
Software Agents for Distributed Social Networking

Enrico Franchi, Michele Tomaiuolo
Dipartimento di Ingegneria dell'Informazione

Università di Parma
Parma, Italy

{efranchi, tomamic}@ce.unipr.it

Abstract—Especially in the case of completely distributed or
federated social networking platforms, multi-agent systems can
play an important role. In particular, multi-agent systems have
been used as (i) an underlying layer or a middleware for
developing social networking platforms, (ii) a technology to
increase the autonomous and intelligent behaviour of existing
systems and (iii) a tool to develop simulation environments for
studying both online and offline human social networks. In this
paper we propose the integration of multi-agent technology into
Blogracy, a novel peer-to-peer, anonymous and uncensurable
social networking platform. The resulting system augments the
platform with locality and proximity groups, making it fit for
pervasive computing scenarios, exploiting the adaptivity,
proactivity and negotiation ability of multi-agent systems.

Distributed Micro-blogging, Peer-to-peer Computing, Social
Networking, Multi-Agent Systems

I. INTRODUCTION

Users of popular social networking sites are becoming
increasingly wary of the privacy issues they face. Often, the
perceived problems are related to the possible leakage of
personal information to extraneous persons, or to workmates.
However, privacy threats can also come from the service
providers which, being mostly centralized systems, maintain
full access and control over published data.

From the technical point of view, scaling centralized
systems to tens or hundreds of million of users is a hard
challenge, which can be faced if enough resources are
deployed. Most companies rely on mining users' data for
supporting targeted advertisement. This behavior poses serious
threats to privacy and data protection issues. Quite
consequently, social networking sites guide their users into
“walled gardens”, without giving users full control over their
own information because such information constitutes much of
their company value [1]. Moreover, service providers are in the
position to effectively perform a-priori or a-posteriori
censorship, or to disclose all the information they have, no
matter how private, to other entities. They can perform such
actions either motivated by selfish interests or forced under
legal terms and other forms of pressure.

On the other hand, P2P systems essentially achieve
automatic resource scalability, in the sense that the availability
of resources is proportional to the number of users. This
property is especially desirable for media sharing social
networking systems, considering the exceptionally high

amount of resources needed. Moreover, regarding censorship
issues, a P2P system essentially solves them by design. Without
a central entity, nobody is in the position of censoring any data
nor may be held legally responsible for the diffusion of
censurable data: the sole owners and responsible of the data are
the users themselves.

Especially in the case of completely distributed or federated
social networking platforms, multi-agent systems can play an
important role. In fact, one of the very specific features of
multi-agent systems is the sociality of agents, i.e. their ability
to communicate in a semantic way and develop trust
relationships among them. Moreover, agents can express their
communication acts by means of acknowledged standards, like
FIPA, for interoperability among diverse systems, and
exchange messages directly, in a peer-to-peer way. So, it is not
surprising that these two technologies are often applied
together for developing advanced social platforms. In
particular, multi-agent systems have been used as (i) an
underlying layer or a middleware for developing social
networking platforms, (ii) a technology to increase the
autonomous and intelligent behaviour of existing systems and
(iii) a tool to develop simulation environments for studying
both online and offline human social networks.

For the first type of solution, many of the distinguishing
features of multi-agent systems can be fully exploited. In fact,
multi-agent systems provide semantic communication among
agents, which is handy for expressing all the different actions
that users can perform on a social platform. The different
performatives of messages can be understood according to their
pragmatics meaning, and applied according to existing trust
relations among the users and their respective agents. Also,
complex negotiation protocols can help creating
acknowledgements and trust among users, in an automatic or
assisted way, without exposing sensitive data. Mobility can
also be useful for moving the computation closer to data, if
massive analysis has to be performed, but can also be handy for
adding functionality to a node of a distributed social platform
or to a user's client application.

