A Framework to Specify and Verify Computational
Fields for Pervasive Computing Systems

Matteo Casadei and Mirko Viroli
Alma Mater Studiorum — Universita di Bologna, Italy
{m.casadei,mirko.viroli}@unibo.it

Abstract—Pervasive context-aware computing networks call
for designing algorithms for information propagation and re-
configuration that promote self-adaptation, namely, which can
guarantee — at least to a probabilistic extent — certain reliability
and robustness properties in spite of unpredicted changes and
conditions. The possibility of formally analyzing their properties
is obviously an essential engineering requirement, calling for
general-purpose models and tools.

As proposed in recent works, several such algorithms can be
modeled by the notion of computational field: a dynamically
evolving spatial data structure mapping every node of the
network to a data value. Based on this idea, as a contribution
toward formally verifying properties of pervasive computing
systems, in this article we propose a specification language to
model computational fields, and a framework based on PRISM
stochastic model checker explicitly targeted at supporting tem-
poral property verification. By a number of pervasive computing
examples, we show that the proposed approach can be effectively
used for quantitative analysis of systems running on networks
composed of hundreds of nodes.

I. INTRODUCTION

The study and adoption of novel distributed approaches to
computing is getting more and more importance as a result
of the growing trend toward pervasive and mobile computing
scenarios [22]. This is leading to developing a new class of
applications, intrinsically distributed and mobile, ranging from
providing a better interaction with the physical environment to
managing and improving cooperation among human activities.
This picture poses new challenges in the development of
pervasive systems, that cannot be dealt with by traditional
centralized approaches. In fact, these emerging domains re-
quire for applications to support: (i) self-adaptivity, i.e. the
ability to cope with unpredicated changes like the mobility of
system actors, locally managing the resulting changes in the
computing environment in an unsupervised way; (ii) context-
awareness, i.e. handling spatially situated activities depending
on the surrounding physical and virtual context.

The computational field (or simply field) notion is recog-
nized as a fundamental abstraction to design pervasive systems
[11], [2], [4]. A field is a function mapping each node of
a spatially distributed network of computing devices to a
(possibly structured) value, representing some aspect of the
local system state. It hence provides a viewpoint of distributed
computing algorithms as spatial computations, namely, as the
dynamic evolution of spatial data structures. As a reference
example, a mobile agent can retrieve a device in a mobile and
faulty network by “descending” the self-healing gradient (a

special case of computational field) pumped by the device [2].
Computational fields have been adopted in several pervasive
computing domains, surveyed in [6], to devise efficient and
robust algorithms for routing and communication in sensor
networks, provide support for context awareness in mobile
pervasive computing applications, and coordinate task assign-
ment in situated settings. Programming frameworks for com-
putational fields include the TOTA middleware [12], the Proto
language [2], [1], the chemical-oriented models proposed in
[17], [19].

Despite the dynamic and unpredictable nature intrinsic
to pervasive computing domains, very little effort has been
devoted so far to define verification techniques able to formally
analyze probabilistic and temporal properties of their algo-
rithms, e.g. providing probability of convergence or average
convergence time. In this article we tackle this issue by a
framework for probabilistic model checking of computational
fields. We propose a specification language to formally define
and model such algorithms, and support their stochastic verifi-
cation via translation into a CTMC (Continuous Time Markov
Chain) model, most specifically, into a specification for the
well-known PRISM stochastic model checker [8]. In fact,
stochastic model checking allows to cope with the probabilistic
aspects proper of computational fields and their distributed
nature: probability plays a key role in both analyzing the
unpredictable behaviors typical of open domains — such as
pervasive systems — and deriving robust and self-adaptive
algorithms for pervasive scenarios. State-space explosion is
addressed by relying on approximate results according to the
approach described in [7]. We discuss our approach by refer-
ence algorithms useful in pervasive domains, such as gradient
diffusion, gradient descent, and information segregation.

The main contribution resulting from this article is a frame-
work explicitly targeted at modeling and analyzing computa-
tional fields through stochastic model checking, demonstrating
its applicability for networks composed of up to hundreds of
nodes, as it happens with pervasive computing domains [22].

The remainder of the article is organized as follows. Section
IT details background on stochastic model checking; Section
IIT introduces the details of our modeling language and its
translation into PRISM; Section IV discusses the application
of our framework to some example algorithms; and finally
Section V concludes providing final remarks.

II. APPROXIMATE STOCHASTIC MODEL CHECKING

In recent years, there has been a growing interest on formal
models and verification of distributed, large-scale networks
like those regarding pervasive computing. In this section, we
present approximate stochastic model-checking as a general
tool to verify quantitative properties on distributed systems,
and in particular on computational field.

Stochastic Model Checking: Stochastic model checking
[9] is basically the probabilistic extension of traditional
model checking [5]. It is based on probabilistic models
such as DTMC (Discrete-Time Markov Chain) and CTMC
(Continuous-Time Markov Chain), which allow one to express
the likelihood of the occurrence of certain transitions an
algorithm (or system behavior) is composed of—in this article
we deal with CTMC, for we shall consider (continuous) time
an important aspect of system modeling. Verification over such
systems basically amounts to computing the overall probability
of the set of paths that satisfy the logic formula of interest,
expressed in a suitable probabilistic temporal logic, e.g. CSL
(Continuous Stochastic Logic) [10]: for instance, we might ask
questions like “will the system eventually reach state S with a
probability greater than 80%?”, or “which is the probability
for the system to stay in state S for at least 1 hour?”.

Approximate Verification: A major drawback of model
checking is state-space explosion: as a system grows in size,
the number of states quickly diverges, easily making model
checking unfeasible in practice. Given the size of systems
modeling large networks (as typical in pervasive computing),
exact model checking would be impractical: hence, it is
necessary to consider approximate techniques.

