones, without a predefined schema. Only those compositions
that create useful services will then survive. To exemplify



the idea, in the following we describe two self-composition
problem we envisioned.

1) Crowd composition: This self-composition problem fo-
cuses on making the gradient service automatically compose
to the crowd detection service so that the estimated distance
to the source gets “penalised” in case of a high crowd value,
which implies that the path computed towards a point of
interest intrinsically takes into account situations of crowded
areas dynamically emerging in the environment, properly
circumventing them. In particular what we expect to the
middleware to automatically do is: decide to compose the
gradient with crowd sensing instead of with other (irrelevant
sensors), and optimally tune how much crowd information
should affect the computation of optimal path.

2) Ad-hoc path composition: If the gradient service is
tagged with the point of interests crossed, it can be composed
with the list of “best points” defined for each user, so that,
in case of intersection, such gradient gets “reinforced” for
instance diminishing its value, which then implies that the
direction it comes from has more chance to be chosen, and
paths which cross points interesting or useful for the user are
likely to be followed. In particular what we expect to the
middleware to automatically do is: decide to compose the
gradient with the LSA representing the “best points”, and
optimally tune to which extent information on preferences
should affect the computation of optimal path.

B. A prototype solution

Starting from a number of services available in those nodes
where sources of gradient services are located – all reified by
an LSA that can be injected in different parts of the system
but via chemotaxis reach gradient sources – the solution we
propose is based on the following mechanisms:

Composition. Based on one or more “composition recom-
mender” agents available in source nodes, all the available
compositions are computed using techniques of advanced
matching of interface/behaviour/ontology. These are ranked
– according for instance to feedbacks from the users on the
composite service, as discussed later – and the description of a
limited number of them is reified in the space in the form of a
set of LSAs. In the example of crowd steering proposed above,
these compositions should result in a set of LSAs representing
the source of different gradients, each one created composing
the basic gradient with one or more services. We assume that
the composition actuated, i.e. which services are composed and
which parameters are used in the composition, is stored into
a property of the gradient LSA, so that the same composition
can be performed in all the locations of the system

Contextualisation. From the source, composite gradients and
the basic one, are diffused. In each location they are contextu-
alised with the local value of those services they are composed
by. Contextualisations involving gradients normally result in a
modification of the local value of distance according to a func-
tion δ specified in the service or defined by the composition

agent. If services are not locally available, contextualisation
does not happen and the distance value does not change. For
instance, contextualise gradient with the crowd level perceived
in each location at the purpose of discouraging paths crossing
crowded areas. It means that distance should be increased
and function δ looks like δ = k ∗ c where k is a function
parameter (see later how to define its values), and c is the local
crowd level. The resulting effect is that the gradient service is
available in the system in different forms (the basic one and
the composite ones).

Feedback. Each gradient owns a property called “satisfac-
tion”, representing the feedback of users on the quality of
the service itself. It can for instance evaluate the length of
the path, the interest and so on: the higher the value is,
the higher is the user satisfaction. Once people reach the
source, they should then provide their feedbacks in the form
of LSAs with predefined properties —such as length, comfort,
beauty, interest. Marks for each property might be defined in
a predefined range. From there one agent – or an application
specific eco-law modelling the aggregation pattern – can then
be in charge to compute the satisfaction value as a function of
all the marks given – for instance, the average. The LSA of
the correspondent gradient source is then modified by adding
to the previous value of the satisfaction property the last
computed. This updated value is then spread in the whole
system autonomously as a result of gradient diffusion.

Choice. Users, once entering in the system, can probabilisti-
cally choose among the set of gradients available, grounding
such decision mainly on the distance and satisfaction values.
They will then follow the same composition for the whole
path.

Evaporation. The satisfaction value can also be interpreted
as the relevance value of the Evaporation pattern [8]. This
parameter gets decreased until fading if not augmented by
user positive feedbacks. Once it is equal to zero the composite
service can be removed. This mechanism ensures that no
satisfactory compositions are decayed.

Evolution If parameters are to be chosen for the composition
– for instance parameter k in δ = k ∗ c, representing how
much the crowd level has to influence the distance value of the
field –, they can be tuned by agents implementing evolutionary
techniques. They are in charge to define the new population
of parameters according to the fitness function that can be
computed from the satisfaction value of the gradient itself.