In the second case, agents are mainly exploited because of
their proactive and reactive behaviours, for providing
recommendations of both users and content and for providing
personalization of results. Reactive abilities fit particularly well
into a social networking environment, where events happen
continuously and users can be easily distracted by the huge
information overflow which is associate with richly
interconnected social networks. Sensing the environment and

executing automatic tasks can reduce this overload
significantly. Goal-oriented behaviours, on the other hand, can
support users in persecuting their long term objectives about
friend and content discovery, i.e. finding known persons
registered in the network, making new acquaintances with
users with common interests, finding interesting content from
new sources or hidden among other less relevant data.

Finally, multi-agent systems are a powerful tool for
simulating the behaviour of online social networks, in the same
way they have been used for simulating the behaviour of
persons in real social environments for a long time. In fact,
multi-agent systems have proved to be very effective in the
simulation of social networks, both during their initial creation
and development and during their further operation. They
allow to describe the behaviors of individuals, mimicking the
actions of human users in similar contexts, and to analyze the
associated emerging behaviour of the network as a whole. This
way, multi-agent systems can provide precious insights for
further improvement of existing social platforms.

II. RELATED WORK

Various solutions are being proposed to overcome the
centralized architecture of the most widespread social
networking platforms. Many of these proposals follow a
federated approach, allowing users registered on a certain
server to create relationships with users of other servers.
Others are full-fledged peer-to-peer systems, usually based on
a distributed hash table (DHT).

Federated social networking systems allow users registered
on a certain server to create relationships with users of other
servers. The best known examples are Diaspora1 and
StatusNet2. Diaspora servers communicate by means of an ad-
hoc federation protocol and the standard Salmon protocol3 for
comments. StatusNet (formerly known as Laconica) adheres to
the OStatus standard protocol for the interconnection of
various servers and uses a number of existing protocols for
interoperability with other networks.

Various social networking systems are being developed on
the basis of peer-to-peer communications and DHT indexing.
Among these, PeerSoN [2][3] is a prototype designed to
provide encryption, decentralization and direct data exchange
in the field of social networks. A DHT is used to trace the
user's network presence and for obtaining the index of the
user's recent content. LotusNet [4] is a model of a social
network to be built over Likir. Likir itself is a secured DHT,
which requires a user to be authenticated according to an IBE
(Identity-Based Encryption) scheme, before participating in
the network. Safebook [5] is based on a DHT and a network of
socially close peers, defined Matryoshka. Peers in a user's
Matryoshka are trusted and support the user by anonymizing
communications and replicating content and profile
information. Persona [6], though not being a distributed social
network, uses an interesting Attribute-Based Encryption
protocol for protecting access to users' content. It allows each
user to assign credentials to various groups of “friends”, for
accessing protected content.

1 http://joindiaspora.com/
2 http://status.net/
3 http://www.salmon-protocol.org/

Not many existing social networking platforms are based
entirely on multi-agent systems. Among the research works,
MAgNet [7] is a multi-agent system built using JADE [8] and
FOAF [9]. It is a prototype application providing social
oriented services to mobile users, i.e. defining groups of users
and arranging group events. In [10], authors discuss the
advantages of using multi-agent technologies for building
social platforms. They also underline some existing issues,
mainly in terms of overlay infrastructure, navigability of the
social network, existence of specific ontologies.

A larger number of systems exploit multi-agent technology
for augmenting existing social platforms. For example, in [11],
an agent-based photo searching and recommender system for
flickr.com is proposed. In [12], authors propose an approach
for finding an expert in a social network. A user's profile is not
supposed to be completely available, and instead is learned by
an agent, by evaluating exchanged messages and the user's
referrals. In [13], authors present a model of a recommender
system based on social networks, autonomous agents and trust
relationships. The aim is to both reach information not
available in close nodes and filter information to be processed.
The system is analyzed with varying network density,
preference heterogeneity and knowledge sparsenesss. In [14],
the problem of automatic trust negotiation is contextualized to
multi-agent systems. Agents are used to negotiate and build
trust among users, disclosing data and privacy policies
incrementally and reciprocally. This is especially useful for
connecting users in a social network, disclosing only the
minimal possible set of profile attributes.