Approximate model checking is basically about running
a large set N of simulations per test case, with specific
techniques to obtain statistic information out of them that can
be interpreted as a model-checking (search in the whole state
space) done with a given approximation ¢ and confidence §—
computed as N > 4log(2)/e? [7]. As a realistic example,
e = 1072 and § = 1073 require N =~ 130’000 number
of independent simulations. By this technique one can in
principle answer the same questions as in standard stochastic
model checking, yet trading-off simulation time with qual-
ity of the result (approximation/confidence),namely, obtaining
results with high confidence and good approximation may
require time-consuming simulations performed by generating
a large number N of simulation runs. On the other hand, the
problem is state-space explosion is avoided, and hence bigger
networks can typically be tackled. In the following we hence
mostly deal with approximate stochastic model checking—
which is simply referred to as stochastic model checking.

PRISM: One of the most well-known probabilistic model
checker — which we will rely upon in this article — is PRISM
[8]. PRISM models are specified in terms of modules whose
behavior is expressed by transition rules and whose state is
encoded in a set of discrete variables. In CTMC, transitions
are associated with a rate and can be labelled—transitions with
same label are synchronized. A transition follows the syntax

“[label] guard —-> r: (update)”, where guard is a
sequence of conditions that need to be satisfied to enable the
transition, r represents transition rate, and update is a list
of operations to update (part of) the state of the system by
modifying variables.

Properties to verify are CSL formulas: for instance, prop-
erty “Which is the probability for variable state to
reach value true within time T?” is expressed by formula
“P=7?[F<=T (state=true)]”, where F is the standard
future operator of temporal logic.

Languages and Frameworks for Computational Fields:
Computational fields promote the viewpoint of conceiving
algorithms for computer networks in terms of evolution of
distributed data structures.

Proto [1] is a reference language for modeling and imple-
menting spatial computing systems, featuring the notion of
computational field as a primary abstraction. Proto allows to
define the behavior of single devices within a network, located
at specific points in a continuous space. For instance, the
specification:

(rep d (inf) (mux (sense 1) 0

(min-hood (+ (nbr-range) (nbr d))))

)

associates each node of the network with its overall distance
from a source node where sense operator is activated.
Variable d is initialized to infinite, and updated to 0 where
sense is activated (source node). In any other node n, the
variable is assigned with the minimum value of d (as computed
in any neighboring node n’), plus the distance between n and
n'.

The applicability of computational fields for pervasive com-
puting has already been studied and detailed in the series of
works concerning the TOTA (Tuples On The Air) infrastruc-
ture [12], and recently in the context of chemical tuple spaces
[17], [18] and pervasive service ecosystems [19], [21].

III. FRAMEWORK

The framework presented here allows to model computa-
tional fields in pervasive and spatial systems via a specification
language based on the concept of transition. This is basically
a variant of the PRISM language, capturing the concept of
“networked set of nodes”. A generation process translates the
model into a PRISM CTMC module, and then builds a com-
plete PRISM specification representing the whole network,
composed of as many PRISM modules as the number of nodes
(devices) in the network: to this end, module renaming — a
mechanism proper of PRISM — is exploited whenever possible
to reduce code expansion. In other words, the framework
essentially provides the necessary support for modeling com-
putational field algorithms via a transition-based specification
language, along with properties, rewards, and formulas. In
particular, the specification language allows one to model
each device in a pervasive system as a set of transition rules
whereby the device — through observation of its neighbors —
can change its state and/or influence the state of the neigh-
bors. This mechanism is key to both model self-adaptativity

(changing system behavior only through local interactions) and
context-awareness (system behavior intrinsically depends on
the local context) [20]. Finally, also properties, rewards and
CSL formulas are translated into the corresponding PRISM
components, so as to obtain a comprehensive PRISM specifi-
cation ready to be model checked.

A. Architecture

The components of the framework are essentially a language
translator and a PRISM generator. The language translator
takes a specification written in our language — defining the
behavior of a generic node in the pervasive network — and pro-
duces a corresponding PRISM template specification, which
cannot yet be correctly parsed by PRISM, since some parts
of the generated code are left unspecified: those are the parts
involving actions related to neighbors. To this end, the PRISM
generator takes a description of the network topology, along
with a file containing the properties, rewards, and formulas to
be verified, as input arguments . It then creates a complete
PRISM code to be verified, as shown in Section IV.

As regards network generation, two basic modalities are
possible. On the one hand, a set of fixed topologies are
available: (i) square grid, (ii) square grid with diagonal links,
and (iii) hexagonal grid. Additional parameters to be set in this
case include: number of nodes, torus structure (nodes at the
boundary of the grid are connected to those on the opposite
side), and probability for each potential link to be actually
present—the latter is especially useful when modeling real
domains, as it allows to tackle the heterogeneity typical of real
environments. Though we found the above cases covering a
wide set of scenarios for experiments, we also allow ad-hoc
topologies: in this case, the user has to provide an external
file indicating the actual network structure to adopt, which is
defined as the set of node pairs modeling links. Finally, it is
possible to compactly define the initial states of nodes, i.e. of
their variables as described below.

B. Language Syntax

We now introduce our specification language for computa-
tional fields. This language is state- and transition-based like
that adopted in PRISM: however, despite PRISM, there is no
concept of module, as our language simply aims at abstractly
describing the behavior of a generic node in a pervasive
network. Furthermore, in order to support computational field
modeling, the language is provided with constructs that make
it possible to describe the behavior of a node by referring to
nodes in its neighborhood.