The emergent idea is that, after a transition period, system
makes available only those services that better fit user prefer-
ences. For instance, for those users interested in quickly reach
the sources, only those gradients that ensure the lowest arrival
time should survive.



V. A FORMAL MODEL FOR GRADIENT
SELF-COMPOSITIONS

To describe how self-composition of gradients can be built
in the pervasive ecosystem framework outlined in Section III,
we first introduce the implementation schema for gradients
which we shall rely upon to formalise the self-composition
task in the specific example of crowd service exploitation.

A. The gradient service

Our strategy for modelling gradient features: (i) a con-
tinuous broadcast of information in each node as in [3],
with latter information always overwriting previous one; (ii)
propagation of estimated distance, computed by summing the
contributions given by property mid:distance in neighbour
annotation; (iii) propagation with no horizon (it is easy to
impose a distance bound to the propagation of information);
and (iv) after been sent to a neighbour, an annotation is subject
to a contextualisation phase (in which e.g. aggregations are
executed) before being spread again.

Such rules are reported in Figure 3 and are described in
turn. Note that they refer to namespace mid for URIs related
to middleware activities, and to sos for those concerning self-
organisation aspects.

Rule [PUMP] is a transformation rule which takes a source
annotation and creates a new annotation with distance set
to 0, used to start the spreading process. The source anno-
tation should feature property sos:type assigned to value
sos:source (we shall say the annotation is of type source
for brevity), and it should also have some value assigned to
properties sos:aggr prop (the name of the property holding
the value used to aggregate other annotations as described
below), sos:step (an incremental value used to refresh
information), sos:r diff (diffusion rate) and sos:r ctx
(contextualisation rate). This rules fires at diffusion rate ?R:
according to CTMC semantics, this means that as soon as
a matching set of reactant annotations is found, actual ap-
plication of the rule is delayed of a time t randomly drawn
according to a negative exponential distribution of probability
with average value 1/?R—namely, it is fired at frequency
?R. The effect of firing this rule is twofold: it increases the
value of property sos:step of the source annotation, and
creates (by cloning the source) a new annotation ?GRAD of
type sos:diff and sos:aggr (original type sos:source is
removed), and declaring distance 0 and orientation here with
respect to the source—these properties will be update as the
annotation is spread around. Note that the right-hand side of a
rule mentions only changes in annotations, without any need
of repeating information provided in the left-hand side which
has not changed: this allows a simpler structuring of rules with
respect to more syntactic approaches like the one in [14].

Rule [DIFF] is used to diffuse a cloned version ?GRAD1 of
a gradient annotation ?GRAD in one neighbour. The gradient
annotation should be of type diff, declare distance ?D from
the source and have diffusion rate ?R. This rule has as further
reactant a neighbour annotation, from which information about
a neighbour ?L with orientation ?O and distance ?D2 can

be extracted. This rule leaves the reactants unchanged, but
creates a clone of ?GRAD with type ctx instead of diff, to
be relocated at ?L and indicating orientation (with respect
to originating location) ?O and distance ?D+?D2. Note that
continuous application of this rule at rate ?R makes copies
of the gradient annotation to be created and diffused in all
neighbours.

An annotation is relocated with type ctx, which forbids
further application of rule [DIFF]. This is because we first need
to aggregate all incoming annotations before a new diffusion is
scheduled. To do so, rule [CTX] defers change of type from
ctx to diff, which happens at rate ?RC (contextualisation
rate).

One form of aggregation is due to rule [YOUNGEST],
used to refresh gradients with new information. It takes two
annotations such that the values associated to the aggregation
property ?P are the same, and retains the one with bigger
sos:step. The idea is that sos:aggr prop holds the name
of a property ?P which is expected to contain some value(s)
that should be identical in two annotations for them to be
aggregated. For instance, it could be the unique id of a
gradient source, so that we do not aggregate annotations
coming from difference sources—but more involved situations
can be programmed as exemplified in next section.

Rule [SHORTEST] is similar: it takes two annotations with
same step (hence coming from the same gradient annotation as
generated by rule [PUMP]), and retains the one with shortest
distance only if, again, they have same content of aggregation
property.