Another widespread application of multi-agent systems in
the field of social networks is simulation. In [15], for example,
a model of social network based on the notion of “circles” is
simulated over a multi-agent system. In [16], there is an
example of a simulation platform specifically designed for
studying social networks. More in general, Ascape, NetLogo,
MASON, Repast and Swarm are among the best known
platforms for agent simulation, often used to study emerging
behaviours and features of both online and offline social
networks.

III. RESILIENT MICROBLOGGING

While many authors argue for the distribution and openness
of social networking and micro-blogging services, few usable
implementations exist, either in the field of federated networks
or as fully distributed solutions. Considering the existing or
proposed solutions, we therefore present a new system, which
we named Blogracy4. Essentially, it is an anonymous and
uncensurable microblogging platform, built incrementally over
BitTorrent, a popular and resilient file-sharing service.

The architecture of the application is modular and is build
around two basic components: (i) an underlying module for
basic file sharing and DHT operations, possibly exploiting an
existing implementation, and (ii) an OpenSocial container, i.e.,
a module providing the services of the social platform to the
local user, to be accessed through a web interface. Additionally,
the system supports autonomous agents for providing (i)
recommendations of both users and content, (ii) personalization
of results, (iii) trust negotiation mechanisms. In the following

4 http://www.blogracy.net/

paragraphs we will describe the most distinguishing features
realized in Blogracy over this extensible architecture.

Figure 1. Blogracy architecture

For its basic operation, Blogracy exploits a peer-to-peer
file-sharing mechanism and two logically separated DHTs.
Users in Blogracy have a profile and a semantically
meaningful activity stream, which contains their actions in the
system (e.g., add a post, tag a picture, comment a video). One
DHT maps the user’s identifier with his activity stream, which
also contains a reference to the user’s profile and references to
user generated content (e.g., posts, comments). These
references are keys of the second DHT, which are then
resolved to the actual files. The files are delivered using the
underlying peer-to-peer file-sharing mechanism.

Among the features of public online information systems,
and in particular in the case of micro-blogging and social
networking applications, anonymity or pseudonymity are often
a requirement. But, even under anonymity or pseudonymity,
users’ content need to be verified for authenticity and integrity.
Blogracy uses a key-based identity scheme [17], where a user’s
public key is used directly to represent the user. This way, all
content produced by the user can be easily verified against his
public key, which is also his own main identifier. Moreover, for
assuring anonymity at the lower network level, various
anonymizing technologies exist, varying from simple proxies
to complex mix-net schemes, and can be integrated into the
platform.

For publishing confidential information, accessible only to
a restricted circle of contacts, Blogracy supports attribute-based
encryption. Similarly to Persona, Blogracy privacy model uses
attribute credentials for protecting access to sensible content,
creating a sort of very flexible “circles”, i.e., parametrized
roles to be assigned to users for granting a certain set of access
rights. The encryption scheme is based on the CP-ABE
protocol (Cyphertext-Policy Attribute-Based Encryption) [18].

Once users can be distinguished by their ID, i.e., the hash
of their public key, it is also possible to associate additional
information with them, including personal profile and personal
activity stream. The activities of a user are represented as a
flow, which friends and followers are interested into and want
to subscribe to. In Blogracy, personal activities are included
into a standard ActivityStream5 feed, which is eventually
signed to avoid tampering. Activity Streams is an open format

5 http://activitystrea.ms/

specification for the syndication of activities taken in social
web applications and services. In Blogracy, the personal feed is
eventually signed to avoid tampering and then shared using the
underlying file-sharing platform.