The syntax of the language is reported in Figure 1, where
r is a meta-variable over real numbers, L over label names,
X over variable names and M over node names (conceived
as alphanumeric sequences). Notation T is generally used to
denote a possibly empty list of elements of type x: in partic-
ular, D stands for Dy ...D,, T stands for T;...T,, P stands
for P; &...& Py, and A for Ay &...& A,. Additionally, as
concerns the latter two cases, the empty list is represented by
term true.

S u=DT

D =X : [n_1l..n_ul;

T = [L] P ——e-—> A;

A = V'=e

P = b | N:=sfle] | N:=s&f[b]

f &= any | min | max

eu=1r | V| (e) | ete | e—e | exe | e—e | —e | fle]
b = e<=e | e<e | e>=e | e>e | e=e | e!=e

V oi= X | M.X | @.X

Fig. 1. Syntax of the specification language for computational fields.

I
02

In our language, a model specification S is essentially a list
of variable definitions D followed by behavior definition, i.e.
a list of transitions T. New variables are introduced declaring
their name X, a lower bound n_1 and an upper bound n_r.
Transitions provide a list of preconditions P to be checked, a
numerical markovian rate specified via a numeric expression
e, and a list of updates A, formed by assignments.

An assignment V' =e is used to update the state of a variable
with an expression e—see below for the actual shape of
variables and expressions. Notation V' is retained as a PRISM
legacy to mean the new value that vV will take.

A precondition P is either a boolean expression b, or an
assignment of kind N:=&f[e] or N:=&f [b]: this assigns N
with the identifier of the node selected by function f based
on the result of expression evaluation. Cases currently sup-
ported include: N:=&any [b], meaning that any node where
b is positively evaluated is non-deterministically selected;
N:=&max [e], meaning that the node having the greatest
value resulting from evaluation of e is selected; and similarly
for N:=g¢min[e].

Numerical expressions include real numbers, variables, ap-
plication of function f as above (yielding any, maximum or
minimum value of an expression in the neighborhood), and
any combination of them by standard mathematical operators
and parenthesis. Similarly, boolean expressions are obtained by
combining numerical expressions with comparison operators.
Finally, and most importantly, variables can be qualified in
three ways: X refers to a local variable, M.X to variable
X in node M, and finally @.X refers to variable X in the
currently considered neighboring node. Informally, when used
outside the scope of a function f, @.X basically spawns
one copy of the transition per neighboring node, otherwise it
denotes the neighbor considered by function f. For instance,
N:=s&any [X>@.X] selects one neighboring node in which
variable X is smaller than the local one, assigning its identifier
to N for future use. Finally, as additional details not explicitly
reported in the syntax, it is worth remarking that N:=&f [e]
can appear just once in list P, and function f[e] cannot
contain another nested £ [e].

For the sake of space, the details related to translating our
specification language into PRISM are introduced via simple
examples, which are sufficient enough to grasp the necessary
details.

C. Example translations

Diffusion: As a first paradigmatic example to show the
details of translation into PRISM code, we adopt the case of
a computational field defining the diffusion of a sample value
(1) so as to cover the whole network: initially, such a value is
present only in one node, referred to as source. The complete
specification modeling diffusion is simply:

value : [0..1];
[diff] value=0 —— 1.0 —--> value’= max[Q@.value];

where value represents the value to be spread across the
network: it is set to 1 in the source and 0 elsewhere. Diffusion
occurs via rule diff: each node with value = 0 keeps
updating value at rate 1.0 by choosing the greatest value
among its neighbors. As a result, value 1 spreads across the
whole network, until completely covering it. The correspond-
ing PRISM code for one node of the network, produced by
the generator, is
module node_1

value_1 : [0..1] init 1;

[diff_1] value_1=0 -> 1.0

value_1 = max(value_3,value_2,value_4);
endmodule

where value_1 represents the value to be spread on the
network in node_1: it is worth noting that this node is the
source since value_1 is initialized to 1. The neighborhood
of each node is entirely created by the generator in an
automatic fashion, in accordance with the chosen topology.
In rule diff_1, value’=max[@.value] is translated
into value_1’=max (value_3,value_2,value_4):
value_2, value_3, and value_4 are the values in the
neighbors of node_1. Function max is a built-in PRISM
function returning the greatest of its arguments: the returned
value is then assigned to value_1.

Random Walk: This example models the random movement
of a reference value (again, 1) across the network, starting from
a source node toward a node designated as the target of the
“walk”. The corresponding specification is:

value : [0..1]; target : [0..1];
[move] wvalue=1l & N:=&any[Q@.value=0]
-— 1.0 ——>

value’=0 & N.value’=1;

where value represents the value to be moved across the
network, and target = 1 is adopted to denote the target node
of the walk. After choosing non-deterministically a neighbor
where value = 0, rule move updates its local state by setting
local value to 0, and value on the neighbor to 1. The
translation into PRISM results in this code:

module node_1

value_1 [0..1] init 1;

target_1 [0..1] init O;

[move_1_2] value_2 = 0 -> 1.0 (value_1"=0);

[move_1_3] value_3 = 0 -> 1.0 (value_1’=0);

[move_2_1] true -> 1.0 (value_1"=0);

[move_3_1] true -> 1.0 (value_1"=0);
endmodule

that represents the specification for a node of the network
identified as node_ 1, which is the source of the random walk
(value_1 set to 1). The neighbors of this node are node_2
and node__3. In particular, rules move_1_2 and move_1_3
model the nondeterministic choice of one of the neighbors of
node_1 satisfying condition @.value=0: this condition is
translated into guards value_2 = 0 and value_3 = 0
appearing in rules move_1_2 and move_1_3, respectively.
Put simply, the nondeterministic choice specified in our lan-
guage via any[Q@.value=0] is modeled in PRISM as a
race between the move_1i_ j transitions satisfying condition
value_Jj= 0, where i denotes current node and j ranges
among neighbors of <.