Finally, rule [DECAY] is used to remove an annotation at a
given decay rate ?RD. This is useful as a cleanup mechanism
in the case a gradient source is removed from the system—
though it plays no crucial role in this paper and will be
neglected in next discussions.

For the above rules to properly work we need to synthesise
a well-structured source annotation, featuring all required
properties and proper values for rates—namely, diffusion rate
is to be chosen to keep the system sufficiently reactive to
changes without bloating the system with undesired messages,
and contextualisation rate should be significantly higher than
diffusion rate (at least one order of magnitude). For instance
we could use the following source annotation:

:id314 mid:#loc :loc117; sos:type sos:source;
sos:step "0"; sos:sourceid "341AB2"
sos:aggr_prop sos:sourceid;
sos:r_diff "10"; sos:r_ctx "100"

B. Rules for Gradient Composition

According to the self-composition prototype solution out-
lined above, we now explain how it can be operationally sup-
ported in the framework explained in Section III, particularly
for the example of gradient composition with crowd level. As
an assumption, we formalise recommender agent behaviours
with eco-laws, as if they operate via eco-laws they inject in
the node. These eco-laws specify composition patterns.



Transition Rules for Gradients
[PUMP]: An annotation of type source continuously injects the initial gradient annotation
?SOURCE sos:type sos:source; sos:aggr_prop ?P; sos:step ?T; sos:r_diff ?R; sos:r_ctx ?RC
--?R-->
?SOURCE sos:step =(?T+1) + ?GRAD(?GRAD clones ?SOURCE) sos:type -sos:source sos:diff sos:aggr; sos:dist "0"; sos:orientation "here"

[DIFF] A gradient annotation is cloned in a neighbour, with distance increased and updated orientation
?GRAD sos:type sos:diff; sos:dist ?D; sos:r_diff ?R + ?NEIGH mid:type mid:#neigh; mid:remote ?L; mid:orientation ?O; mid:distance ?D2
--?R-->
?GRAD + ?NEIGH + ?GRAD1(?GRAD1 clones ?GRAD) sos:type -sos:diff sos:ctx; sos:dist =(?D+?D2); sos:orientation =?O; mid:#loc ?L

[CTX] A contextualising annotation is transformed back into an annotation to be diffused
?GRAD sos:type sos:ctx; sos:r_ctx ?RC
--?RC->
?GRAD sos:type sos:-ctx sos:diff;

[YOUNGEST] Of two annotations to be aggregated based on property ?P, the one with newest information is kept
?ANN1 sos:type sos:aggr; sos:aggr_prop ?P; ?P =[?C]; sos:step ?T1 +
?ANN2 sos:type sos:aggr; sos:aggr_prop ?P2; ?P2 =[?C]; sos:step ?T2(?T2<?T1)
--->
?ANN1

[SHORTEST] Of two annotations to be aggregated based on property ?P, the one with shortest distance from source is kept
?ANN1 sos:type sos:aggr; sos:aggr_prop ?P; ?P =[?C]; sos:dist ?D1; sos:step ?T +
?ANN2 sos:type sos:aggr; sos:aggr_prop ?P2; ?P2 =[?C]; sos:dist ?D2(?D2>=?D1); sos:step ?T
--->
?ANN1

[DECAY] An annotation decays
?GRA sos:type sos:diff; sos:r_dec ?RD
--?RD->
0

Fig. 3. Rules for gradients

Eco-laws for gradient composition

[COMPOSITION] The gradient source is composed with the crowd service
?SOURCE sos:type sos:source; scm:satisfaction ?S + ?CROWD scm:type crowd; crowd:level ?CL
--->
?SOURCE + ?CSOURCE(?CSOURCE clones ?SOURCE) scm:property sos:dist; scm:parameters scm:crowd_op ?CF; scm:crowd_op ?CF*?CL

[CONTEXTUALISATION] If sensors perceive crowd, the gradient distance is augmented
?GRAD sos:type sos ctx; sos:dist ?D; scm:property sos:dist;

scm:parameters scm:crowd_op scm:crowd_factor; scm:crowd_factor ?CF; scm:crowd_op ?CF*?CL +
?CROWD scm:type crowd; crowd:level ?CL
--->
?CROWD + ?GRAD sos:type -sos:ctx sos:diff; sos:dist =(?D+?CF*?CL)