Clearly, an application that does not provide explicit
representation for the user’s profile and contacts should not be
considered a social networking application. Essentially, in
Blogracy users define and manage a list of other users,
represented by their IDs. A user is not required to publish his
profile, nor the network of his social relations. However, if he
does, the profile, containing partial or full information, can be
retrieved as any other shared file and its magnet-uri can be also
reported in the user’s feed. In case privacy needs to be added,
cryptography shall be used. At the current stage, for exporting
profiles and contacts, Blogracy adopts Portable Contacts6 with
OpenSocial7 extensions, a format which has some benefits
from the interoperability point of view, being quite simple and
well supported by existing large social networks and mail
systems. It also allows to associate tags with each user, thus
matching the basic data structure managed by Blogracy.

One of the technical issues of a peer-to-peer microblogging
application is data availability; in fact, popular content will
quickly gain lots of seeds, while posts published by peripheral
users, with few contacts and sparse online presence, will
instead suffer poor availability to the extent that it is possible
that the publisher remains the only seed for his own new posts.
In some systems focused on distributed data storage, like
Freenet, the problem is addressed through multiple replication
of all published resources. However, in modern peer-to-peer
networks, the hostile behavior of some nodes has to be taken
for granted; pollution and other kinds of attacks cannot be
underestimated. What we foster, instead, is a replication system
based on acquaintances. Essentially, an introducing user is
responsible to introduce the invited as smoothly as possible.
This kind of mechanisms is thoroughly analyzed in
[19][20][21], with special regards to (i) content replication in
peer-to-peer storage and (ii) the problem of peers with low
availability in completely decentralized systems. In fact, using
some kind of fallback strategies for sharing non popular
resources may improve the system performance regarding data
availability.

Another important issue is interoperability with other
existing online social networking and micro-blogging
platforms. In principle, since Blogracy handles users’ feeds in
the form of Activity Streams, it can also manage similar feeds
obtained in other ways, seamlessly integrating content from
web blogs and from the peer-to-peer network. Interoperability
with more traditional news-feeds, web-based micro-blogging
posts, and content distributed over the peer-to-peer network is
thus guaranteed, provided that the stream semantics is correct.
On the other hand, resources distributed through Blogracy can
be easily replicated over the web. Since the actual system
architecture has a web interface, for user operation, it is
relatively simple to host a Blogracy instance on a remote node
and configure it for public access, acting as a gateway for
Blogracy public content.

Finally, apart from requesting updated feeds at startup,
followers should be timely notified that one of their followees
updated some resource. Traditionally the strategies are: (i) pull,

6 http://portablecontacts.net/
7 http://opensocial.org/

i.e., the observer periodically checks the observed resource for
updates or (ii) push, i.e., the update is automatically announced
to the observer. Apart from relying on the DHT, Blogracy
benefits from the peer-to-peer messaging facility provided by
the file-sharing protocol. In fact, for their basic operation, file-
sharing systems need to keep track of the peers that are
currently seeding or downloading a certain file (sometimes
collectively defined as a “swarm”). So, advertising about a
new feed is simply a matter of contacting the peers that are
sharing the superseded version of the user's feed.

As described in the previous sections, Blogracy relies on
the BitTorrent protocol for basic file-sharing, and uses a DHT
mechanism for indexing the users' feeds. Specifically, we
implemented the system exploiting Vuze, a popular BitTorrent
client (formerly known as Azureus) implemented in Java and
available as open source software. In particular, the specific
DHT of Vuze (known as DDB) has a set of generic primitive
queries that fit our purposes better than the Mainline DHT of
other BitTorrent applications. Moreover, the Vuze platform has
a modular architecture, where functionality can be added with
plug-ins. The main application exposes to the plug-ins only a
restricted interface, which is nonetheless sufficient for our
purposes.

IV. INTELLIGENT, PERVASIVE SOCIAL NETWORKING

The Blogracy system itself relies only on users' nodes for
its operation. Thus users need to perform background tasks on
their own, in a distributed way. On the basis of the experience
gained developing AOIS [22], we are integrating a layer of
autonomous agents into the system, for assisting the user in
finding new interesting content and connections and for
pushing the local user's activities to followers.