Once a transition is chosen, the corresponding update is exe-
cuted, so as to set value_1 to 0. The value in the chosen node
has still to be set to 1: this cannot be done directly in the mod-
ule of node_1, as PRISM does not allow to change the value
of variables defined in modules external to the current one.
It is then necessary to exploit PRISM synchronization, that
makes it is possible to update variables in external modules
by synchronizing transitions with the same name in different
modules, that are then executed simultaneously. Accordingly,
each neighbor j of node i is as well provided with a transi-
tion “[move_i_3j] true -> 1.0 : (value_j’=0)",
which is always enabled and executed together with the corre-
sponding move_i_ j rule defined in the module of node_1i.

D. Property Specification and Rewards

Our specification language allows to specify properties
and rewards. On the one hand, properties are a necessary
component to perform verification, as they identify states
of interest whose probability to occur can be analyzed via
stochastic model checking. On the other hand, rewards make
it possible to further extend computational field analysis,
making it possible to not only reason about probabilities for
a model to behave in a certain fashion, but also quantitatively
measure cumulative performance parameters regarding system
behavior—e.g., how many times a transition fired.

A property is expressed as
“property "name" = Q [Bexp 1;”, defining a
new property name, where Q represents a quantifier on
Bexp, which is a PRISM boolean expression over model
variables. The quantifiers that can be adopted are forall
and exist, meaning that Bexp must be satisfied for every
node of the network and for at least one node of the network,
respectively. Typical logical connectives among variables
adopted in boolean expressions are: and (represented by
symbol &), or (symbol |), and not (symbol !). An example
of property specified on diffusion is:

property "diffusion_complete" = forall[value=1];

stating that diffusion is complete in every node of the network.
In the random walk example the following property can be of
interest:

property "target_reached" = exist[target=1 & value=1l];

It states that the target of the random walk has been reached
if there exists a node where target = 1 (denoting the target
node) and value = 1. A property is then simply translated
into a PRISM label, a construct denoting specific system states.
For instance, diffusion_complete is translated into this
PRISM label:

label "diffusion_complete" =

(value_1=1) & (value_2=1) & ... & (value_n=1);

which is a simple expansion of the property specified in our
specification language.

Rewards adopt a syntax similar to that used in PRISM re-
wards: from a practical viewpoint, a reward in our specification
language is a compact form of a PRISM reward. As a reference
example, consider the following reward, called hops, defined
on diffusion:

rewards "hops" = [diff] true : 1;

which increments hops by 1 at each execution of diff in
any node of the network. This is translated into the PRISM
reward:

rewards "hops"

[diff_1] true : 1;
endrewards

[diff_n] true : 1;

IV. MODEL CHECKING COMPUTATIONAL FIELDS

Based on the above discussed specification language and the
associated properties/rewards, we here present some paradig-
matic examples of computational fields, and accordingly show
the resulting analysis performed via stochastic model check-
ing. For each example, we show the corresponding model
specified in our language, a description of the important
properties to be analyzed and verified, and finally the results
obtained via model checking of those properties in PRISM.

Reference Topology: For the sake of uniformity and sim-
plicity in presenting the experiments, we find it useful to
consider one reference network topology to use. Although the
choice may evidently affect the results of model checking,
and many topologies could be considered and compared, we
here stick to a single case, which we consider to be of a
general validity for the context of pervasive systems. On the
one hand, locations are placed as nodes in a grid network,
such that each location has in its proximity 8 nodes, 4 in the
horizontal/vertical direction, and 4 in the diagonal direction—
nodes at the boundary of the grid are connected to the nodes on
the opposite side (both in the horizontal/vertical and diagonal
directions) so as to form a torus. This choice is motivated
by the fact that very often computing devices are placed
more or less uniformly over the space formed by buildings,
corridors, or rooms of the pervasive computing systems of
interest. On the other hand, exceptions to this case are the
norm, hence we introduce some randomness in the topology
to tackle heterogeneity of the environment, as well as failures
and so on. Accordingly, links between nodes are chosen in a
random way: namely, the probability that a node is connected
to one of the 8 in its proximity is 50%: in this way, the average

(c) (@

Fig. 2. Example of gradient diffusion on a 4x4 random torus topology.

pump : [0..1]; field : [0..MAX];

[] pump=1 & field>0 -- 1.0 --> field’= 0;

[diff] pump=0 -- 1.0 —-—> field’= min[@.field]+1;
Fig. 3. Specification of the gradient algorithm.

number of connections in the neighborhood of a node is 4. This
topology is hereafter referred to as random torus.

A. Gradient Diffusion

Gradients are a particular kind of computational field where
the value of the field in a given node depends solely on a notion
of “distance” from the so-called gradient source node. Here,
we consider a gradient where field is represented by an integer
value, denoting the distance in terms of minimum number of
hops from the source. The gradient is completely established
when all nodes are “covered” with a proper field value. Figure
2 shows an example of gradient diffusion on a 4x4 random
torus topology.

Gradients are actually useful in pervasive domains, in sit-
uations where it is necessary to find a (minimum) route to a
specific device in the network, as well as a basic pattern to
form virtual communication channels between nodes that need
to interact with one another. In general, gradient is the basic
brick to inject self-organization in a network, making a local
situation affect a system in a more global way through (pos-
sibly selective) propagation [3]. Furthermore, gradient-based
algorithms can be implemented in order to be flexible, i.e.
able to adapt to changes in the network, such as node failures,
connection changes (reflecting node mobility), and new nodes
entering the network: the gradient algorithm modeled in the
next is shown to be able to reconfigure in response to changes
in the network.