[FEEDBACK] Feedbacks are used to update the satisfaction values
?FEEDBACK scm:parameters scm:crowd_op; scm:feedback scm:velocity; scm:velocity ?V +
?GRAD scm:satisfaction ?S; scm:parameters scm:crowd_op
--->
?GRAD scm:satisfaction =(?S+?V)

[EVAPORATION] The gradient satisfaction value gets decreased
?GRAD scm:satisfaction ?S; scm:factor_ev ?FE; scm:r_ev ?RE
--?RE->
?GRAD scm:satisfaction =(?FE*?S)

[DECAY] If the gradient satisfaction value becomes zero that composition is removed
?GRAD scm:satisfaction "0";
--->

Fig. 4. Additional rules for composition of gradients.

Rule [COMPOSITION] in Figure 4, is in charge of creating
the source of the composite gradient. The new source owns
the same set of properties of the basic one, as soon as it refers
to the same PoI, but it also defines which properties are to
be modified as an effect of the composition – sos:dist –,
and which are composition parameters – scm:parameters – ,
i.e. function – scm:crowd op – to be used for modifying the
distance value, and coefficient —scm:crowd factor. In this
preliminary example we adopt a simple linear function of the

crowd level perceived by sensors in each location. It increases
the distance of those paths crossing crowded area, if the
coefficient has an opportune value. Rule [CONTEXTUALISA-
TION] applies the composition specified in scm:parameters,
in each location of the system. Rule [FEEDBACK] is used to
modify the satisfaction value of gradient, taking into account
the velocity of the path chosen. It can be computed by
the system itself, or provided by the user. The value of
scm:satisfaction gets increased by scm:velocity value.
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Fig. 5. Satisfaction values for different compositions changing over time.

Rules [EVAPORATION] and [DECAY] are finally used
to evaporate the scm:satisfaction value according to an
evaporation factor scm:factor ev ?FE in the range of
[0,1] and to remove the gradient composition in case of a
scm:satisfaction value equal to zero, or negative, ensuring
that only those compositions that compute fast paths will
survive.

VI. TOWARDS SIMULATION OF GRADIENT
SELF-COMPOSITIONS

We checked the correctness of the proposed self-
composition solution by simulation, conducted using AL-
CHEMIST [14], a prototype simulator extending the typical
engine of a stochastic simulator for chemical reactions with
the ability of expressing structured reactions (namely, where
chemicals can have a tuple-like structure and reactions apply
by matching) and of structuring the system as a mobile
networked set of nodes. Apart from performance issues – AL-
CHEMIST scales better than other simulators like Repast [13]
due to optimised data structures used to schedule chemical-like
reactions [10] – ALCHEMIST simplifies the task of producing
correct simulations since there is a small abstraction gap
between simulation code and the proposed rule language.

Results presented show early experiments on gradient com-
position with crowd level, where people dynamically enter in
the system and begin to move towards the target ascending
one of the different compositions available. Movement velocity
is constant in the system, except for crowded areas, where
it decreases according to the crowd level perceived: higher
crowd, slower velocity. In these early experiments, parameter
k in function δ is not computed dynamically through an
evolutionary algorithm but composition agents define a set of
possible values. A new composition corresponds at each value.
Users chose one gradient randomly but considering also the
associated satisfaction value that measures the velocity of the

best path each gradient proposes. This feedback is computed
by each user once reached the target, given the length of the
path and the distance walked.

The goal is to observe that, satisfaction values, initially the
same for each composition, dynamically change according to
feedbacks from the users, and only best compositions survive.
In Figure 5 such process is shown for different values of
parameter k. The composition that wins is the one with
k = 0.75, while the other compositions decay.

VII. CONCLUSION

In this paper we propose a prototype solution for self-
composition of services in pervasive systems. An illustrative
model, framed in the pervasive ecosystem framework, is given.
It reproduces the composition of gradient service with ser-
vices, distributed in the system, providing crowd level. Early
experiments have been performed for validating the approach,
and even though only a little set of compositions have been
considered, first results are promising.

Future works are devoted to: (i) introduce evolutionary
techniques for varying parameter k; (i) consider gradient
composition with other services, such the ones already men-
tioned previously in Section IV-A; (iii) generalise the approach
towards self-composition of all the possible services available
in a pervasive system.
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