In particular, a personal assistant (PA) monitors the local
user's actions in the platform and learns the user's profile,
beyond information provided explicitly. The PA receives the
user’s queries, forwards them to the available information
finders (IF) and presents the results to the user. Moreover, a PA
provides the local user with recommendations about possibly
interesting content and connections available in the network.
Another task performed by the PA is the personalization of
results. In fact, as a social network becomes larger and more
richly interconnected, users unavoidably face some form of
information overflow. A personal agent, on the basis of a user's
profile, can arrange presented data in a way to give evidence to
the most interesting bits.

An Information Finder (IF) is an agent that searches
information on the repository contained into the node where it
lives, on the basis of an automatic TF-IDF indexing and
explicit hashtags associated with local posts. It provides this
information both to its user and to other trusted users. An IF
receives users’ queries, finds appropriate results and filters
them on the basis of its user’s access policies.

An information pusher (IP) is an agent that monitors the
changes in the local repository and pushes the new information
to the PA of interested subscribers who are currently connected.
The IP can forward content produced both by the local user or
by remote acquaintances to other contacts, according to privacy
preserving policies and to recent queries made by other users.

Over the Blogracy OpenSocial container, we are also
integrating some functionalities for pervasive online social
networking, specifically for realizing locality and proximity
groups. For this purpose, each node of the social network will
hosts multiple agents, with different levels of agency. Some of
the more important agents are (i) the Neighborhood Manager
agent (NM), which cooperates with lower level agents to
discover the users in its neighborhood; (ii) the Trust Negotiator
agent (TN), that is involved in the decisions regarding privacy
and data access and (iii) the OpenSocial agent, that provides a
bridge towards the underlying Blogracy modules.

A user may own multiple nodes (e.g., an instance on the
smart-phone and an instance on his home computer) and since
the actual location of the user is important for our application,
the nodes in the different device negotiate which should be
considered active (i.e., which one determines the user
location): (i) the nodes determine which is the device that
registered an explicit user action or (ii) they ask the user to
select the device he is currently using.

Apart from the personal circles defined by each user, we
also have two additional kinds of groups: (i) Proximity groups
and (ii) Location groups. Proximity groups are centered on
each member of the social networking system and represents
physical closeness to such member. Proximity groups are
extremely fluid, in the sense that users can physically move
and consequently the set of users belonging to a Proximity
group varies in time. Each user configures the sticky-ness of
his Proximity group, i.e., how long the other users are
considered part of it after they are no longer physically close to
him. Although a Proximity group may be entirely public, for
privacy reasons it is safer to consider only Proximity groups
that are subset of other groups (or to the set union of all groups,
i.e., only “friends” are part of a Proximity group). The
Neighborhood Manager agent informs the OpenSocial agent
when users enter and leave the Proximity group and the latter
notifies the OpenSocial container about it.

On the other hand, a Location group (i) is associated with
the users in the proximity of a given location (e.g., a classroom
or a museum room), (ii) has a host, i.e., a node that both
identifies and supports the group and (iii) is associated with a
location profile, which can be either hosted on the central
server or on the device itself. In fact, a location, although
logically different from a regular user, works in the same way
and a Location group is essentially a Proximity group for the
location.

A generic Trust Negotiation protocol may be needed since
users joining a proximity or location group are not necessarily
connected a priori in the social network, and they may need to
acknowledge their profile attributes before practical social
interaction. Such a negotiation requires the controlled exchange
of credentials and policies, without disclosing unnecessary
sensible information, yet establishing trust if possible. In [14]
we already presented a generic library supporting zero-
knowledge proof for attribute verification, which facilitates the
creation of trust in similar situations.