Gradient Model: Figure 3 shows a simple model of gradient
diffusion specified through our formal language: the model
simply defines the behavior enforced in each node of the
network—it is similar to the Proto example shown in Section
II. Variable pump is an integer value used to denote the
source of the gradient: it is initialized to 1 in the source
node and set to O in every other node. The field variable
represents the actual value of the gradient in a node: it is
initially set to MAX in every node, where MAX is a value
higher than the maximum value the gradient can reach once
completely diffused in network—the so-called diameter of
the network. Put simply, nodes not yet reached by gradient
diffusion will have field = MAX. The behavior of each node
is essentially specified by two rules: the first applies only on
the source node, resulting in setting the value of the gradient
to 0. The second rule (diff) is applied on other nodes of
the network, and set field to 1 plus the minimum value of
the gradient among the neighboring nodes. It is worth noting
that these rules are continuosly executed at markovian rate
1.0 in each node—namely, the time between two executions
is drawn by a negative exponential distribution of probability,
following the well-known memoryless property. This means
that each node updates in an independent and asynchronous
way with respect to others, so that gradient diffusion and
its consequent stabilization are achieved by emergence: this
also allows gradient to self-adapt to changes occurring in
the network. Indeed, if e.g. a node disconnects from the
network, its neighboring nodes are able to automatically and
independently update their gradient value.

Properties to Verify: Among the different properties we
may be interested to analyze on a gradient, one of the most
important is undoubtably how long it takes for a gradient
to completely spread over all the network and get stable.
For instance, if you think of a gradient exploited to diffuse
information about a specific device or to establish a connection
between two devices, it is important to know how long it
is needed for the gradient to cover the network. A gradient
is completely established and stabilized when for each non-
source node ¢ of the network (i.e. where pump = 0), variable
field is precisely 1 plus the minimum value of field in
the neighborhood. Accordingly, in our language we can define
the following property:

property "established_gradient" =
forall[(pump=0 & field=min(Q@.field)+1) |
(pump=1 & field=0) 1;

A further property that would be interesting to analyze
on the network concerns the cost for the gradient to get
established, expressed in terms of network hops necessary
for the gradient to spread across the whole network. Often,
in pervasive scenarios, communication among devices can
be really expensive due to power/battery constraints, so that
being aware of the number of hops necessary for completely
establishing a gradient becomes important. This is perhaps
crucial also in order to trade off performance (time necessary
to establish the gradient) and cost—expressed here in terms

of number of hops. In order to measure the number of
hops needed to establish the gradient, it is possible to define
a reward, which allows to reason on quantitative measures
regarding model behavior. Expected number of hops can be
considered by introducing the following reward:

rewards "hops" = [diff] true : 1;

that assigns a reward of 1 to every execution of transition
diff in any of the nodes composing the network.

Experimental Results: Based on the properties identified
above, here we show some of the results obtained by applying
approximate stochastic model checking on the gradient algo-
rithm, for different network instances. Given the large size of
the model instances verified, approximate model checking was
adopted. To this end, we chose an approximation ¢ = 1072
and a confidence § = 1073: this means that the probability
for the obtained results to be affected by an error less than
(or equal to) 1072 is greater than 99.9%. According to the
formula described in Section II, the corresponding number
of runs required to meet these approximation and confidence
values is about 130'000.

The first property verified on the gradient algorithm con-
cerns the time necessary for the gradient to be completely
established in the network. This is specified by the following
CSL-like property expressed by the PRISM syntax:

P=? [true U<=k "established_gradient"]

which is a bounded-until path property, simply returning the
probability to achieve the established_gradient state
within k time units. This property was verified against different
5xN random torus instances, with N € {5, 10, 15,20, 25} and
k ranging from O to 30 time units: the corresponding results
are shown in Figure 4 (a). For each instance, the probability of
achieving the established_gradient state gets 1 after a
certain time—still considering the approximation due to ¢ and
0. Before that stabilisation time, probability of convergence is
of course smaller than 1. Figure 4 (b) shows the trend of the
minimum time necessary to achieve an established gradient
with probability 1 over the different investigated instances: it
is easy to see that minimum time increases in a (quasi) linear
way as the size of the network grows.

As regards verifying the expected number of hops needed to
establish the gradient, the following reachability reward-based
quantitative property was exploited:

R{"hops"}=? [F "established_gradient"]

that — according to the "hops" reward structure -
returns the expected number of hops to achieve the
established_gradient state. Figure 5 (up) reports the
expected number of hops to establish the gradient, obtained
from verifying the property on the same 5xN random torus
instances adopted in previous experiments: it is easy to rec-
ognize a linear increase.

We now describe an important issue concerning the com-
plexity of model checking from the standpoint of time: un-
derstanding how much time it takes to verify properties is
fundamental to assess feasibility of model checking. Figure

Probability

29
27
25
23
21
19
17
15

Time

5x5 5x10 5x15 5x20 5x25

Instance

Fig. 4. Probability of achieving an established gradient over time on different
5xN random torus instances (up), and minimum time necessary to achieve the
established gradient with probability 1 over the different instances (down).

180 7
160 1
140 1
120 1
100
80 1
60 1
40 1
20

Number of Hops

5x5 5x10 5x15 5x20 5x25

Instance

Fig. 5.
gradient.