Agents present different degrees of autonomy and
intelligence. For example, agents such as the lower level agents
are mostly reactive agents that inform the NM agent when a
new node is discovered. The NM agent itself has some degrees
of autonomy and intelligence: (i) it aggregates information

from the agents that discover new peers, (ii) informs the
OpenSocial of the state of neighborhood, (iii) tries to present a
consistent view, merging the data from the different sources
and (iv) it configures the discovering agents according to high
level criteria, such as battery consumption and hardware
availability. The OpenSocial agent is basically a gateway to the
OpenSocial container translating the other agents requests for
the OpenSocial container and The TN agents is a true agent
that performs potentially complex negotiations on his user’s
behalf and depending from the configuration may work in
entire autonomy.

V. CONCLUSIONS

In this paper we proposed a novel peer-to-peer social
networking platform that leverages existing, widespread and
stable technologies such as DHTs and BitTorrent. Although the
primitives offered by those technologies were created with
other goals in mind, however, they could be used with minor
modification in our system. In particular, we introduced a key-
based identity system and a model of social relations for
distributing resources efficiently among interested readers.

In fact, we designed Blogracy as a micro-blogging social
networking system, and we gave priority to the features more
important for micro-blogging, such as: (i) anonymity and
resilience to censorship; (ii) authenticatable content; (iii)
semantic interoperability using activity streams and weak
semantic data formats for contacts and profiles; and (iv) data
availability.

After having implemented and tested all the core features of
Blogracy, we proved that a peer-to-peer architecture can be
functional for both sharing files and advertising new social
activities. Moreover, by adhering to the OpenSocial standard,
the system can be integrated with other existing social
platforms.

Apart from the core functions of the system, we are
experimenting with more advanced features, which
nevertheless are essential to provide a smooth experience to
users. In fact, differently from centralized systems, the nodes of
Blogracy are fully responsible for the platform operation.
Friend discovery and content recommendation have to be
realized in a completely distributed fashion, on the basis of
trust agreements among users.

Finally, the realization of pervasive features on top of
Blogracy will require the dynamic management of open
location and proximity groups, with possibly complex trust
negotiation protocols among autonomous agents.

REFERENCES
[1] T. Berners-Lee, “Long Live the Web: A Call for Continued Open

Standards and Neutrality,” in Scientific American Magazine, December
2010.

[2] S. Buchegger and A. Datta, “A case for P2P infrastructure for social
networks – opportunities & challenges,” in Proceedings of Sixth
International Conference on Wireless On-Demand Network Systems and
Services (WONS 2009), Snowbird, UT, USA, feb. 2009, pp. 161–168.

[3] S. Buchegger, D. Schiöberg, L. Vu and A. Datta, “PeerSoN: P2P social
networking: early experiences and insights,” in Proceedings of the
Second ACM EuroSys Workshop on Social Network Systems.
Nuremberg, Germany: ACM, 2009, pp. 46–52.

[4] L.M. Aiello and G. Ruffo, “LotusNet: Tunable privacy for distributed
online social network services,” Computer Communications, Elsevier
B.V., vol. 35, no. 1, pp. 75-88. 2010.

[5] L.A. Cutillo, R. Molva and T. Strufe, “Safebook: a Privacy Preserving
Online Social Network Leveraging on Real-Life Trust,” in IEEE
Communications Magazine, vol 47, n.12, ser. Consumer
Communications and Networking, 2009, pp 94-101.

[6] R. Baden, A. Bender, N. Spring, B. Bhattacharjee and D. Starin.,
"Persona: an online social network with user-defined privacy", in
Proceedings of the ACM conference on Data communication
(SIGCOMM '09), Barcellona, Spain: ACM, 2009, pp. 135-146.

[7] M. Basuga, R. Belavic, A. Slipcevic, V. Podobnik, A. Petric and I.
Lovrek, “The MAgNet: Agent-based Middleware Enabling Social
Networking for Mobile Users,” in Proceedings of the 10th International
Conference on Telecommunications ConTEL 2009 / Podnar Zarko,
Ivana; Vrdoljak, Boris, editor(s). Zagreb, Croatia: IEEE, 2009. 89-96.