Expected number of hops required for achieving an established

6 reports the time necessary to perform model checking on
the investigated gradient instances, executed on a computer
equipped with two 2.66 Ghz Dual-Core Xeon processors (4
MB L2 cache per processor), 2 GB 667 MHz DDR2 RAM, and
1.33 GHz bus. Note that, as expected, it can be clearly seen
that time growth is polynomial. However, it is worth pointing
out that the magnitude of these times clearly demonstrates the
viability of (approximate) stochastic model checking even on
networks composed of hundreds of nodes. The same analysis
about time complexity of model checking was conducted also
on the algorithms presented in the rest of the article, leading
to similar conclusions. More generally, we believe that using
state-of-the art hardware for simulation, and implementing
easy techniques of distribution of those simulation runs (on
different machines and cores) will soon allow us to simulate
pervasive computing scenarios of very large scale in few hours
and with good approximation.

B. Gradient Descent

We here consider another key algorithm for computational
fields (see e.g. [12]) aimed at supporting data retrieval in per-
vasive computing scenarios, allowing data to follow downbhill
a gradient until reaching its source. This can be useful for
retrieving specific information/services in spatially distributed
networks of devices: e.g. a user starts diffusing a gradient con-
taining a query for the specific information/service she/he is
interested in: once the gradient reaches the location containing
the sought information, such information follows downbhill the
gradient until coming to its source, i.e. the location of the user
requiring the information/service.

In the example reported below, gradient descent occurs in a
probabilistic way: the sought information follows the gradient
by choosing probabilistically a direction where the gradient
value is low. In other words, the lower the gradient value of
a node in the neighborhood of the current one, the higher the
probability for the sought information to move to that node.

Gradient Descent Model: The behavior to be enforced
in each node of the network, modeling gradient descent, is
defined according to the specification reported in Figure 7. The
information descending the gradient is represented through
variable desc set to 1: initially, desc is 1 in the target node,
and O elsewhere. As soon as the gradient reaches the target
node, information starts descending the gradient by rule move:
this is modeled by making value 1 of desc move across the
network, following downhill the gradient. This rule applies
to nodes where desc = 1. It states that any neighbor with
a lower gradient value (sany[@.field<field]) can be
chosen and designated as N. Then, the corresponding transition
occurs with a rate depending on the normalized difference
between gradient value in the current node and that in neighbor
N: the higher this difference, the higher the likelihood to
move to N—overall transition rate is however 1.0 due to
normalization. As a result of transition execution, desc is
set to 0 in the current node and 1 in N.

Properties to Verify: We are first interested to know the total
time necessary for desc to completely descend the gradient
and reach its source. This time needs to be calculated from the
start of gradient diffusion until desc reaches gradient source:
this is due to the fact that, in a real scenario, a request for

—&—p=> [true U<=k "established_grad"]
=% ‘p=2 [F "established grad"]
140
120 1
100 1
80
60

Time

5x5 5x10

5x15

5x20 5x25

Instance

Fig. 6. Gradient diffusion: time required to perform approximate model
checking (in minutes) over the investigated 5XxN random torus instances.

pump : [0..1];
field : [0..MAX];
desc : [0..1];
[1] pump=1 & field>0 -- 1.0 --> field’= 0;
[diff] pump=0 -- 1.0 —-—> field’= min([@.field]+1;
[move] desc=1 & N:=&any[@.field<field]
-— (field-@.field)/@.field/
sum((field-@.field)/@.field) -—>
desc’=0 & N.desc’=1;
Fig. 7. Specification defining gradient descent.
""" 5x5 — —5x10 = < 5x15 5x20
1
_E; 0.8
-
= 0.6
9
Q 0.4
0
ju]
A0.2
0 : - - - -
0 20 40 60 80 100 120
Time
120
90
Q
5
o 60
30
0 T
5x5 5x10 5x15 5x20
Instance
Fig. 8. Probability of descending a gradient and coming to its source over

time on different 5xN random torus instances (up), and corresponding trend
of the minimum time necessary to come to gradient source with probability
1 over the same instances (down).

some kind of information (represented by desc) starts with
gradient diffusion and gets completed when the information
arrives to gradient source (the requesting node). We can state
that gradient descent is finished if the desc = 1 condition
applies in the source node, namely:

property "descent_complete" = exist[pump=1l & desc=1l];

Again, as a further property, it is also interesting to analyze
the number of network hops needed for desc to reach the
source. This is simply obtained by assigning a reward of 1
to transition move as in previous subsection—this reward is
hereafter referred to as descending_hops.

Experimental Results: Approximate model checking on
gradient descent was executed with the same confidence and
approximation values chosen for gradient diffusion. The first
verified property was the time needed for desc to completely
descent the gradient, which can be expressed according to the
CSL formula:

P=? [true U<=k "descent_complete"]

Fig. 9. Segregation: sample runs on a 15x15 random torus showing two
possible spatial distributions of regions, starting from data sources placed at
the corners of the network (left) and as an “inverted T” (right). Numbers
represent the position of the sources of the different data kinds.

simply returning the probability of achieving the
descent_complete state within k time units. This
property was verified on different 5xN random torus
instances, with N € {5,10, 15,20} and k ranging from 0 to
80 time units: in each instance, gradient source and target
(represented by desc= 1) were placed at the maximum
practicable distance, which is [N/2] on the adopted topology.
The corresponding results are shown in Figure 8 (up). There,
it can be seen that, for each instance, the probability of
getting the descent_complete state becomes 1 after
a given time, representing the minimum time needed for
completing the descent. The corresponding trend is reported
in Figure 8 (down): time increase is polynomial with instance
size.

As in the case of gradient diffusion, we can also verify
the expected number of network hops necessary to complete
gradient descent, by using the descending_hops reward.
The corresponding results on the 5XxN random torus instances
are: 3.021 hops necessary on the 5x5 instance, 5.025 on the
5x10, 7.119 on the 5x15, and 10.016 on the 5x20. As in the
case of gradient diffusion, these results correspond to a quasi
linear increase with instance size.

C. Segregation

Segregation is a further computational field algorithm based
on gradients, conceived to diffuse data across pervasive net-
works: here, the objective is to keep data of a certain kind
segregated from data of different kinds so as to form spatial
regions characterized by data organized per kind. In other
words, it is possible to conceive a network where several gra-
dient sources are placed in different nodes, one per data kind.
Such different kinds of data are then diffused on the network,
stopping where another region is found so as to ultimately
partition the whole network without overlaps. Examples of
segregation on a 15x15 random torus are reported in Figures
9 (left) and (right), showing the final data organization starting
from gradient sources placed at the corners of the network and
as an “inverted T”, respectively. This is for instance useful
in pervasive service scenarios, to support spatial competition

among services providing the same functionality: in fact,
segregation can support competition, allowing services to
organize and satisfy user requests by adaptively organizing
their distribution on the network.

Segregation Model: A model for segregation is shown in
Figure 10. The only additional variable with respect to gradient
model is segr, whose value represents the data kind stored
in a given node. In this model, segr ranges from 0 to 4,
meaning that we are considering four different kinds of data
(from 1 to 4) to be diffused in the network—0 denotes a node
containing no data, i.e. a node not yet reached by diffusion
of any kind of data. Segregation is actually modeled via rule
spread, simply stating that the data kind hosted by current
node will be that of any of its neighbors with a smaller gradient
value: as usual, this neighbor is designated as N, and its value
set to &any[@.field<field]. Then, the corresponding
transition occurs with a rate depending on the normalized
difference between gradient value in the current node and
that in neighbor N: the higher this difference, the higher the
likelihood for the current node to host the same data kind
hosted by N. Hence, this basically models a probabilistic data
diffusion toward nodes with higher gradient values—with a
competition between different data kinds around the boundary
of regions.

Properties to Verify: As a first property to be verified, we
are interested in the time necessary for the different kinds of
data to spread in the network and completely cover it. The
corresponding state — featuring every node of the network
hosting a data kind — can be expressed in our language via
the following property:

property "segregation_complete" = forall[segr > 0];

which states that all the nodes of the network need to have a
value of segr > 0, meaning they all host a certain kind of
data.

Additionally, it would be worth also to analyze the expected
size achieved by the various regions formed as a result of data
diffusion: the size of each region depends on the location of
the corresponding data source. To measure this property for
the region formed by diffusion of data kind i, we need to
define a reward such as:

reward "region_i_size" = (segr = i) : 1;

where i represents the data kind to analyze. This reward
assigns a reward of 1 to each node where segr = 1, ie.
hosting data kind 1.

Experimental Results: Approximate model checking on
segregation was again performed with the usual confidence and
approximation values. We initially verified total time necessary
for completing segregation, as previously described. To this
end, the following CSL property was adopted:

P=? [true U<=k "segregation_complete"]
simply returning the probability of achieving the
segregation_complete state within k time units.

This property was verified against different NxN random
torus instances, with N € {5,10,15} and k € [0, 40], starting

Probability

Time

30

20 | //

10 A

Time

5x5 10x10 15x15

Instance

Fig. 11. Probability of achieving complete segregation over time on different
NxN random torus instances (up), and corresponding trend of the minimum
time necessary to achieve complete segregation with probability 1 over the
same instances (down).

with the four data sources arbitrarily placed at the four
corners of the network: since the topology is a torus, this
configuration defines a sort of ‘“square”—different initial
configurations can anyway be exploited. The corresponding
results are reported in Figure 11 (up): it is easy to recognize
that, after a certain time, probability of completing segregation
becomes 1 for all the instances. Complementarily, Figure
11 (down) shows the trend of the minimum time needed to
complete segregation with probability 1 over the analyzed
instances: the corresponding time increase is quasi linear.

As regards the expected size of each formed region i (where
i denotes data kind), we relied on the following cumulative
reward-based property:

R{"region_i_size"}=? [I = k]

that returns the sum of rewards cumulated concerning region
i at time k. Constant k has to be chosen carefully: it has to
be at least equal to the minimum time at which the probability
of achieving complete segregation becomes 1. This value can
be inferred by looking at the results shown in Figure 11. The
results obtained by verifying this property on a 10x10 random
torus (with data sources placed to form an “inverted T” like in
Figure 9 (b)) are: 25.61 nodes for data kind 1, 15.63 for kind
2, 30.86 for kind 3, and 29.87 for kind 4. The expected region
size varies a lot among the different regions: in particular, the
region formed by data kind 2 has a noticeable lower expected
number of nodes as the corresponding source position limits
the space available for diffusion, which is constrained by the
close proximity of data sources 1 and 3.

[0.

’

pump [0..17; field [0..MAX]; segr

[pump=1l & field>0 -- 1.0 --> field’= 0

[diff] pump=0 -

[spread] N:=&any[@.field<field]
—— (field-Q.field)/RQ.field/sum((field-Q.field)/Q.field)
segr’=N.segr;

.45

1.0 ——> field’= min[Q@.field]+1;

-—>

Fig. 10. Specification of the segregation algorithm.

V. CONCLUSION AND FUTURE WORK

To the best of our knowledge, this article represents the
first explicit attempt to deal with modeling and verification
of computational field algorithms, which are basic buildling
blocks for pervasive computing domains as studied in [11],
[2]. To this end, a specification language and a framework
for stochastic model checking were provided, that are targeted
at quantitative analysis of computational fields. As concerns
stochastic model checking, we relied on the PRISM proba-
bilistic model checker (which was also an obvious inspiration
to our syntactic and semantic approach), showing how the
proposed specification language can be translated into PRISM
code, so as to provide an easy way to perform quantitative
analysis.