[8] F. Bellifemine, G. Caire, A. Poggi, G. Rimassa, “JADE: a Software
Framework for Developing Multi-Agent Applications. Lessons
Learned,” in Information and Software Technology Journal 50 (2008),
pp. 10-21.

[9] D. Brickley and L. Miller, “FOAF vocabulary specification,”
http://xmlns.com/foaf/0.1/, 2005.

[10] F. Bergenti, E. Franchi and A. Poggi, “Agent-based Social Networks for
Enterprise Collaboration,” in Proceedings of the 20th IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2011.

[11] A. Gursel and S. Sen, “Improving Search In Social Networks by Agent
Based Mining,” in IJCAI'09, Proceedings of the 21st international jont
conference on Artifical intelligence, Morgan Kaufmann Publishers Inc.
San Francisco, CA, USA, 2009, pp. 2034-2039.

[12] B. Yu and M. P. Singh. “Searching social networks,” in AAMAS ’03:
Proceedings of the second international joint conference on Autonomous
agents and multi-agent systems, New York, NY, USA, 2003. ACM Press,
pp. 65–72.

[13] F.E. Walter, S. Battiston and F. Schweitzer, A Model of a Trust-based
Recommendation System on a Social Network, Journal of Autonomous
Agents and Multi-Agent Systems, vol. 16, no. 1 (2008), pp. 57-74.

[14] F. Bergenti, L. Rossi and M. Tomaiuolo, “Towards Automated Trust
Negotiation in MAS,” in Proceedings of the 10th Workshop “Dagli
Oggetti agli Agenti” (WOA 2009).

[15] L. Hamill and N. Gilbert, “Simulating large social networks in agent-
based models: A social circle model,” in Emergence Complexity
Organization (2010) Volume: 12, Issue: 4, Publisher: Emergent
Publications, pp. 78–94.

[16] F. Bergenti, E. Franchi and A. Poggi, “Selected Models for Agent-based
Simulation of Social Networks,” in 3rd Symposium on Social Networks
and Multiagent Systems (SNAMAS '11), pp. 27–32.

[17] N. Li. “Local Names in SPKI/SDSI,” in Proceedings of the 13th IEEE
workshop on Computer Security Foundations (CSFW '00). Cambridge,
UK, July 2000: IEEE Computer Society Press, pp. 2–15.

[18] J. Bethencourt, A. Sahai and B. Waters, “Ciphertext-Policy Attribute-
Based Encryption,” in IEEE Symposium on Security and Privacy, 2007.
Oakland, California, USA, May 2007, pp.321-334.

[19] K. Rzadca, A. Datta and S. Buchegger, “Replica placement in P2P
storage: Complexity and game theoretic analyses,” in Proceedings of the
International Conference on Distributed Computing Systems. Genova,
Italy: IEEE Computer Society, 2010, pp. 599–609.

[20] J. Douceur and R. Wattenhofer, “Competitive hill-climbing strategies for
replica placement in a distributed file system,” in Distributed
Computing, ser. Lecture Notes in Computer Science, J. Welch, Ed.
Berlin / Heidelberg: Springer, 2001, vol. 2180, pp. 48–62.

[21] S. Bernard and F. Le Fessant, “Optimizing peer-to-peer backup using
lifetime estimations,” in Proceedings of the 2009 EDBT/ICDT
Workshops. New York, NY, USA: ACM, 2009, pp. 26–33.

[22] E. Franchi, A. Poggi and M. Tomaiuolo, “Developing Applications with
HDS,” in Proceedings of the 12th Workshop “Dagli Oggetti agli
Agenti” (WOA 2011), pp. 117-122.

	I. Introduction
	II. RELATED WORK
	III. Resilient microblogging
	IV. Intelligent, pervasive social networking
	V. CONCLUSIONS
	REFERENCES