Our verification framework can be upgraded with new
ingredients. A notable example would be the introduction of
mechanisms to model node failures and mobility, so as to
verify aspects concerning with self-adaptation to probabilistic
events. Then, the flexibility and expressiveness of our language
should be extended to deal with a wider set of algorithms:
as such, it would be interesting to evaluate the possibility
of translating Proto [1] and the eco-law lanaguage of the
SAPERE appraoch [19] into PRISM using our language as
an intermediate step. Alternatively, it would be interesting
to turn existing simulators like e.g. ALCHEMIST [16] into
approximate stochastic model-checkers. Finally, it would be
of general interest to devise a methodology for applying
stochastic model checking to multiagent systems, which we
believe would enjoy the use of meta-models based on the
notion of artifact [14], [15], [13].

ACKNOWLEDGMENTS

This work has been supported by the EU-FP7-FET Proactive
project SAPERE Self-aware Pervasive Service Ecosystems,
under contract no.256873.

REFERENCES

[1] J. Beal. The MIT proto language. http://groups.csail.mit.edu/stpg/proto.
html, 2008.

[2] J. Beal and J. Bachrach. Infrastructure for engineered emergence on
sensor/actuator networks. IEEE Intelligent Systems, 21(2):10-19, 2006.

[3] J. Beal, J. Bachrach, D. Vickery, and M. Tobenkin. Fast self-healing
gradients. In R. L. Wainwright and H. Haddad, editors, SAC, pages
1969-1975. ACM, 2008.

[4] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll. Organizing

the aggregate: Languages for spatial computing. CoRR, abs/1202.5509,

2012.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The

MIT Press, January 2000.

[5]

[6] J. L. Fernandez-Marquez, G. Di Marzo Serugendo, S. Montagna, M. Vi-
roli, and J. L. Arcos. Description and composition of bio-inspired design
patterns: a complete overview. Natural Computing, May 2012. Online
First.

T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate
probabilistic model checking. In Proc. 5th International Conference on
Verification, Model Checking and Abstract Interpretation (VMCAI'04),
volume 2937 of LNCS. Springer, 2004.

A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism:
A tool for automatic verification of probabilistic systems. In TACAS,
volume 3920 of Lecture Notes in Computer Science, pages 441-444.
Springer, 2006.

M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic
model checking with prism: a hybrid approach. International Journal
on Software Tools for Technology Transfer (STTT), 6(2):128—-142, 2004.
M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking.
In M. Bernardo and J. Hillston, editors, Formal Methods for the De-
sign of Computer, Communication and Software Systems: Performance
Evaluation (SFM’07), volume 4486 of LNCS (Tutorial Volume), pages
220-270. Springer, 2007.

M. Mamei and F. Zambonelli. Field-based Coordination for Pervasive
Multiagent Systems. Springer Verlag, 2006.

M. Mamei and F. Zambonelli. Programming pervasive and mobile
computing applications: The tota approach. ACM Trans. Softw. Eng.
Methodol., 18(4), 2009.

A. Omicini, A. Ricci, and M. Viroli. An algebraic approach for
modelling organisation, roles and contexts in MAS. Applicable Algebra
in Engineering, Communication and Computing, 16(2-3):151-178, Aug.
2005.

A. Omicini, A. Ricci, and M. Viroli. Coordination artifacts as first-class
abstractions for MAS engineering: State of the research. In Software
Engineering for Multi-Agent Systems 1V: Research Issues and Practical
Applications, volume 3914 of LNAI, pages 71-90. Springer, Apr. 2006.
A. Omicini, A. Ricci, and M. Viroli. Artifacts in the A&A meta-model
for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3), June 2008.

D. Pianini, S. Montagna, and M. Viroli. A chemical inspired simulation
framework for pervasive services ecosystems. In Proceedings of the
Federated Conference on Computer Science and Information Systems,
pages 675-682, Szczecin, Poland, 18-21 September 2011. IEEE Com-
puter Society Press.

M. Viroli and M. Casadei. Biochemical tuple spaces for self-organising
coordination. In Coordination Languages and Models, volume 5521 of
LNCS, pages 143-162. Springer-Verlag, June 2009.

M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli. Spatial coor-
dination of pervasive services through chemical-inspired tuple spaces.
ACM Transactions on Autonomous and Adaptive Systems, 6(2):14:1 —
14:24, June 2011.

M. Viroli, D. Pianini, S. Montagna, and G. Stevenson. Pervasive
ecosystems: a coordination model based on semantic chemistry. In 27th
Annual ACM Symposium on Applied Computing (SAC 2012), Riva del
Garda, TN, Italy, 26-30 March 2012. ACM.

M. Viroli and F. Zambonelli. A biochemical approach to adaptive service
ecosystems. Information Sciences, 180(10):1876-1892, May 2010.

F. Zambonelli, G. Castelli, L. Ferrari, M. Mamei, A. Rosi, G. D. M.
Serugendo, M. Risoldi, A.-E. Tchao, S. Dobson, G. Stevenson, J. Ye,
E. Nardini, A. Omicini, S. Montagna, M. Viroli, A. Ferscha, S. Maschek,
and B. Wally. Self-aware pervasive service ecosystems. Procedia CS,
7:197-199, 2011.

F. Zambonelli and M. Viroli. A survey on nature-inspired metaphors
for pervasive service ecosystems. International Journal of Pervasive
Computing and Communications, 7(3):186-204, 2011.

[7]

[8]

[9]

(10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

